CN114123840B - 一种高输出功率宽电压直流电源 - Google Patents

一种高输出功率宽电压直流电源 Download PDF

Info

Publication number
CN114123840B
CN114123840B CN202111408363.5A CN202111408363A CN114123840B CN 114123840 B CN114123840 B CN 114123840B CN 202111408363 A CN202111408363 A CN 202111408363A CN 114123840 B CN114123840 B CN 114123840B
Authority
CN
China
Prior art keywords
voltage
module
phase
output
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111408363.5A
Other languages
English (en)
Other versions
CN114123840A (zh
Inventor
廖晓斌
盛建科
詹柏青
吴凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Fullde Electric Co Ltd
Guangdong Fullde Electronics Co Ltd
Zhuzhou Fullde Rail Transit Research Institute Co Ltd
Original Assignee
Hunan Fullde Electric Co Ltd
Guangdong Fullde Electronics Co Ltd
Zhuzhou Fullde Rail Transit Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Fullde Electric Co Ltd, Guangdong Fullde Electronics Co Ltd, Zhuzhou Fullde Rail Transit Research Institute Co Ltd filed Critical Hunan Fullde Electric Co Ltd
Priority to CN202111408363.5A priority Critical patent/CN114123840B/zh
Publication of CN114123840A publication Critical patent/CN114123840A/zh
Application granted granted Critical
Publication of CN114123840B publication Critical patent/CN114123840B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

本发明涉及一种高输出功率宽电压直流电源,包括PLC控制器、次边多绕组变压器、多个结构相同的四象限ACDC模块;各个四象限ACDC模块的输出以级联型式首尾相连;次边多绕组变压器的原边采用星形接法自外部电网取电,其次边具有多个移相绕组,其中各个移相绕组均采用延边三角接法,且相互之间容量均分,任意相邻两个移相绕组之间相位互差设定电角度,每个移相绕组的输出连接一四象限ACDC模块。本发明的直流电源,在高输出功率宽电压的情况下,既能将电网交流电转为直流输入到负载,又能将直流端负载能量逆变回电网,同时输出低谐波且稳定可靠。

Description

一种高输出功率宽电压直流电源
技术领域
本发明涉及特种电源领域,尤其涉及一种高输出功率宽电压直流电源。
背景技术
目前,达到3MW、几千伏特输出的高输出功率宽电压直流电源,基本采用变压器+多可控模块累加的方式实现。采用变压器+多可控模块累加的方式实现时,能够实现宽范围内电压连续可调,输出电压范围基本可以达到几百至几千伏特,但正是由于输出电压幅度较大,此时可控模块的叠加容易引起变压器交变磁场波形的畸变,一方面是造成低次谐波较为严重,导致对电网的谐波污染,另一方面则是畸变加重波动导致影响直流电源自身的可靠性,使得装置的MTBF大为缩短。
发明内容
本发明的目的是提供一种直流电源,其在确保高输出功率宽电压的情况下,比如在4.5MW/4500V情况下,既能将电网交流电转为直流输入到负载,又能将直流端负载能量逆变回电网,同时输出低谐波且稳定可靠。
本发明提供一种高输出功率宽电压直流电源,包括PLC控制器、次边多绕组变压器、多个结构相同的四象限ACDC模块;
各个所述四象限ACDC模块的输出以级联型式首尾相连;
所述次边多绕组变压器的原边采用星形接法自外部电网取电,其次边具有多个移相绕组,其中各个所述移相绕组均采用延边三角接法,且相互之间容量均分,任意相邻两个移相绕组之间相位互差设定电角度,每个所述移相绕组的输出连接一所述四象限ACDC模块;
所述PLC控制器,分别连接各个所述四象限ACDC模块。
进一步的,所述四象限ACDC模块被配置为5个,PLC控制器以30脉波整流方式控制各个所述四象限ACDC模块,且配置任意相邻两个移相绕组之间相位互差12°电角度。
进一步的,所述四象限ACDC模块设有AC/DC模块和DC/DC模块;
所述AC/DC模块,包含依序连接的三相滤波电感、三相PWM整流模块,以及跨接于三相PWM整流模块输出直流侧母线的支撑电容C1;
所述DC/DC模块,采用为可控桥式变换结构。
进一步的,所述AC/DC模块,采用基于电网电压矢量定向的矢量SVPWM控制方式,其中以所述直流侧母线的电压为控制目标,采取电压外闭环、电流内闭环的双闭环控制,并将电压外环的输出作为电流内环的有功电流指令id *,且将无功电流指令iq *设定为0。
进一步的,所述DC/DC模块设有IGBT管IG7、IGBT管IG8、电感L4、滤波电容C2,其中IGBT管IG7、IGBT管IG8均带有反向二极管,IGBT管IG7、IGBT管IG8串联后跨接于所述直流侧母线,其上反向二极管的导通方向指向直流侧正母线,IGBT管IG7、IGBT管IG8之间的接点经电感L4连接至DC/DC模块的正输出端,滤波电容C2跨接于DC/DC模块的正负输出端之间。
进一步的,所述DC/DC模块,通过对给定直流侧母线电压与实际直流侧母线电压的差值进行PI调节,得到直流负载电流指令,该指令与实际直流负载的电流的误差经PI调节器得到调制波,调制波与三角载波进行比较,得到占空比实时变化的PWM脉冲控制桥臂的上管导通或关断。
进一步的,所述次边多绕组变压器的原边串联有一开关KYN1,开关KYN1与PLC控制器相连;
所述次边多绕组变压器的次边还设有一辅助电源绕组,所述辅助电源绕组以星形接法连接,且一方面为所述PLC控制器供电,另一方面经开关S1连接至市电,所述开关S1与PLC控制器相连。
进一步的,高输出功率宽电压直流电源的启动方法进一步包括依次执行的下述步骤:
在高输出功率宽电压直流电源启动之刻,断开开关KYN1、吸合开关S1,其中所述市电配置为与次边多绕组变压器原边所需输入电压的相序一致;
待所述支撑电容C1的电压充满后,吸合开关KYN1;
待所述次边多绕组变压器的原边接入电压稳定后,断开开关S1。
进一步的,所述辅助电源绕组是经电阻R1连接至所述开关S1。
进一步的,还包括有计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序被所述控制器执行时实现所述的启动方法。
与现有技术相比,本发明具有以下有益效果:
(1)电源输入为三相AC10kV,输出直流电压可达DC200V-4500V,且连续可调,额定电压为DC1700V,额定电流为2650A,额定功率为4500kW;
(2)电源可以四象限运行,既能将电网交流电转为直流输入到负载,又能将直流端负载能量逆变回电网,且输出直流电压纹波≤1%FS,输出电压精度≤0.5%FS,网测谐波≤5%。
所述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的所述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的台件。
在附图中:
图1示出了本发明的直流电源的主电路电气原理拓扑方案框图;
图2示出了本发明的次边多绕组变压器电气拓扑图;
图3示出了本发明的四象限ACDC模块电气拓扑图;
图4示出了本发明的AC/DC模块电气拓扑图;
图5示出了本发明的AC/DC模块控制框图;
图6示出了本发明的DC/DC模块电气拓扑图;
图7示出了本发明的DC/DC模块控制框图;
图8示出了本发明的启动方法实现的电气拓扑图;
图9示出了本发明的直流电源输出电流-电压-功率曲线图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
如图1所示,本实施例的高输出功率宽电压直流电源,鉴于电源输出电压范围较宽(DC200V-4500V),且需达到双向流通,方案采用次边多绕组变压器+多个结构相同的四象限ACDC模块串联完成。
其中,各个四象限ACDC模块的输出以级联型式首尾相连,先通过变压器将AC10kV电压降低到多路ACDC模块能接受的较小电压,再通过多个ACDC模块串联满足较高直流电压的输出。多个ACDC模块串联,在输出较小电压(DC200V)时,PLC控制器只控制单个ACDC模块或几个ACDC模块输出直流电压,其它模块直接输出0V即可;在输出较高电压(DC4500V)时,PLC控制器控制所有串联ACDC模块输出相同的直流电压,以满足较高电压的输出。
次边多绕组变压器输出以多路次边的方式,一方面起到原次边隔离,更重要的是,通过配置次边多绕组变压器的原边采用星形接法自外部电网取电,以及次边多个移相绕组中每一个的输出连接一四象限ACDC模块,且各个移相绕组均采用延边三角接法,各个移相绕组相互之间容量均分,任意相邻两个移相绕组之间相位互差设定电角度,消除幅值较大的低次谐波。谐波越小,对电网的谐波污染就越小,装置的可靠性及稳定性则越高。
具体而言,如图2,四象限ACDC模块被配置为5个,次边多绕组变压器将原边三相AC10kV电压变成二次边三相AC690V给ACDC模块供电,原边采用星形接法,次边采用延边三角,移相控制,相位互差12°电角度,输出5个相同容量绕组,二次边每个绕组接1个ACDC模块,每个ACDC模块的输出电压为DC0V-DC900V可调,额定输出电流为2650A,5个ACDC模块输出串联,满足直流电源DC200V-DC4500V输出电压和输出电流的要求。由于采用5个ACDC模块串联,相当于开关频率是单个模块的5倍,大大降低直流输出纹波,同时,采用次边多绕组变压器,以30脉波整流,二次绕组移相12°,可大大减少PWM整理系统对网测10kV交流母线注入的谐波分量,使THDi降低到1.5%以内。
进一步的,对次边多绕组变压器,配置温度和综合检测模块,采用多风机冗余设计,且在变压器底部安装有轴流风机,在超过设定温度时启动(一般为50℃),确保变压器稳定长时间运行。变压器一次侧10kV输入,分三个档位(9.5kV、10kV、10.5kV),可以根据用户现场实际进线电压做相应调整。输出6路三相次边绕组,其中一路为工频三相电源,作为进线电源检测和控制中心冗余供电回路,另外5路为相互错开12°的整流单元供电绕组,频率50Hz,全铜,H级绝缘,35kV耐压,雷电冲击耐压75kV,如此,在30~60%负载率,环境温度25℃时的效率可达99%,短路阻抗为6~8%。
本实施例中,如图3所示,四象限ACDC模块核心由AC/DC模块和DC/DC模块组成,用于将整流后的DC1200V电压变成输出可调节的DC100V-DC900V电压。
其中,见图4,AC/DC模块包含依序连接的输入切断开关、三相滤波电感L1-L3、三相PWM整流模块,以及跨接于三相PWM整流模块输出直流侧母线的支撑电容C1,三相PWM整流模块由6个IGBT管组成可控三相桥臂,将变压器单个绕组输出的3AC690V电压变成DC1200V,给DC-DC模块供电。当直流侧母线电压大于1200V时,PWM整流模块通过控制IGBT的通断,调节电压外环和电流内环,能够实现能量回馈到电网,同时能够调整功率因数,减小网侧谐波,达到入网的要求。
上述中,(1)IGBT管为SiC半导体器件,可以降低通态和开关损耗;(2)整流部分采用PFC交错整流技术,提高功率因素和降低开关损耗;(3)通过设置通断开关,在整流模块出现故障时,能完全退出并联回路,不影响其它模块正常运行。
启动时的PWM整流器的控制框图如图5所示,如PWM逆变一样,采用基于电网电压矢量定向的矢量SVPWM控制方式。采取双闭控制,以直流侧母线电压为控制目标,采取电压外闭环,电流内闭环的双闭环控制方式。这样可以稳定直流侧电压到所设定的电压(本方案取为DC240V或DC336V)。电压闭环的输出作为电流内环的有功电流指令id *,而将无功电流指令iq *设定为0,可以实现PWM整流器的输入功率因数接近为1。
见图6,本实施例中,DC/DC模块用于将整流后的DC1200V电压变成输出可调节的DC100V-DC900V电压,其采用为可控桥式变换结构,能够四象限输出(双向流通)的功能,满足不同负载的要求。
具体地,DC/DC模块设有IGBT管IG7、IGBT管IG8、电感L4、滤波电容C2,其中IGBT管IG7、IGBT管IG8均带有反向二极管(也称续流二极管),IGBT管IG7、IGBT管IG8串联后跨接于直流侧母线,其上反向二极管的导通方向指向直流侧正母线,IGBT管IG7、IGBT管IG8之间的接点经电感L4连接至DC/DC模块的正输出端,滤波电容C2跨接于DC/DC模块的正负输出端之间。
对于该DC/DC模块,可以作为BUCK电路或BOOST电路使用。
DC/DC模块做BUCK电路使用时,DC+为输入电压,+为输出电压,L4为储能电感,IG8中二极管为续流二极管,C2为滤波电容。IG7开关管在控制电路的控制下工作在开关状态。开关管导通时,DC+电压经开关管IG7、储能电感L4和电容C2构成回路,充电电流不但在C2两端建立直流电压,而且在储能电感L4上产生左正、右负的电动势;开关管截止期间,由於储能电感L4中的电流不能突变,所以,L4通过自感产生右正、左负的脉冲电压。于是,L4右端正的电压→滤波电容C2→续流二极管→L4左端构成放电回路,放电电流继续在C2两端建立直流电压,C2两端获得的直流电压为负载供电。因此,降压式DC/DC变换器产生的输出电压不但波纹小,而且开关管的反峰电压低。
DC/DC模块做BOOST电路使用时,+为输入电压,DC+为输出电压,L4为储能电感,IG7中二极管为续流二极管。IG8开关管在控制电路的控制下工作在开关状态。开关管导通时,+电压经开关管IG8、储能电感L4、电容C1构成回路,充电电流不但在C1两端建立直流电压,而且在储能电感L4上产生右正、左负的电动势;开关管截止期间,由于储能电感L4中的电流不能突变,所以,L4通过自感产生左正、右负的脉冲电压。于是,L4左端正的电压→滤波电容C1→续流二极管→L4右端构成放电回路,放电电流继续在C1两端建立直流电压,C1两端获得的直流电压为负载供电。
上述中,DC/DC模块降压控制框图如图7所示,对给定直流侧母线电压udc *与实际直流侧母线电压udc的差值进行PI(比例积分)调节,得到直流负载电流指令iload *,指令iload *与实际直流负载的电流的误差经PI调节器得到调制波,该调制波与三角载波进行比较,得到占空比实时变化的PWM脉冲去控制桥臂的上管IGBT的导通或关断。根据经验,这里的三角载波频率可取为3000Hz。
作为改进,可以在四象限ACDC模块的三相输入端串联熔断器FU1-FU2,如此,模块内部出现短路情况后,熔断器快速熔断,达到保护后级电路的要求。
见图8,为进一步增强可靠性,可以在次边多绕组变压器的原边串联有一开关KYN1,开关KYN1与PLC控制器相连;在次边多绕组变压器的次边设一辅助电源绕组,辅助电源绕组以星形接法连接,其中,辅助电源绕组电压为三相AC380V输出,一方面平时给PLC控制器供电,另一方面依次经电阻R1、开关S1连接至市电,开关S1与PLC控制器相连。
本实施例的高输出功率宽电压直流电源在启动时,开关S1吸合,市电AC380V通过电阻R1接入变压的辅助绕组,此时变压器原边、次边按原次边变比耦合出相应电压,原边为AC10kV,次边为AC690V,此时次边电压开始给整流单元预充电,电阻R1限流,待整流单元电容电压充满后,KYN1吸合,与市电一起重叠给变压器供电。待高压接入稳定后,开关S1断开。重叠供电,可以有效防止励磁涌流给电网造成上电冲击。
上述启动方法中,利用辅助电源绕组给四象限ACDC模块预充电和防止高压接入前造成励磁涌流。当然,重叠供电需要接入的市电相序和AC10kV进入的相序一致。即使不一致,由于有电阻R1的限流,也不会出现重大故障,只是上电有励磁涌流现象而已。
上述方法可以被编辑为计算机程序,存储于高输出功率宽电压直流电源的计算机可读存储介质中,程序被PLC控制器执行时,实现上述启动方法。
本实施例的高输出功率宽电压直流电源,直流电源主回路输入10kV高压,经次边多绕组变压器变压移相后,通过双向ACDC整流得到稳定的直流侧母线电压,再DCDC变换(buck、boost),最后通过直流滤波电抗器和滤波电容器滤波后输出低纹波可调直流电源。电源输入为三相AC10kV,输出直流电压为DC200V-4500V,连续可调,额定电压为DC1700V,额定电流为2650A,额定功率为4500kW;电源需四象限运行,既能将电网交流电转为直流输入到负载,又能将直流端负载能量逆变回电网;且输出直流电压纹波≤1%FS,输出电压精度≤0.5%FS,网测谐波≤5%,电源输出电流-电压-功率曲线图如图9所示。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。

Claims (5)

1.一种高输出功率宽电压直流电源,其特征在于,包括PLC控制器、次边多绕组变压器、多个结构相同的四象限ACDC模块;
各个所述四象限ACDC模块的输出以级联型式首尾相连;
所述次边多绕组变压器的原边采用星形接法自外部电网取电,其次边具有多个移相绕组,其中各个所述移相绕组均采用延边三角接法,且相互之间容量均分,任意相邻两个移相绕组之间相位互差设定电角度,每个所述移相绕组的输出连接一所述四象限ACDC模块;
所述PLC控制器,分别连接各个所述四象限ACDC模块;
所述次边多绕组变压器的原边串联有一开关KYN1,开关KYN1与PLC控制器相连;
所述次边多绕组变压器的次边还设有一辅助电源绕组,所述辅助电源绕组以星形接法连接,且一方面为所述PLC控制器供电,另一方面经开关S1连接至市电,所述开关S1与PLC控制器相连;
所述四象限ACDC模块设有AC/DC模块和DC/DC模块;
所述AC/DC模块,包含依序连接的三相滤波电感、三相PWM整流模块,以及跨接于三相PWM整流模块输出直流侧母线的支撑电容C1;
所述DC/DC模块,采用为可控桥式变换结构;
所述AC/DC模块,采用基于电网电压矢量定向的矢量SVPWM控制方式,其中以所述直流侧母线的电压为控制目标,采取电压外闭环、电流内闭环的双闭环控制,并将电压外环的输出作为电流内环的有功电流指令,且将无功电流指令设定为0;
所述DC/DC模块设有IGBT管IG7、IGBT管IG8、电感L4、滤波电容C2,其中IGBT管IG7、IGBT管IG8均带有反向二极管,IGBT管IG7、IGBT管IG8串联后跨接于所述直流侧母线,其上反向二极管的导通方向指向直流侧正母线,IGBT管IG7、IGBT管IG8之间的接点经电感L4连接至DC/DC模块的正输出端,滤波电容C2跨接于DC/DC模块的正负输出端之间;
所述DC/DC模块,通过对给定直流侧母线电压与实际直流侧母线电压的差值进行PI调节,得到直流负载电流指令,该指令与实际直流负载的电流的误差经PI调节器得到调制波,调制波与三角载波进行比较,得到占空比实时变化的PWM脉冲控制桥臂的上管导通或关断;
各个所述四象限ACDC模块级联后的正输出端串联有直流固态开关KG1。
2.如权利要求1所述的高输出功率宽电压直流电源,其特征在于:所述四象限ACDC模块被配置为5个,PLC控制器以30脉波整流方式控制各个所述四象限ACDC模块,且配置任意相邻两个移相绕组之间相位互差12°电角度。
3.如权利要求1所述的高输出功率宽电压直流电源,其特征在于,高输出功率宽电压直流电源的启动方法进一步包括依次执行的下述步骤:
在高输出功率宽电压直流电源启动之刻,断开开关KYN1、吸合开关S1,其中所述市电配置为与次边多绕组变压器原边所需输入电压的相序一致;
待所述支撑电容C1的电压充满后,吸合开关KYN1;
待所述次边多绕组变压器的原边接入电压稳定后,断开开关S1。
4.如权利要求3所述的高输出功率宽电压直流电源,其特征在于,所述辅助电源绕组是经电阻R1连接至所述开关S1。
5.如权利要求3所述的高输出功率宽电压直流电源,其特征在于,还包括有计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序被所述控制器执行时实现所述的启动方法。
CN202111408363.5A 2021-11-19 2021-11-19 一种高输出功率宽电压直流电源 Active CN114123840B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111408363.5A CN114123840B (zh) 2021-11-19 2021-11-19 一种高输出功率宽电压直流电源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111408363.5A CN114123840B (zh) 2021-11-19 2021-11-19 一种高输出功率宽电压直流电源

Publications (2)

Publication Number Publication Date
CN114123840A CN114123840A (zh) 2022-03-01
CN114123840B true CN114123840B (zh) 2023-12-22

Family

ID=80372418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111408363.5A Active CN114123840B (zh) 2021-11-19 2021-11-19 一种高输出功率宽电压直流电源

Country Status (1)

Country Link
CN (1) CN114123840B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115514230A (zh) * 2022-08-31 2022-12-23 核工业西南物理研究院 一种高稳定度的大功率长脉冲高压电源及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201590771U (zh) * 2009-06-18 2010-09-22 江西省电力科学研究院 多用途大功率可控电源
CN104953582A (zh) * 2015-06-25 2015-09-30 深圳市禾望电气股份有限公司 一种三相电网扰动发生装置及其控制方法
CN108574400A (zh) * 2018-04-18 2018-09-25 国网山西省电力公司电力科学研究院 一种交直流混合大范围可调实验电源及其控制方法
WO2019127969A1 (zh) * 2017-12-28 2019-07-04 北京天诚同创电气有限公司 微电网控制系统及微电网
CN113014123A (zh) * 2021-04-02 2021-06-22 湖北春田电工技术有限公司 一种大功率多输出可调稳压直流电源
CN113064096A (zh) * 2021-03-22 2021-07-02 中国人民解放军海军工程大学 一种基于中高压交流的岸电试验系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202019221U (zh) * 2011-04-18 2011-10-26 成都秦川科技发展有限公司 电动汽车pwm整流及变压变流脉冲充电系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201590771U (zh) * 2009-06-18 2010-09-22 江西省电力科学研究院 多用途大功率可控电源
CN104953582A (zh) * 2015-06-25 2015-09-30 深圳市禾望电气股份有限公司 一种三相电网扰动发生装置及其控制方法
WO2019127969A1 (zh) * 2017-12-28 2019-07-04 北京天诚同创电气有限公司 微电网控制系统及微电网
CN108574400A (zh) * 2018-04-18 2018-09-25 国网山西省电力公司电力科学研究院 一种交直流混合大范围可调实验电源及其控制方法
CN113064096A (zh) * 2021-03-22 2021-07-02 中国人民解放军海军工程大学 一种基于中高压交流的岸电试验系统
CN113014123A (zh) * 2021-04-02 2021-06-22 湖北春田电工技术有限公司 一种大功率多输出可调稳压直流电源

Also Published As

Publication number Publication date
CN114123840A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
US20150229227A1 (en) Multi-phase AC/AC Step-down Converter for Distribution Systems
Krishna et al. Active switched-inductor network step-up DC–DC converter with wide range of voltage-gain at the lower range of duty cycles
US20110242855A1 (en) Power Converter
CN112332671A (zh) 一种dc/dc变换器llc拓扑结构
Lodh et al. Single stage multi-port Flyback type solar PV module integrated micro-inverter with battery backup
Fu et al. Power supply system of EAST superconducting tokamak
CN111464040A (zh) 一种适用于不同输入电网的dcdc架构及其控制方法
CN113783435B (zh) 一种低谐波输出的电感线圈充放电电源
CN114123840B (zh) 一种高输出功率宽电压直流电源
Tayyab et al. Submodule capacitor voltage balancing of modular multilevel converter
Duan et al. A novel high-efficiency inverter for stand-alone and grid-connected systems
CN109995283B (zh) 一种发电系统
Ramirez et al. Details and implementation of a SiC-based solid state transformer prototype
Bi et al. H-type structural boost three-level DC-DC converter with wide voltage-gain range for fuel cell applications
Bilakanti et al. Single stage soft-switching tri-port converter for integrating renewable source and storage with grid through galvanic isolation
Tao et al. A Four-quadrant Buck-boost Partial Power DC/DC Converter for Battery Energy Storage System
Su et al. High-efficiency bidirectional isolated AC/DC converter
Hao et al. Multimode control of HF link universal minimal converters–Part II: multiphase AC systems
Barbosa et al. Single-stage single-phase AC/DC converter with high frequency isolation feasible to microgeneration
de Oliveira et al. Study and implementation of a high gain bidirectional dc-dc converter for photovoltaic on-grid systems
Dev et al. Three Mode Three-Port Isolated DC/DC Converter With Dual Fast Charging Port
Domino et al. Selected converter topologies for interfacing energy storages with power grid
Lv et al. Design of A Novel 2.5 kW Energy Storage Bidirectional Power Conversion System
CN215870753U (zh) 一种基于新型超导储能故障限流器的微电网系统
Meraj et al. New switching technique for quasi-Z-source resonant converter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant