CN114137002B - 一种基于衬度间增强的低剂量x射线差分相位衬度成像方法 - Google Patents

一种基于衬度间增强的低剂量x射线差分相位衬度成像方法 Download PDF

Info

Publication number
CN114137002B
CN114137002B CN202111368102.5A CN202111368102A CN114137002B CN 114137002 B CN114137002 B CN 114137002B CN 202111368102 A CN202111368102 A CN 202111368102A CN 114137002 B CN114137002 B CN 114137002B
Authority
CN
China
Prior art keywords
contrast
grating
dose
low
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111368102.5A
Other languages
English (en)
Other versions
CN114137002A (zh
Inventor
傅健
朱国港
张昌盛
明晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN202111368102.5A priority Critical patent/CN114137002B/zh
Publication of CN114137002A publication Critical patent/CN114137002A/zh
Application granted granted Critical
Publication of CN114137002B publication Critical patent/CN114137002B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本发明一种基于衬度间增强的低剂量X射线差分相位衬度成像方法,包括:获取低剂量条件下光栅差分相衬成像的多衬度断层图像;构建卷积神经网络模型;训练卷积神经网络模型;使用已训练的卷积神经网络对低剂量多衬度断层图像进行恢复,能够有效减少样品所受的辐射剂量,提升X射线光栅差分相衬成像的应用潜力;利用卷积神经网络实现各衬度间结构互补,采用解析精度较高的衬度图像为解析精度较差的衬度图像提供结构先验,能够对受低剂量影响较大的衬度图像进行有效增强,提高最终的成像质量;直接采用降低管电流方式获取低剂量投影并完成高精度X射线相位衬度成像,有效地降低了辐射剂量,并显著提高了受噪声波动较大的衬度图像的质量。

Description

一种基于衬度间增强的低剂量X射线差分相位衬度成像方法
技术领域
本发明实施例涉及深度学习及X射线差分相位衬度成像技术领域,尤其涉及一种基于衬度间增强的低剂量X射线差分相位衬度成像方法。
背景技术
相比传统吸收衬度成像技术,X射线差分相位衬度成像能够在对生物组织等轻元素物质的成像方面获得更高的成像对比度。在现有X射线光栅差分相位衬度成像装置中,普通X射线源产生的X射线通过源光栅G0产生相干X射线,经过相位光栅G1并自由传播一定的距离后,穿过吸收光栅G2,最终被吸收光栅G2后面的探测器接收。由于探测器不能够直接得到X射线的相位变化,因此通常需要横向移动吸收光栅G2微米级的距离若干次(通常需要4-8次的移动),并对采集的二维投影图像进行解析得到差分相位衬度信号,之后对解析得到的差分相位衬度信号进行重建。该过程显著加大了成像过程中的辐射剂量、极大降低了成像的效率。
降低管电流是最简单易行的低剂量措施,但是低剂量会影响衬度信号的质量。此外,低剂量扫描条件下光栅差分相衬成像中所解析出的各衬度图像受量子噪声的影响不同,其中某些受噪声影响程度较大的图像结构会出现严重的结构失真,而受影响较小的衬度则能够保持较为完整的结构细节。由于各衬度图像实际上是同一样品结构在不同形式下的反映,因而各衬度图像的结构细节可以达成互补。
发明内容
本发明技术解决问题:克服现有技术的不足,提供一种衬度间增强的低剂量X射线差分相位衬度成像方法,通过降低管电流或者减少曝光时间实现透照过程中射线辐射剂量的减少;同时,利用深度学习技术使多衬度图像的结构细节通过互补的形式提升衬度信号的细节完整性,保证低剂量条件下差分相位衬度重建的质量,使之满足高质高效的工业无损检测需求。
本发明技术解决方案:一种基于衬度间增强的低剂量X射线差分相位衬度成像方法,包括以下步骤:
步骤1、使用基于Talbot-Lau效应的X射线光栅差分相位衬度成像装置获取样品的低剂量步进投影序列,所述低剂量是指通过降低管电流或曝光时间实现射线辐射剂量的降低,所述步进投影序列是由于光栅差分相衬成像装置的衬度信号解析需要在吸收光栅的多个步进位置采集图像,所述低剂量条件会使投影序列产生量子噪声;
步骤2、解析上述步进投影序列,得到样品的多衬度投影信号,所述信号解析算法采用傅里叶解析法,所述多衬度投影信号包含样品的吸收衬度、相位衬度及暗场衬度信号;
步骤3、对所述多衬度投影信号进行CT重建,获取样品的低剂量多衬度图像,所述重建算法为滤波反投影(Filter Projection,FBP)重建算法,所述低剂量多衬度图像中,低剂量条件对吸收衬度图像的影响远小于相位和暗场衬度;
步骤4、利用基于衬度间增强的卷积神经网络对上述低剂量多衬度图像进行处理,得到降噪后的优化多衬度图像;所述优化多衬度图像是由于衬度间增强的卷积神经网络模型,将光栅差分相称所得到的多衬度图像同时输入卷积神经网络模型,利用卷积核操作的特性进行衬度间的信息融合,实现了各衬度图像间的结构互补,即本发明的创新点。
进一步地,步骤1所述的低剂量成像采用降低光电流或曝光时间方式实现,该方法简单易行,无需对现有成像装置进行改动,可扩展性强,能够有效地降低辐射剂量;
进一步地,步骤2所述的X射线光栅差分相位衬度成像装置获取样品的步进投影序列,其获取方法如下所示:
所述X射线光栅差分相位衬度成像装置包括六个部分:X射线源、源光栅G0、样品、相位光栅G1、吸收光栅G2和探测器;
其中,源光栅G0用以产生相干X射线;相位光栅G1为50%的占空比,使X射线产生值为π的相位移动;吸收光栅G2采用横向错位吸收光栅,占空比为50%,其中一部分能够完全吸收X射线,另一部分能够透过X射线;
所述X射线光栅差分相位衬度成像装置的成像实验参数(各参数指什么参数)之间对应的关系如公式(1)-(4)所示:
Figure BDA0003361362830000021
kg1=2g2, (2)
g0=g2·L/d, (3)
s<g2·L/2d, (4)
其中,d为相位光栅G1和横向错位吸收光栅G2之间的距离,m为整数表示m倍的分数Talbot距离,k=(L+d)/L为放大比,g1为相位光栅G1的周期,λ为所用X射线的波长,g2为吸收光栅G2的周期,g0为源光栅G0的周期,L为源光栅G0与相位光栅G1直接的距离,s为源光栅中在每个周期下允许X射线透过的宽度;
成像过程中通过步进吸收光栅,得到光强随光栅位置变化的曲线,称为步进曲线,该步进曲线近似为余弦曲线,如公示(5)所示:
Figure BDA0003361362830000031
进一步地,步骤2所述的解析步进投影序列并得到样品的多衬度投影信号的过程,如下所示:
对采集得到的步进曲线进行傅里叶解析得到a0、a1、φ1,为了得到多衬度信号,在成像过程中通常同时采集未放置样品时的参考曲线及放置样品后的样品曲线,并依据公式(6)-(8)得到对应的多衬度投影信号:
Figure BDA0003361362830000032
Figure BDA0003361362830000033
Figure BDA0003361362830000034
其中,上标s和r分别对应样品曲线和参考曲;A,
Figure BDA0003361362830000035
和V分别对应吸收衬度、相位衬度和暗场衬度投影信息;
进一步地,使用公式(9)-(11)所示的滤波反投影重建算法对所述多衬度投影信号进行重建得到相应衬度的断层图像:
Figure BDA0003361362830000036
Figure BDA0003361362830000037
Figure BDA0003361362830000038
其中,g(x,y)为待重建的断层图像,U为几何加权因子,Pθ为解析得到的投影信号,θ为旋转角度,h(v)未滤波器,当重建吸收衬度及暗场衬度信号时采用公式(10)所示的S-L滤波器,而当重建相位衬度信号时需采用公式(11)所示的Hilbert滤波器;
进一步地,采用公式(12)所示的卷积神经网络对含伪影和噪声的低剂量多衬度图像进行处理,得到优化后的多衬度图像,具体如下:
Figure BDA0003361362830000039
式(12)是一个多维卷积运算,其中,X0∈RH×W×3为输入的三通道低剂量多衬度图像,各输入通道分别对应差分相位衬度、吸收衬度及暗场衬度图像,H和W为图像长和宽;经过一系列的多维卷积运算等操作,最终可得到卷积神经网络的输出Xn∈RH×W×3,Xn为优化后的多衬度图像,K和b对应各卷积层的卷积核和偏置项。
本发明与现有技术相比的优点在于:
(1)本发明相比现有的X射线光栅差分相位衬度成像技术,能够有效减少样品所受的辐射剂量,提升X射线光栅差分相衬成像的应用潜力;同时充分挖掘了光栅差分相衬成像的多衬度特性,利用卷积神经网络实现各衬度间结构互补,采用解析精度较高的衬度图像为解析精度较差的衬度图像提供结构先验,该方式能够对受低剂量影响较大的衬度图像进行有效增强,提高最终的成像质量。该方法可直接采用降低管电流等方式获取低剂量投影并完成高精度X射线相位衬度成像,无需对成像装置进行改进,简单而有效地降低了辐射剂量,且能够被轻易地拓展至其他的相位衬度成像方法;同时该方法所采用的衬度间增强的思想,充分利用光栅差分相衬成像的多衬度特性,并显著提高了受噪声波动较大的衬度图像的质量。
(2)本发明中的低剂量X射线差分相位衬度成像与常见的不完备数据成像相比,该类方法简单易行,无需对现有成像装置进行改动,可扩展性强,能够有效地降低辐射剂量。
附图说明
图1为本发明的基于衬度间增强的低剂量X射线差分相位衬度成像方法的流程图;
图2为低管电流条件对光栅差分相衬成像中三种衬度图像的影响;
图3为本发明实施例采用的卷积神经网络结构图;
图4中的(a)-(c)分别为本发明实施例所处理的低剂量投影序列直接FBP重建得到的吸收、相位和暗场重建图像;
图5为本发明提供的基于深度学习的衬度间增强的低剂量X射线差分相位衬度成像方法处理过的高质量多衬度图像,(a)-(c)分别为优化后的吸收、相位和暗场三种衬度的重建图像。
具体实施方式
下面结合附图以及具体实施方式进一步说明本发明。
如图1所述,本发明的一种基于衬度间增强的低剂量X射线差分相位衬度成像方法具体步骤如下:
步骤S101、使用基于Talbot-Lau效应的X射线光栅差分相位衬度成像装置获取样品的低剂量步进投影序列。
所述低剂量是指通过降低管电流或曝光时间实现射线辐射剂量的降低,所述步进投影序列是由于光栅差分相衬成像装置的衬度信号解析需要在吸收光栅的多个步进位置采集图像,所述低剂量条件会使投影序列产生量子噪声;
所述基于Talbot-Lau效应的X射线光栅差分相位衬度成像装置包括六个部分:X射线源、源光栅G0、样品、相位光栅G1、吸收光栅G2和探测器;
其中,源光栅G0用以产生相干X射线;相位光栅G1为50%的占空比,使X射线产生值为π的相位移动;吸收光栅G2采用横向错位吸收光栅,占空比为50%,其中一部分能够完全吸收X射线,另一部分能够透过X射线;
所述X射线光栅差分相位衬度成像装置的成像实验参数之间对应的关系如公式(1)-(4)所示:
Figure BDA0003361362830000051
kg1=2g2, (2)
g0=g2·L/d, (3)
s<g2·L/2d, (4)
其中,d为相位光栅G1和横向错位吸收光栅G2之间的距离,m为整数表示m倍的分数Talbot距离,k=(L+d)/L为放大比,g1为相位光栅G1的周期,λ为所用X射线的波长,g2为吸收光栅G2的周期,g0为源光栅G0的周期,L为源光栅G0与相位光栅G1直接的距离,s为源光栅中在每个周期下允许X射线透过的宽度;
成像过程中通过步进吸收光栅,得到光强随光栅位置变化的曲线,称为步进曲线,该步进曲线近似为余弦曲线,如公示(5)所示:
Figure BDA0003361362830000052
其中,f(x)是样品的步进投影序列,在低剂量X射线差分相位衬度成像条件下表示样品的低剂量步进投影序列,a0,a1和φ1分别代表余弦曲线的曲线纵向偏移量,振幅和相位偏移。
步骤S102、解析上述步进投影序列,得到含有明显伪影的样品的多衬度投影信号。
所述多衬度投影信号包含样品的吸收衬度、相位衬度及暗场衬度信号;
所述信号解析算法采用的是傅里叶解析法,即对采集得到的步进曲线进行傅里叶解析得到a0、a1、φ1。为了得到多衬度信号,在成像过程中同时采集未放置样品时的参考曲线及放置样品后的样品曲线,并依据公式(6)-(8)得到对应的多衬度投影信号:
Figure BDA0003361362830000053
Figure BDA0003361362830000054
Figure BDA0003361362830000061
其中,上标s和r分别对应样品曲线和参考曲;A,
Figure BDA0003361362830000062
和V分别对应吸收衬度、相位衬度和暗场衬度投影信息。
步骤S103、对所述多衬度投影信号进行CT重建,获取样品的低剂量多衬度图像。
所述重建算法为滤波反投影(Filter BackProjection,FBP)重建算法,使用公式(9)-(11)所示的滤波反投影重建算法对所述多衬度投影信号进行重建,得到样品的低剂量多衬度图像:
Figure BDA0003361362830000063
Figure BDA0003361362830000064
Figure BDA0003361362830000065
其中,g(x,y)为待重建的断层图像,(x,y)表示图像的二维坐标,U为几何加权因子,Pθ为解析得到的投影信号,θ为旋转角度,h(v)为滤波器,v表示频率,isgn(·)表示Hilbert变换。当重建吸收衬度及暗场衬度信号时采用公式(10)所示的S-L滤波器,而当重建相位衬度信号时需采用公式(11)所示的Hilbert滤波器。
所述低剂量多衬度图像中,低剂量条件对吸收衬度图像的影响远小于相位和暗场衬度。
步骤S104、利用基于衬度间增强的卷积神经网络对上述低剂量多衬度图像进行处理,得到降噪后的优化多衬度图像。
所述优化多衬度图像是由于衬度间增强的卷积神经网络模型,将光栅差分相称所得到的多衬度图像同时输入卷积神经网络模型,利用卷积核操作的特性进行衬度间的信息融合,实现了各衬度图像间的结构互补。其实现过程如下:采用公式(12)所示的卷积神经网络对所述低剂量多衬度图像进行处理,得到降噪后的优化多衬度图像,具体如下:
Figure BDA0003361362830000066
式(12)是一个多维卷积运算,其中,X0∈RH×W×3为输入的三通道低剂量多衬度图像,各输入通道分别对应差分相位衬度、吸收衬度及暗场衬度图像,H和W为图像长和宽;经过一系列的多维卷积运算等操作,最终得到卷积神经网络的输出Xn∈RH×W×3,Xn为优化后的多衬度图像,K和b对应各卷积层的卷积核和偏置项。
图2为标准剂量和低剂量情况下同一断层的吸收、相位、暗场三种衬度图像的对比。由图可见,低剂量情况下,吸收衬度图像的影响相对较小,伪影和噪声不明显;而相位和暗场图像中出现了非常严重的伪影,细节结构大量损失,尤其是暗场图像。表明在低剂量条件下,各衬度投影受噪声影响的波动程度为吸收衬度>差分相位衬度>暗场衬度。
图3为基于深度学习的衬度间增强卷积神经网络的结构图。该卷积神经网络输入分别为低剂量多衬度图像,当多衬度图像输入至卷积神经网络后,会依次经过以下三个阶段:
(1)初级特征提取
输入的低剂量多衬度图像首先会经过三个分支(差分相位衬度分支、吸收衬度分支、暗场衬度分支)来完成初级特征提取。各分支首先经过2个尺寸为3×3、步长为1、通道数为32的卷积层,然后经过4个残差块,最后通过尺寸3×3、步长为1、通道数为1的卷积层生成尺寸为H×W×1的输出特征层。残差块的引入能够在一定程度上抑制网络深度变深时出现的退化现象,提升最终训练所得到的模型精度。
(2)通道聚合
经过第一阶段各分支的初级特征提取,各分支的输出已经完成了初步的降噪及结构恢复工作。通道聚合在通道层次上对各分支的输出进行聚合,得到尺寸为H×W×3的聚合特征层。
(3)高级特征提取
通道聚合后的特征层再次通过一系列的卷积层等操作完成高级特征提取,并输出高质量的多衬度图像。该阶段以通道聚合所得到的特征层作为输入,依次经过2个尺寸为3×3、步长为1、通道数为32的卷积层,4个残差块和1个尺寸3×3、步长为1、通道数为3的卷积层,并将所得的结果与通道聚合生成的特征层直接相加得到网络的输出。
为了证明上述实施例的效果,本发明进行了如下实验,实验步骤如下:
(1)进行低剂量X射线光栅差分相衬成像实验。降低管电流,基于Talbot-Lau效应的X射线光栅差分相位衬度成像装置获取样品的低剂量步进投影序列。
(2)使用傅里叶解析法对步进投影序列进行处理,获取低剂量条件下含有量子噪声的吸收、相位和暗场的多衬度投影序列。
(3)分别使用FBP算法对衬度投影进行CT重建,获得含伪影的吸收、相位和暗场重建图像。
(4)根据图3以及公式(12),对低剂量多衬度重建图像进行处理,获得优化后的高质量多衬度重建图像。
本发明实施例相比传统的X射线光栅差分相衬方法具有两个方面的优势:1)通过降低管电流或者减少曝光时间实现透照过程中射线辐射剂量的减少;2)利用深度学习技术使多衬度图像的结构细节通过互补的形式提升衬度信号的细节完整性,保证低剂量条件下差分相位衬度重建的质量,使之满足高质高效的工业无损检测需求。
图4中的(a)-(c)分别为本发明实施例所处理的低剂量投影序列直接FBP重建得到的吸收、相位和暗场重建图像。其中,吸收衬度图像的影响相对较小,伪影和噪声不明显;而相位和暗场图像中出现了非常严重的伪影,细节结构大量损失,尤其是暗场图像。
图5中的(a)-(c)分别为本发明实施例通过衬度间增强的卷积神经网络处理过的高质量多衬度重建图像。可以明显看出,三种衬度的重建图像都进行了明显优化,尤其是相位衬度图像和暗场衬度图像,细节结构得到恢复,伪影得到消除。
本发明实施例相比于传统的低剂量X射线相位衬度计算机断层成像方法,通过降低管电流或者减少曝光时间实现透照过程中射线辐射剂量的减少;同时,利用深度学习技术使多衬度图像的结构细节通过互补的形式提升衬度信号的细节完整性,保证低剂量条件下差分相位衬度重建的质量,使之满足高质高效的工业无损检测需求。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本命进行了详细的说明,本领域的普通技术人员应当理解;其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (3)

1.一种基于衬度间增强的低剂量X射线差分相位衬度成像方法,其特征在于,包括以下步骤:
步骤1、使用基于Talbot-Lau效应的X射线光栅差分相位衬度成像装置获取样品的低剂量步进投影序列,所述低剂量指通过降低管电流或曝光时间实现射线辐射剂量的降低,所述步进投影序列是由于光栅差分相衬成像装置的衬度信号解析需要在吸收光栅的多个步进位置采集图像,所述低剂量条件会使投影序列产生量子噪声;
步骤2、解析步骤1中的所述步进投影序列,得到样品的多衬度投影信号,解析算法采用傅里叶解析法,所述多衬度投影信号包含样品的吸收衬度、相位衬度及暗场衬度信号;
步骤3、对步骤2中的所述多衬度投影信号进行CT重建,获取样品的低剂量多衬度图像,重建算法为滤波反投影(Filter Projection,FBP)重建算法,所述低剂量多衬度图像中,低剂量条件对吸收衬度图像的影响远小于相位和暗场衬度;
步骤4、利用基于衬度间增强的卷积神经网络对步骤3中所述低剂量多衬度图像进行处理,得到降噪后的优化多衬度图像;所述优化多衬度图像是由于衬度间增强的卷积神经网络模型,将光栅差分相称所得到的多衬度图像同时输入卷积神经网络模型,利用卷积核操作的特性进行衬度间的信息融合,实现各衬度图像间的结构互补;
所述步骤2中,解析步进投影序列,得到样品的多衬度投影信号,包括:
对采集得到的步进曲线进行傅里叶解析得到a0、a1、φ1,a0,a1和φ1分别代表余弦曲线的曲线纵向偏移量,振幅和相位偏移;为了得到多衬度信号,在成像过程中同时采集未放置样品时的参考曲线及放置样品后的样品曲线,并依据公式(6)-(8)得到对应的多衬度投影信号:
Figure FDA0004188012510000011
Figure FDA0004188012510000012
Figure FDA0004188012510000013
其中,上标s和r分别对应样品曲线和参考曲;A,
Figure FDA0004188012510000014
和V分别对应吸收衬度、相位衬度和暗场衬度投影信息;
所述步骤3中,使用公式(9)-(11)所示的滤波反投影重建算法对所述多衬度投影信号进行重建,得到样品的低剂量多衬度图像:
Figure FDA0004188012510000021
Figure FDA0004188012510000022
Figure FDA0004188012510000023
其中,g(x,y)为待重建的断层图像,(x,y)表示图像的二维坐标,U为几何加权因子,Pθ为解析得到的投影信号,θ为旋转角度,h(v)为滤波器,v表示频率,isgn(·)表示Hilbert变换;当重建吸收衬度及暗场衬度信号时采用公式(10)所示的S-L滤波器,而当重建相位衬度信号时需采用公式(11)所示的Hilbert滤波器。
2.根据权利要求1所述的基于衬度间增强的低剂量X射线差分相位衬度成像方法,其特征在于:所述步骤1中,基于Talbot-Lau效应的X射线光栅差分相位衬度成像装置获取样品的低剂量步进投影序列,如下:
所述X射线光栅差分相位衬度成像装置包括六个部分:X射线源、源光栅G0、样品、相位光栅G1、吸收光栅G2和探测器;
其中,源光栅G0用以产生相干X射线;相位光栅G1为50%的占空比,使X射线产生值为π的相位移动;吸收光栅G2采用横向错位吸收光栅,占空比为50%,其中一部分能够完全吸收X射线,另一部分能够透过X射线;
所述X射线光栅差分相位衬度成像装置的成像实验参数之间对应的关系如公式(1)-(4)所示:
Figure FDA0004188012510000024
kg1=2g2, (2)
g0=g2·L/d, (3)
s<g2·L/2d, (4)
其中,d为相位光栅G1和横向错位吸收光栅G2之间的距离,m为整数表示m倍的分数Talbot距离,k=(L+d)/L为放大比,g1为相位光栅G1的周期,λ为所用X射线的波长,g2为吸收光栅G2的周期,g0为源光栅G0的周期,L为源光栅G0与相位光栅G1直接的距离,s为源光栅中在每个周期下允许X射线透过的宽度;
成像过程中通过步进吸收光栅,得到光强随光栅位置变化的曲线,称为步进曲线,该步进曲线近似为余弦曲线,如公示(5)所示:
Figure FDA0004188012510000025
其中,f(x)是样品的步进投影序列,在低剂量X射线差分相位衬度成像条件下表示样品的低剂量步进投影序列,a0,a1和φ1分别代表余弦曲线的曲线纵向偏移量,振幅和相位偏移。
3.根据权利要求1所述的基于衬度间增强的低剂量X射线差分相位衬度成像方法,其特征在于:所述步骤4中,采用公式(12)所示的卷积神经网络对所述低剂量多衬度图像进行处理,得到降噪后的优化多衬度图像,具体如下:
Figure FDA0004188012510000031
式(12)是一个多维卷积运算,其中,X0∈RH×W×3为输入的三通道低剂量多衬度图像,各输入通道分别对应差分相位衬度、吸收衬度及暗场衬度图像,H和W为图像长和宽;经过一系列的多维卷积运算等操作,最终得到卷积神经网络的输出Xn∈RH×W×3,Xn为优化后的多衬度图像,K和b对应各卷积层的卷积核和偏置项。
CN202111368102.5A 2021-11-18 2021-11-18 一种基于衬度间增强的低剂量x射线差分相位衬度成像方法 Active CN114137002B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111368102.5A CN114137002B (zh) 2021-11-18 2021-11-18 一种基于衬度间增强的低剂量x射线差分相位衬度成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111368102.5A CN114137002B (zh) 2021-11-18 2021-11-18 一种基于衬度间增强的低剂量x射线差分相位衬度成像方法

Publications (2)

Publication Number Publication Date
CN114137002A CN114137002A (zh) 2022-03-04
CN114137002B true CN114137002B (zh) 2023-07-14

Family

ID=80390506

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111368102.5A Active CN114137002B (zh) 2021-11-18 2021-11-18 一种基于衬度间增强的低剂量x射线差分相位衬度成像方法

Country Status (1)

Country Link
CN (1) CN114137002B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116843596B (zh) * 2023-08-28 2023-11-14 浙江大学杭州国际科创中心 X射线光栅多模态图像自适应融合方法、系统及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010089319A1 (en) * 2009-02-05 2010-08-12 Institute Of High Energy Physics Low dose single step grating based x-ray phase contrast imaging
CN104970815A (zh) * 2014-04-04 2015-10-14 曹红光 基于光栅相位衬度和光子计数的x射线成像系统及方法
CN108680589A (zh) * 2018-05-31 2018-10-19 北京航空航天大学 基于横向错位光栅的x射线光栅差分相位衬度三维锥束计算机层析成像方法及装置
CN112568923A (zh) * 2020-12-10 2021-03-30 中国科学院深圳先进技术研究院 X射线相位衬度图像提取方法、装置、终端及存储介质
CN113367717A (zh) * 2021-05-26 2021-09-10 中国科学院深圳先进技术研究院 一种锥束x射线荧光成像方法、系统、终端以及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010089319A1 (en) * 2009-02-05 2010-08-12 Institute Of High Energy Physics Low dose single step grating based x-ray phase contrast imaging
CN104970815A (zh) * 2014-04-04 2015-10-14 曹红光 基于光栅相位衬度和光子计数的x射线成像系统及方法
CN108680589A (zh) * 2018-05-31 2018-10-19 北京航空航天大学 基于横向错位光栅的x射线光栅差分相位衬度三维锥束计算机层析成像方法及装置
CN112568923A (zh) * 2020-12-10 2021-03-30 中国科学院深圳先进技术研究院 X射线相位衬度图像提取方法、装置、终端及存储介质
CN113367717A (zh) * 2021-05-26 2021-09-10 中国科学院深圳先进技术研究院 一种锥束x射线荧光成像方法、系统、终端以及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
X射线光栅相位成像的理论和方法;陈博;朱佩平;刘宜晋;王寯越;袁清习;黄万霞;明海;吴自玉;;物理学报(第03期);全文 *

Also Published As

Publication number Publication date
CN114137002A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
Diwakar et al. A review on CT image noise and its denoising
EP3608877B1 (en) Iterative image reconstruction framework
US11176642B2 (en) System and method for processing data acquired utilizing multi-energy computed tomography imaging
US10213176B2 (en) Apparatus and method for hybrid pre-log and post-log iterative image reconstruction for computed tomography
US10102651B2 (en) Image processing device, radiation detecting device, and image processing method
Abu Anas et al. Comparison of ring artifact removal methods using flat panel detector based CT images
CN112102428B (zh) Ct锥形束扫描图像重建方法、扫描系统及存储介质
US7916828B1 (en) Method for image construction
Humphries et al. Comparison of deep learning approaches to low dose CT using low intensity and sparse view data
CN114137002B (zh) 一种基于衬度间增强的低剂量x射线差分相位衬度成像方法
US9805481B2 (en) System and method for regularized reconstruction of phase contrast computerized tomography
CN114387359A (zh) 一种三维x射线低剂量成像方法及装置
CN116091636A (zh) 基于双域增强的x射线差分相衬成像不完备数据重建方法
Bousse et al. Systematic review on learning-based spectral CT
Xia et al. Regformer: A local-nonlocal regularization-based model for sparse-view CT reconstruction
Anthoine et al. Some proximal methods for CBCT and PET tomography
Li et al. Adaptive non-local means filtering based on local noise level for CT denoising
Us et al. Combining dual-tree complex wavelets and multiresolution in iterative CT reconstruction with application to metal artifact reduction
Zhu et al. Sinogram domain metal artifact correction of CT via deep learning
Islam et al. Generalized Gaussian model-based reconstruction method of computed tomography image from fewer projections
Li et al. A cascade-based dual-domain data correction network for sparse view CT image reconstruction
Tao et al. Phase retrieval for X-ray differential phase contrast radiography with knowledge transfer learning from virtual differential absorption model
Hu et al. Reducing noises and artifacts simultaneously of low-dosed X-ray computed tomography using bilateral filter weighted by Gaussian filtered sinogram
Wu et al. Stabilizing Deep Tomographic Reconstruction
US11710218B2 (en) System and method for normalizing dynamic range of data acquired utilizing medical imaging

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant