CN114123911A - 一种混合励磁不对称定子极双凸极电机的全速域控制系统 - Google Patents

一种混合励磁不对称定子极双凸极电机的全速域控制系统 Download PDF

Info

Publication number
CN114123911A
CN114123911A CN202111439272.8A CN202111439272A CN114123911A CN 114123911 A CN114123911 A CN 114123911A CN 202111439272 A CN202111439272 A CN 202111439272A CN 114123911 A CN114123911 A CN 114123911A
Authority
CN
China
Prior art keywords
motor
current
mtpv
control system
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111439272.8A
Other languages
English (en)
Other versions
CN114123911B (zh
Inventor
徐伟
曹辰
张祎舒
刘毅
黄守道
高剑
黄诚
周磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202111439272.8A priority Critical patent/CN114123911B/zh
Publication of CN114123911A publication Critical patent/CN114123911A/zh
Application granted granted Critical
Publication of CN114123911B publication Critical patent/CN114123911B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0085Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
    • H02P21/0089Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed using field weakening
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/13Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明提出一种混合励磁不对称定子极双凸极电机的全速域控制系统,属于电机控制领域。包括:最大转矩电流比模块,用于给定电机矢量控制系统的交直轴电流id和iq在MTPA曲线上运行时的具体值id_mtpa和iq_mtpa;最大转矩电压比模块,用于给定id和iq在MTPV曲线上运行时的具体值id_mtpv和iq_mtpv,同时作为id和iq的下限值,以使电机自动切换至MTPV曲线上;负载转矩观测器模块,实时观测负载转矩输出给励磁电流分配模块,作为励磁电流分配的参考变量;励磁电流分配模块,由实时转速及负载,根据分配规则输出最优的励磁电流给定值作为励磁电流控制器的输入。本发明旨在保证电机最大扩速及全速域稳定运行的基础上,减小电机低速区励磁铜耗并最大限度的提升电机高速区带载能力。

Description

一种混合励磁不对称定子极双凸极电机的全速域控制系统
技术领域
本发明属于电机控制技术领域,更具体的,涉及一种混合励磁不对称定子极双凸极电机的全速域控制系统。
背景技术
随着电动汽车市场的不断增长,高性能驱动电机的需求越来越迫切。随着稀土永磁材料的发展,永磁电机的性能也不断优化,并且因其功率密度高、效率高等优点,逐渐取代异步电机、电励磁同步电机,在各类电驱动系统中得到广泛应用。然而由于采用了永磁体励磁,不可避免的存在调磁困难、永磁体易失磁等问题,限制了永磁电机的高速运行性能。为解决前述问题,混合励磁不对称定子极双凸极电机(HEASPDSM)同时采用永磁体和直流励磁绕组产生气隙磁场,调节励磁电流的方向和大小,即可增强或削弱气隙磁场,实现低速增磁运行和高速弱磁运行,从而拥有更强的转矩输出能力和更宽的调速范围。
目前针对HEASPDSM的研究集中在其弱磁扩速以及效率优化上,根据电机的电压限制条件,比较普遍的认识为励磁电流越小,越有利于该电机的弱磁扩速。基于这个前提,常见的控制方法为在电机低速区使得励磁电流最大,或者考虑铜耗最小等因素对励磁电流和电枢电流进行统一分配;当电机进入弱磁区,使得励磁电流减到最小值进行初步扩速,最后再根据电压电流限制条件进行二段弱磁。
然而,上述方法仅仅适用于电机理想空载的条件下。当电机运行在带载情况下,随着励磁电流的变化,电机特征电流点会随之改变,同时恒转矩曲线也会上下移动,导致电机弱磁扩速能力不再随着励磁电流的变化而单调变化。因此为了提高电机全速域的运行性能,一种更有效的励磁电流分配方法亟需被提出。
发明内容
针对现有技术的缺陷及改进需求,本发明提供了一种混合励磁不对称定子极双凸极电机的全速域控制系统,其目的在于,在电机低速运行时,在保证电机响应速度的前提下剑侠励磁绕组的铜耗;在电机高速运行时,最大限度提升电机的带载能力。
为实现上述目的,本发明提供了一种混合励磁不对称定子极双凸极电机的全速域控制系统,所述控制系统包括:转速PI控制器、电流PI控制器、电压环前馈模块、Clark变换模块、Park变换模块和反Park变换模块,考虑HEASPDSM电流控制量除交直轴电流id和iq外,还存在一个励磁电流if,所述控制系统还包括:最大转矩电流比(MTPA)模块、最大转矩电压比(MTPV)模块、负载转矩观测器模块和励磁电流分配模块;
最大转矩电流比(MTPA)模块,不同于应用在传统永磁同步电机(PMSM)上的MTPA算法,该模块以转速PI控制器的输出及实时测得的励磁电流值if为输入,经计算输出电机矢量控制系统的交直轴电流id和iq在MTPA曲线上运行时的具体值id_mtpa和iq_mtpa
最大转矩电压比(MTPV)模块,同MTPA模块,相比于应用在传统PMSM上的MTPV算法,该模块依旧将反馈转速及最大反电势值作为输入的基础上,引入了一个新的变量励磁电流值if,模块输出量用于给定id和iq在MTPV曲线上运行时的具体值id_mtpv和iq_mtpv,同时作为id和iq限幅模块的下限值,以使电机自动切换至MTPV曲线上;
负载转矩观测器模块,该模块通过改进应用于PMSM中的隆伯格转矩观测器算法,实时观测电机负载转矩值,输出量作为励磁电流分配模块的输入,作为励磁电流分配的参考变量;
励磁电流分配模块,依据具体控制目标,依据反馈转速以及由负载转矩观测器模块实时观测到的负载转矩值,设定相应的励磁电流分配规则,并根据分配规则输出最优的励磁电流给定值作为励磁电流控制器的输入。
HEASPDSM的转矩方程如下:
Figure BDA0003382665500000031
其中,Te为电磁转矩,ψpm为永磁磁通,p为电机极对数,ψpm为永磁磁通,Msf为励磁绕组与点数绕组的互感值,id为直轴电流,iq为交轴电流,Ld和Lq分别为直轴电感和交轴电感。由拉格朗日乘数法:
Figure BDA0003382665500000032
其中λ为拉格朗日算子,进而可得:
Figure BDA0003382665500000033
由转矩方程可得恒转矩方向为:
Figure BDA0003382665500000034
HEASPDSM的电压方程如下:
ud=-ωeLqiq
uq=ωe(Ldid+Msfifpm)
其中ωe为电机的电角速度,ud和uq分别为直轴反电势和交轴反电势。构建代价函数:
Figure BDA0003382665500000041
进而可得电压下降方向为:
Figure BDA0003382665500000042
由MTPV定义可得:
Figure BDA0003382665500000043
进而可得MTPV表达式如下:
Figure BDA0003382665500000044
在以上得到的MTPA和MTPV算法基础上,HEASPDSM控制系统以“MTPA+电压电流限制(CVL)+MTPV”为基本控制框架。具体运行如下:在低速区即进入弱磁区之前是电机遵循MTPA算法运行;进入弱磁区后,首先在CVL条件下运行,该运行区域处于MTPA与MTPV曲线之间,当电机负载转矩足够大时,电机将沿着电流极限圆运行;当电机在CVL条件下运行升速直至到达MTPV曲线,由于将MTPV模块输出量id_mtpv和iq_mtpv作为id和iq限幅模块的下限值,电机可以自动切换至MTPV曲线上运行。
为了励磁电流分配的实现,应用于HEASPDSM的隆伯格观测器将被构造,电机转矩方程及运动方程如下:
Figure BDA0003382665500000051
Figure BDA0003382665500000052
其中J为电机转动惯量,TL为负载转矩。构建观测器如下:
Figure BDA0003382665500000053
Figure BDA0003382665500000054
其中
Figure BDA0003382665500000055
Figure BDA0003382665500000056
分别为转速观测值和负载转矩观测值,
Figure BDA0003382665500000057
为误差反馈矩阵。
进一步地,依据不同励磁电流if下HEASPDSM的T-n曲线,可以在任一转速n下找到对应最大转矩T所对应的具体励磁电流if值,从而得到一条全速域最优的T'-n曲线,当电机在该曲线下运行时,只需通过转速反馈判断相对应的励磁电流if
通过本发明所构思的以上技术方案,在该曲线下驱动电机,既提高了恒负载转矩下电机的扩速范围,也提升了恒转速下电机的带载能力。同时当电机在低速区运行时,若只考虑电机启动能力,可以使得励磁电流if为最大值;为了考虑励磁绕组铜耗,可以实时观测负载转矩,在保证一定转矩裕度基础上,给出一个相对最优的励磁电流if
附图说明
图1是本发明所基于的混合励磁不对称定子极双凸极电机拓扑;
图2是按照本发明搭建的混合励磁不对称定子极双凸极电机的全速域控制系统控制框图;
图3是按照本发明所建立的隆伯格负载转矩观测器原理框图;
图4是混合励磁不对称定子极双凸极电机的全速域运行轨迹图;
图5是按照本发明所构建的各个励磁电流下混合励磁不对称定子极双凸极电机的T-n曲线;
图6为根据本发明所提出的一种励磁电流分配方法流程图:其中(a)为电机运行在低速区的励磁电流分配方法,(b)为电机在全速域运行的励磁电流分配方法;
图7为本发明所提励磁分配方法在电机低速区的仿真结果:其中(a)为负载转矩观测波形,(b)为励磁电流响应波形;
图8为本发明所提励磁分配方法在电机全速域的仿真结果:其中(a)为实时转速波形,(b)为励磁电流响应波形。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1所示为一种12/7极HEASPDSM,可以看到该电机定转子极数分别为12和7,且定子上安置有电枢绕组和励磁绕组。图2为本发明的控制原理图。
在本发明实施例中,首先是最大转矩电流比MTPA模块的建立:
HEASPDSM的转矩方程如下:
Figure BDA0003382665500000061
其中p为电机的极对数,ψpm为永磁磁通,Msf为励磁绕组与点数绕组的互感值,Ld和Lq分别为直轴电感和交轴电感,Te为电磁转矩。由拉格朗日乘数法:
Figure BDA0003382665500000071
其中λ为拉格朗日算子,进而可得:
Figure BDA0003382665500000072
在本发明实施例中,其次是最大转矩电压比MTPV模块的建立:
由转矩方程可得恒转矩方向为:
Figure BDA0003382665500000073
HEASPDSM的电压方程如下:
ud=-ωeLqiq
uq=ωe(Ldid+Msfifpm)
其中ωe为电机的电角速度,ud和uq分别为直轴反电势和交轴反电势。构建代价函数:
Figure BDA0003382665500000074
进而可得电压下降方向为:
Figure BDA0003382665500000081
由MTPV定义可得:
Figure BDA0003382665500000082
进而可得MTPV表达式如下:
Figure BDA0003382665500000083
在本发明实施例中,第三步是基本控制框架的建立:
在前两步得到的MTPA和MTPV算法基础上,如图2,HEASPDSM控制系统以“MTPA+电压电流限制(CVL)+MTPV”为基本控制框架。具体运行如下:在低速区即进入弱磁区之前是电机遵循MTPA算法运行;进入弱磁区后,首先在CVL条件下运行,该运行区域处于MTPA与MTPV曲线之间,当电机负载转矩足够大时,电机将沿着电流极限圆运行;当电机在CVL条件下运行升速直至到达MTPV曲线,由于将MTPV模块输出量id_mtpv和iq_mtpv作为id和iq限幅模块的下限值,电机可以自动切换至MTPV曲线上运行。
在本发明实施例中,第四步是负载转矩观测器模块的建立:
电机转矩方程及运动方程如下:
Figure BDA0003382665500000091
Figure BDA0003382665500000092
其中J为电机转动惯量,TL为负载转矩。构建观测器如下:
Figure BDA0003382665500000093
Figure BDA0003382665500000094
其中
Figure BDA0003382665500000095
Figure BDA0003382665500000096
分别为转速观测值和负载转矩观测值,
Figure BDA0003382665500000097
为误差反馈矩阵,如图3为观测器框图。
在本发明实施例中,最终是励磁电流分配模块的建立:
电机运行轨迹图如图4,可以发现当电机运行在带载情况下,随着励磁电流的变化,电机特征电流点会随之改变,同时恒转矩曲线也会上下移动,导致电机弱磁扩速能力不再随着励磁电流的变化而单调变化。依据不同励磁电流if下HEASPDSM的T-n曲线,可以在任一转速n下找到对应最大转矩T所对应的具体励磁电流if值,从而得到一条全速域最优的T'-n曲线,如图5。当电机在该曲线下运行时,只需通过转速反馈判断相对应的励磁电流if。在该曲线下驱动电机,既提高了恒负载转矩下电机的扩速范围,也提升了恒转速下电机的带载能力。同时当电机在低速区运行时,若只考虑电机启动能力,可以使得励磁电流if为最大值;若考虑励磁绕组铜耗,可以实时观测负载转矩,在保证一定转矩裕度基础上,给出一个相对最优的励磁电流if
现提出一种比较实用的励磁分配方法如图6所示,该方法以一台额定励磁电流为4A且额定转速为600rpm的电机为例,同样方法可推广到其他混合励磁型电机。当电机运行在低速区,即转速小于600rpm,励磁电流将根据负载转矩进行分配,如图6中的(a)。当电机运行在高速区,参考图5,励磁电流将根据实时转速进行分配如图6中的(b)。图7和图8分别为该电机低速区和全速域的励磁分配仿真波形。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种混合励磁不对称定子极双凸极电机的全速域控制系统,所述控制系统包括:转速PI控制器、电流PI控制器、电压环前馈模块、Clark变换模块、Park变换模块和反Park变换模块,其特征在于,所述控制系统还包括:最大转矩电流比模块、最大转矩电压比模块、负载转矩观测器模块和励磁电流分配模块;
最大转矩电流比模块,用于以转速PI控制器的输出及实时测得的励磁电流if为输入,输出电机矢量控制系统的交直轴电流id和iq在MTPA曲线上运行时的具体值id_mtpa和iq_mtpa
最大转矩电压比模块,用于以反馈转速、最大反电势值及励磁电流if为输入,输出电机矢量控制系统的交直轴电流id和iq在MTPV曲线上运行时的具体值id_mtpv和iq_mtpv,同时作为id和iq的下限值,以使电机自动切换至MTPV曲线上;
负载转矩观测器模块,用于通过改进隆伯格转矩观测器算法,实时观测电机负载转矩值,输出量作为励磁电流分配模块的输入,作为励磁电流分配的参考变量;
励磁电流分配模块,依据反馈转速以及由负载转矩观测器模块实时观测到的负载转矩值,设定相应的励磁电流分配规则,并根据分配规则输出最优的励磁电流给定值作为励磁电流控制器的输入。
2.如权利要求1所述的控制系统,其特征在于,所述混合励磁不对称定子极双凸极电机的转矩方程和运动方程分别为:
Figure FDA0003382665490000011
Figure FDA0003382665490000012
其中,Te为电磁转矩,TL为负载转矩,ωe为角速度,p为电机极对数,J为转动惯量,id为直轴电流,iq为交轴电流,Ld和Lq分别为直轴电感和交轴电感,ψpm为永磁磁通,Msf为励磁绕组与点数绕组的互感值,if为励磁电流。
3.如权利要求2所述的控制系统,其特征在于,id_mtpa和iq_mtpa为:
Figure FDA0003382665490000021
其中,isref为转速控制器输出的电枢电流给定值。
4.如权利要求2所述的控制系统,其特征在于,id_mtpv和iq_mtpv为:
Figure FDA0003382665490000022
其中,uDC为直流母线电压。
5.如权利要求4所述的控制系统,其特征在于,所述id_mtpv和iq_mtpv为id和iq的下限值。
6.如权利要求1所述的控制系统,其特征在于,混合励磁不对称定子极双凸极电机具体运行如下:
进入弱磁区之前电机运行在MTPA曲线;
进入弱磁区后,首先在电压电流限制条件下运行,该运行区域处于MTPA与MTPV曲线之间,当电机负载转矩足够大时,电机将沿着电流极限圆运行;当电机在电压电流限制条件下运行升速直至到达MTPV曲线,电机自动切换至MTPV曲线上运行。
7.如权利要求1所述的控制系统,其特征在于,所述改进隆伯格观测器算法表示为:
Figure FDA0003382665490000031
Figure FDA0003382665490000032
其中,
Figure FDA0003382665490000033
Figure FDA0003382665490000034
分别为转速观测值和负载转矩观测值,p为电机极对数,J为转动惯量,ψpm为永磁磁通,Msf为励磁绕组与点数绕组的互感值,Ld和Lq分别为直轴电感和交轴电感,id为直轴电流,iq为交轴电流,ωe为角速度,
Figure FDA0003382665490000035
为误差反馈矩阵。
CN202111439272.8A 2021-11-30 2021-11-30 一种混合励磁不对称定子极双凸极电机的全速域控制系统 Active CN114123911B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111439272.8A CN114123911B (zh) 2021-11-30 2021-11-30 一种混合励磁不对称定子极双凸极电机的全速域控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111439272.8A CN114123911B (zh) 2021-11-30 2021-11-30 一种混合励磁不对称定子极双凸极电机的全速域控制系统

Publications (2)

Publication Number Publication Date
CN114123911A true CN114123911A (zh) 2022-03-01
CN114123911B CN114123911B (zh) 2023-11-14

Family

ID=80368162

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111439272.8A Active CN114123911B (zh) 2021-11-30 2021-11-30 一种混合励磁不对称定子极双凸极电机的全速域控制系统

Country Status (1)

Country Link
CN (1) CN114123911B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104539208A (zh) * 2014-12-08 2015-04-22 广东美的制冷设备有限公司 电机在全速范围内的无功电流控制方法及其控制系统
CN107947669A (zh) * 2017-11-23 2018-04-20 西安理工大学 一种混合励磁同步电机非线性逆推跟踪控制方法
CN109873590A (zh) * 2019-04-09 2019-06-11 湘潭大学 一种电动汽车用内嵌式永磁同步电机的弱磁扩速方法
CN111682814A (zh) * 2020-06-09 2020-09-18 广州小鹏汽车科技有限公司 电机系统的外特性参数确定方法、装置、电子设备及介质
CN112187129A (zh) * 2020-12-01 2021-01-05 深圳市兆威机电股份有限公司 电机控制方法、装置、设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104539208A (zh) * 2014-12-08 2015-04-22 广东美的制冷设备有限公司 电机在全速范围内的无功电流控制方法及其控制系统
CN107947669A (zh) * 2017-11-23 2018-04-20 西安理工大学 一种混合励磁同步电机非线性逆推跟踪控制方法
CN109873590A (zh) * 2019-04-09 2019-06-11 湘潭大学 一种电动汽车用内嵌式永磁同步电机的弱磁扩速方法
CN111682814A (zh) * 2020-06-09 2020-09-18 广州小鹏汽车科技有限公司 电机系统的外特性参数确定方法、装置、电子设备及介质
CN112187129A (zh) * 2020-12-01 2021-01-05 深圳市兆威机电股份有限公司 电机控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN114123911B (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
CN107979321B (zh) 复用励磁绕组的电励磁双凸极电机驱动充电一体化系统
Wang et al. Overview of flux-controllable machines: Electrically excited machines, hybrid excited machines and memory machines
Wang et al. A parallel hybrid excitation flux-switching generator DC power system based on direct torque linear control
Chen et al. Implementation of a highly reliable hybrid electric scooter drive
CN108288933B (zh) 一种交流调磁型记忆电机分段调磁控制方法
Nasirian et al. Output power maximization and optimal symmetric freewheeling excitation for switched reluctance generators
Wang et al. Analysis of electromagnetic performance and control schemes of electrical excitation flux-switching machine for DC power systems
Bonisławski et al. Unconventional control system of hybrid excited synchronous machine
Yu et al. Optimal three-dimensional current computation flux weakening control strategy for DC-biased Vernier reluctance machines considering inductance nonlinearity
Gupta et al. Field oriented control of PMSM during regenerative braking
Pothi et al. Comparison of flux-weakening control strategies of novel hybrid-excited doubly salient synchronous machines
Ghosh et al. Performance comparison of different vector control approaches for a synchronous reluctance motor drive
Zhao et al. Model predictive torque control of a hybrid excited axial field flux-switching permanent magnet machine
Zhao et al. Characteristics analysis of five-phase fault-tolerant doubly salient electro-magnetic generators
Zhao et al. An improved induction machine design procedure for electric vehicle traction
Haryawan Energy Efficient C-Dump Converter with Inductor for Switched Reluctance Motor
Wang et al. Design of a wide speed range control strategy of switched reluctance motor for electric vehicles
Moncada et al. Operation analysis of synchronous reluctance machine in electric power generation
Elsayed et al. A comparative study of different electric vehicle motordrive systems under regenerative breaking operations
Chaurasiya et al. Reduced switch multilevel converter topology to improve magnetization and demagnetization characteristics of an SRM
Ismail et al. Improved torque ripple reduction method for surface-mounted permanent magnet synchronous motor in flux-weakening region
CN114123911A (zh) 一种混合励磁不对称定子极双凸极电机的全速域控制系统
Howlader et al. Optimal PAM control for a buck boost DC-DC converter with a wide-speed-range of operation for a PMSM
Li et al. A novel control strategy of hybrid excited flux-switching machine in both constant torque and power range
Iida et al. Sinusoidal-flux reluctance machine driven with three-phase inverter for improving power density with reduced torque and input current ripples

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant