CN114112314B - 一种多功能光电探测系统探测性能测试方法 - Google Patents

一种多功能光电探测系统探测性能测试方法 Download PDF

Info

Publication number
CN114112314B
CN114112314B CN202111568811.8A CN202111568811A CN114112314B CN 114112314 B CN114112314 B CN 114112314B CN 202111568811 A CN202111568811 A CN 202111568811A CN 114112314 B CN114112314 B CN 114112314B
Authority
CN
China
Prior art keywords
test
detection system
laser
optical fiber
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111568811.8A
Other languages
English (en)
Other versions
CN114112314A (zh
Inventor
李腾腾
张雅婷
李庆岩
赵宏亮
王思磊
唐新
姚建铨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202111568811.8A priority Critical patent/CN114112314B/zh
Publication of CN114112314A publication Critical patent/CN114112314A/zh
Application granted granted Critical
Publication of CN114112314B publication Critical patent/CN114112314B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Semiconductor Lasers (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

本发明提出一种多功能光电探测系统探测性能测试方法,首先准备待测器件、搭建测试环境,然后分别对探测系统的I‑V特性曲线测试、光开关响应(I‑T)测试、探测器响应度(R)、比探测度(D*)、外量子效率(EQE)以及线性动态范围等参数进行测试。本发明解决了现有的探测系统采用氙灯搭配光谱仪及光学透镜所存在的无法实现较大面积均匀光的输出、无法准确测量或无法测量线性动态范围数据以及采用LED光源所存在的无法实现较大的光功率输出的技术问题。且本发明集成了使用匀化激光作为光源的高效集成光探测系统,可以同时实现探测系统的多项参数测试,而且整套系统造价较低,更适合大面积推广。

Description

一种多功能光电探测系统探测性能测试方法
技术领域
本发明涉及光电子材料与器件探测技术领域,具体涉及一种多功能光电探测系统探测性能测试方法。
背景技术
光电探测器能够把难以量化的光信号转化为能够精确探测的电信号,在军事、民用及科学研究中发挥着巨大的作用,比如成像,光通信,化学/生物传感以及环境监测等。一般来说,探测器常常用来检测微弱光信号,因此探测系统中选用的光源必须能够实现极低的光功率输出,比如nW甚至pW量级。目前,市面上有各种各样的探测系统,大部分采用氙灯搭配光谱仪及光学透镜的组合实现单色低功率的光输出功能,这基本上可以满足响应度、比探测度及外量子效率(EQE)的测试需求。但是这种光源输出方案存在两个问题:一是无法实现较大面积均匀光的输出。造成这种现象的主要原因是EQE的测试要求光斑面积要小于器件有效面积,因此无法同时实现EQE测试与大面积均匀光输出的目的,这就会给集成度较高的探测器件测试带来一定的难度和更大的工作量;二是无法准确测量或无法测量线性动态范围数据。造成这种现象的主要原因是采用这种光源组合只能实现较小功率的光输出,而线性动态范围的测试一般要求光源能实现较小功率(nW、pW量级)到较大功率(100~200mW左右)的连续输出,因此采用这种光源组合的探测系统往往无法实现精确的线性动态范围测量。而且这种光源组合中,氙灯、光谱仪以及透镜系统成本都比较高,因此整体造价昂贵。实验室中常常采用LED光源实现单色低功率的较大面积均匀光输出,这在一定程度上能够解决高集成度器件的大工作量问题,并且LED光源的成本较低,但是LED的额定功率决定了其往往也无法实现较大的光功率输出。
发明内容
针对现有的探测系统采用氙灯搭配光谱仪及光学透镜所存在的无法实现较大面积均匀光的输出、无法准确测量或无法测量线性动态范围数据以及采用LED光源所存在的无法实现较大的光功率输出的技术问题,本发明提出一种多功能光电探测系统探测性能测试方法,实现探测系统的电流-电压特性曲线测试、光开关响应测试以及探测器响应度、比探测度、外量子效率和线性动态范围测试等多参数测试,而且整套系统造价较低,更适合大面积推广。
为解决上述技术问题,本发明采用以下技术方案:一种多功能光电探测系统探测性能测试方法,包括以下步骤:
步骤一:准备待测器件,并将待测器件放入暗箱内匹配的测试盒中;
步骤二:搭建测试环境,首先将测试盒和数字源表连接起来,将信号发生器和激光器功率控制单元均接在激光器的输入端上,将光纤的一端接在激光器的输出端上,将光纤的另一端固定在暗箱内的光学支架上;
步骤三:然后在测试盒和光纤之间设置滤光片转轮,在测试盒和滤光片转轮之间设置挡板,在挡板上设置用于穿过激光信号的穿孔,并将测试盒、光纤、滤光片转轮及穿孔的高度调节为沿同一直线设置;
步骤四:开始测试,打开激光器,通过调节激光器功率控制单元和滤光片转轮获得弱光功率输出,然后设定电压测试范围,将测试盒切换至导通状态,通过数字源表读取并记录相应的电流-电压数据,测得光照状态下的I-V曲线;挡住挡板上的穿孔,再次通过数字源表读取并记录相应的电流-电压数据,测得黑暗状态下的I-V曲线;
步骤五:根据步骤四中记录的测试数据分别计算探测系统的响应度值、比探测度值和外量子效率值;
步骤六:调节激光器功率控制单元和滤光片转轮获得由小到大的光功率输出,通过数字源表读取并记录不同特定功率时所对应的电流大小以及相应的时间,测得探测系统的I-T曲线;然后设定电压测试范围,打开信号发生器,控制激光器输出周期性亮暗的激光信号,通过数字源表读取并记录相应的电流-电压数据,计算探测系统的线性动态范围。
所述步骤五中探测系统的响应度值的计算公式为:
Figure DEST_PATH_IMAGE001
式中:R-器件响应度, Iill-光电流,Idark -暗电流,A -器件有效面积,Ee -光功率密度;
比探测度值的计算公式为:
Figure 455517DEST_PATH_IMAGE002
式中:D *-比探测度,e -电子电量;
外量子效率值的计算公式为:
Figure DEST_PATH_IMAGE003
式中:EQE -外量子效率,h -普朗克常熟,c -光速,λ -入射光波长。
所述步骤六中线性动态范围的计算公式为:
Figure DEST_PATH_IMAGE005
式中:LDR-线性动态范围,Iupper-随光强增大光电流增大偏离线性处的光电流值,Idark-暗电流, I lower -随光强减小光电流减小偏离线性处的光电流值。
所述暗箱的侧壁上设置有与光纤相匹配的卡箍套筒,光纤穿过卡箍套筒并伸入暗箱内。
所述滤光片转轮设置在第一支架上,测试盒设置在第二支架上,且光学支架、滤光片转轮和测试盒均滑动设置在暗箱的底壁上。
所述暗箱的底壁上沿激光信号发射方向设置有导轨,光学支架、滤光片转轮和测试盒的下部均设置有滑块,滑块滑动设置在导轨上;且导轨上设有刻度。
与现有技术相比,本发明使用匀化激光作为光源具有以下优点:
1. 经多模光纤或液芯光纤匀化后的激光,不仅可以实现氙灯、光谱仪、透镜组合光源无法实现的均匀大面积光照,而且可以实现包括LED光源在内都无法实现的大功率光照输出,可以高效便捷地实现探测器线性动态范围测试。
2. 通过在暗箱上专门为匀化光纤输出端设置匹配的卡箍套筒,可以根据不同待测器件的最佳工作波段需求更换不同波长的激光器,涵盖可见光波段、红外波段,不存在氙灯、光谱仪、透镜组合光源的输出波长范围限制,同时也不存在LED种类少而导致的波长限制。
3. 暗箱中的各部件集成在一个带有刻度的导轨上,更换不同光源或者不同样式的测试盒后,都可以通过调节光纤输出端与测试盒间的距离实现最佳的光照射面积。
4. 通过在滤光片转轮和测试盒之间设置挡板,可以保证在激光开启状态下再次测试暗态I-V特性时对激光杂散光的完全屏蔽,从而保证激光开启状态下暗态I-V特性的准确性。
5.本发明集成了使用匀化激光作为光源的高效集成光探测系统,可以同时实现I-V特性曲线测试、光开关响应(I-T)测试、探测器响应度(R)、比探测度(D*)、外量子效率(EQE)以及线性动态范围(LDR)等多参数测试,而且整套系统造价较低,更适合大面积推广。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的结构示意图;
图2为本发明匀化光斑不同位置的光功率均匀度分析图;
图3为本发明实际输出的匀化光斑图;
图4为本发明实际测试的I-V曲线图;
图5为本发明通过I-T曲线测试软件实际测试的I-T曲线图;
图6为本发明实际测试的LDR曲线图。
图中:1为信号发生器,2为激光器,3为激光功率控制单元,4为光纤,5为卡箍套筒,6为暗箱,7为输出端口,8为光学支架,9为滤光片转轮,10为挡板,11为测试盒,12为导轨,13为数字源表。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种多功能光电探测系统探测性能测试方法,通过在激光器输出端口采用多模光纤或液芯光纤将面积较小的高斯光匀化并且放大,从而实现光纤输出端均匀大面积的光输出;并通过采用调节激光器电流/电压和调节滤光片衰减率组合的方式实现不同功率(nW~mW)的连续光输出。另外,本发明集成了使用匀化激光作为光源的高效集成光探测系统,可以同时实现I-V特性曲线测试、光开关响应(I-T)测试、探测器响应度(R)、比探测度(D*)、外量子效率(EQE)以及线性动态范围(LDR)等多参数测试,并且该系统可集成变温测试模块,从而获得在不问温度条件下的器件电学特性;整套系统造价较低,更适合大面积推广。
本发明的探测系统结构如图1所示,具体测试步骤如下:
步骤一:准备待测器件,并将待测器件放入暗箱6内匹配的测试盒11中,即不同的待测器件配套有不同的测试盒,测试盒也可根据不同待测器件排布单独定制。
步骤二:搭建测试环境,首先将测试盒11和数字源表13利用连接线连接起来,数字源表13可用于读取实验过程中相应的电流电压等数据;将信号发生器1和激光器功率控制单元3均接在激光器2的输入端上,将光纤4的一端接在激光器2的输出端上,将光纤4的另一端固定在暗箱6内的光学支架8上。信号发生器1控制激光器2发射激光信号,激光功率控制单元3用于调节激光器2发射光信号的功率大小,即调节光的强度。实验时可根据具体实验需求选用不同波长的激光器。光纤4可采用多模光纤或液芯光纤,光纤4的输出端口7带有扩束功能。通过在激光器2输出端口采用多模光纤或液芯光纤将面积较小的高斯光匀化并且放大,从而实现光纤输出端均匀大面积的光输出,图2为匀化光斑不同位置光功率均匀度分析图,图3为匀化后的405nm、532nm及1064nm激光实际输出光斑照片。
所述暗箱6的侧壁上设置有与光纤4相匹配的卡箍套筒5,光纤4穿过卡箍套筒5并伸入暗箱6内,卡箍套筒起到固定光纤的作用,同时还起到保证暗箱密闭的作用。具体还可根据光纤输出端口尺寸匹配卡箍套筒,也可根据不同功能需求设计任意暗箱尺寸。
步骤三:然后在测试盒11和光纤4之间设置滤光片转轮9(手动或电动),在测试盒11和滤光片转轮9之间设置挡板10,即光学支架8、滤光片转轮9和测试盒11沿激光信号发射方向依次设置在暗箱6内,滤光片转轮9可用于调节激光信号的输出强度。在挡板10上设置用于穿过激光信号的穿孔以及与穿孔匹配的孔开关,实现挡板10在不影响激光信号传输的情况下同时还能够对激光杂散光的完全屏蔽,进一步确保实验效果。最后将测试盒11、光纤4、滤光片转轮9及穿孔的高度调节为沿同一直线设置,保证激光器发射的激光信号能够完全覆盖待测器件。
进一步地,所述滤光片转轮9设置在第一支架上,测试盒11设置在第二支架上,且光学支架8、滤光片转轮9和测试盒11均滑动设置在暗箱6的底壁上,即光学支架8、滤光片转轮9和测试盒11相互之间的距离可根据不同实验要求进行调整。具体地,所述暗箱6的底壁上沿激光信号发射方向设置有导轨12,光学支架8、滤光片转轮9和测试盒11的下部均设置有滑块,各个滑块分别滑动设置在导轨12的不同位置上。且导轨12上设有刻度,可以准确获取光学支架8、滤光片转轮9和测试盒11具体设置的位置以及相互之间的距离,提高实验的准确性。
步骤四:进行探测系统的I-V特性曲线测试、探测器响应度(R)、比探测度(D*)、外量子效率(EQE)等参数测试,具体操作为首先打开激光器2,通过调节激光器功率控制单元3降低激光器2的激光输出功率,同时将滤光片转轮9转至透过率较小的单元(此时滤光片与激光器光纤输出端口垂直且在同一直线上),然后将功率计探头放在光纤4的输出端口7处标定激光输出功率,从而获得一个稳定输出的低功率方形光斑激光。打开挡板10上的孔开关,调整光纤的输出端口7、滤光片转轮9、挡板上的穿孔以及样品盒11的位置,使它们在同一高度并沿着同一直线设置,保证方形光斑激光能够完全覆盖待测器件。然后通过专门的测试软件OPV-test(或者其他测IV曲线的软件)设定电压测试范围、步长等信息,并运行软件,将测试盒11的控制开关切换至导通状态,最后通过数字源表13读取并记录相应的电流-电压数据,测得光照状态下的I-V曲线;随后,利用孔开关挡住挡板10上的穿孔,再次通过数字源表13读取并记录此时相应的电流-电压数据,测得黑暗状态下的I-V曲线,实际测试的I-V数据会在软件运行过程中保存到计算机指定文件夹,通过Origin软件可以拟合出响应的I-V曲线,如图4所示。
步骤五:根据步骤四中记录的测试数据分别计算探测系统的响应度值、比探测度值和外量子效率值,其中,探测系统的响应度值的计算公式为:
Figure 746559DEST_PATH_IMAGE006
式中:R -器件响应度,Iill -光电流,Idark -暗电流,A -器件有效面积,Ee -光功率密度;
比探测度值的计算公式为:
Figure 995138DEST_PATH_IMAGE001
式中: D* -比探测度, e -电子电量;
外量子效率值的计算公式为:
Figure 134DEST_PATH_IMAGE003
式中: EQE -外量子效率,h -普朗克常熟,c -光速,λ -入射光波长。
需要注意的一点是:由于激光器光斑经过匀化且放大,可以同时覆盖一个基底上的多个待测器件,从而实现不更换待测器件位置条件下的多器件性能测试,这是该探测系统较为突出的特点。
步骤六:进行探测系统的光开关响应(I-T)测试以及线性动态范围测试,具体操作为将信号发生器1连接在激光器2上,目的是获得周期性亮暗的激光输出,打开激光器2,调节激光器功率控制单元3控制激光器2输出的光功率大小,同时将滤光片转轮9旋转至不同透过率滤光片处,获得由较小功率(nW/pW)到较大功率(设计功率为200mW,可根据实际需求增大或减小)的光输出。同时每次调整到某一特定功率都记录一次I-T曲线,测得探测系统的I-T曲线,实际测试的I-T曲线如图5所示。通过测试软件设定好电压测试范围、采集时间等参数,然后打开信号发生器1,并设置好频率,控制激光器2输出周期性亮暗的方形面光斑激光。最后通过数字源表13读取并记录相应的电流-电压数据,计算探测系统的线性动态范围。实际测试的LDR曲线如图6所示。
打开软件2400 swV Linear Stair with DCV(不唯一),将偏压设为0V,将信号发生器1连接在激光器2上以控制激光器2出光频率,并将测试盒11的控制开关切换至导通状态,依次将激光器输出功率密度从极小(nW)调整到较大(mW)值,同时每次调整到某一特定功率都记录一次I-T曲线并将数据自动保存在指定文件夹中。之后,将保存的数据导入Origin中并拟合得到不同光功率密度下的I-T曲线,计算得到每个功率密度下的光电流值并将数据导入Origin中。以光功率密度(单位为mW/cm 2 )为横坐标,光电流密度(mA/cm 2)为纵坐标绘图。最后,在拟合出来的图中,分别找到弱光及强光状态下光电流偏离线性的点,并将该数值代入线性动态范围计算公式中得到LDR值。
所述探测系统的线性动态范围的计算公式为:
Figure 611244DEST_PATH_IMAGE006
式中:LDR-线性动态范围,I upper -随光强增大光电流增大偏离线性处的光电流值, Idark -暗电流,I lower -随光强减小光电流减小偏离线性处的光电流值。
需要注意的是:为了获得较小功率或较大功率,除了定制激光器输出功率外,也可以在现有激光器的情况下,利用导轨调节待测器件测试盒与滤光片转轮的距离,从而通过调节光斑大小获得目标输出功率。由于整个光路所有部件都通过可滑动的支架整合到了导轨上,因此LDR测试的整体光路继续用IV测试光路即可,不需要发生变化,操作简单方便。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种多功能光电探测系统探测性能测试方法,其特征在于,包括以下步骤:
步骤一:准备待测器件,并将待测器件放入暗箱(6)内匹配的测试盒(11)中;
步骤二:搭建测试环境,首先将测试盒(11)和数字源表(13)连接起来,将信号发生器(1)和激光器功率控制单元(3)均接在激光器(2)的输入端上,将光纤(4)的一端接在激光器(2)的输出端上,将光纤(4)的另一端固定在暗箱(6)内的光学支架(8)上;
步骤三:然后在测试盒(11)和光纤(4)之间设置滤光片转轮(9),在测试盒(11)和滤光片转轮(9)之间设置挡板(10),在挡板(10)上设置用于穿过激光信号的穿孔,并将测试盒(11)、光纤(4)、滤光片转轮(9)及穿孔的高度调节为沿同一轴线设置;
光纤(4)采用多模光纤或液芯光纤,光纤(4)的输出端口(7)带有扩束功能;通过在激光器(2)输出端口采用多模光纤或液芯光纤将面积较小的高斯光匀化并且放大,从而实现光纤输出端均匀大面积的光输出;
步骤四:开始测试,打开激光器(2),通过调节激光器功率控制单元(3)和滤光片转轮(9)获得弱光功率输出,然后设定电压测试范围,将测试盒(11)切换至导通状态,通过数字源表(13)读取并记录相应的电流-电压数据,测得光照状态下的I-V曲线;挡住挡板(10)上的穿孔,再次通过数字源表(13)读取并记录相应的电流-电压数据,测得黑暗状态下的I-V曲线;
步骤五:根据步骤四中记录的测试数据分别计算探测系统的响应度值、比探测度值和外量子效率值;
步骤六:调节激光器功率控制单元(3)和滤光片转轮(9)获得由小到大的光功率输出,通过数字源表(13)读取并记录不同特定功率时所对应的电流大小以及相应的时间,测得探测系统的I-T曲线;然后设定电压测试范围,打开信号发生器(1),控制激光器(2)输出周期性亮暗的激光信号,通过数字源表(13)读取并记录相应的电流-电压数据,计算探测系统的线性动态范围;
所述步骤六中线性动态范围的计算公式为:
Figure DEST_PATH_IMAGE002
式中:LDR-线性动态范围,Iupper-随光强增大光电流增大偏离线性处的光电流值,Idark-暗电流,Ilower -随光强减小光电流减小偏离线性处的光电流值。
2.根据权利要求1所述的多功能光电探测系统探测性能测试方法,其特征在于,所述步骤五中探测系统的响应度值的计算公式为:
Figure DEST_PATH_IMAGE004
式中:R-器件响应度,I ill -光电流,I dark -暗电流,A -器件有效面积,Ee -光功率密度;
比探测度值的计算公式为:
Figure DEST_PATH_IMAGE006
式中:D* -比探测度,e -电子电量;
外量子效率值的计算公式为:
Figure DEST_PATH_IMAGE008
式中,EQE-外量子效率,h -普朗克常数,c-光速,λ-入射光波长。
3.根据权利要求1或2所述的多功能光电探测系统探测性能测试方法,其特征在于,所述暗箱(6)的侧壁上设置有与光纤(4)相匹配的卡箍套筒(5),光纤(4)穿过卡箍套筒(5)并伸入暗箱(6)内。
4.根据权利要求3所述的多功能光电探测系统探测性能测试方法,其特征在于,所述滤光片转轮(9)设置在第一支架上,测试盒(11)设置在第二支架上,且光学支架(8)、滤光片转轮(9)和测试盒(11)均滑动设置在暗箱(6)的底壁上。
5.根据权利要求4所述的多功能光电探测系统探测性能测试方法,其特征在于,所述暗箱(6)的底壁上沿激光信号发射方向设置有导轨(12),光学支架(8)、滤光片转轮(9)和测试盒(11)的下部均设置有滑块,滑块滑动设置在导轨(12)上;且导轨(12)上设有刻度。
CN202111568811.8A 2021-12-21 2021-12-21 一种多功能光电探测系统探测性能测试方法 Active CN114112314B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111568811.8A CN114112314B (zh) 2021-12-21 2021-12-21 一种多功能光电探测系统探测性能测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111568811.8A CN114112314B (zh) 2021-12-21 2021-12-21 一种多功能光电探测系统探测性能测试方法

Publications (2)

Publication Number Publication Date
CN114112314A CN114112314A (zh) 2022-03-01
CN114112314B true CN114112314B (zh) 2022-11-18

Family

ID=80362378

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111568811.8A Active CN114112314B (zh) 2021-12-21 2021-12-21 一种多功能光电探测系统探测性能测试方法

Country Status (1)

Country Link
CN (1) CN114112314B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114858811A (zh) * 2022-07-01 2022-08-05 波粒(北京)光电科技有限公司 基于激光穿透原理的太阳能电池片的检测系统及检测方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2546277B2 (ja) * 1987-07-24 1996-10-23 日本電気株式会社 光半導体測定装置
JP4324693B2 (ja) * 2004-11-09 2009-09-02 独立行政法人産業技術総合研究所 光検出器の分光応答度測定装置、その測定方法及び光源の分光放射照度校正方法
CN103438993B (zh) * 2013-08-22 2015-02-18 中国科学院上海光学精密机械研究所 光电探测器线性区间及其面响应特性测量装置
CN108204824B (zh) * 2016-12-19 2021-01-05 湖南航天机电设备与特种材料研究所 一种光电探测器检测装置及检测方法
CN112904171A (zh) * 2021-01-19 2021-06-04 中国兵器工业集团第二一四研究所苏州研发中心 一种四象限光电探测器测试系统及测试方法

Also Published As

Publication number Publication date
CN114112314A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
Schreiber et al. Portable, solid‐state fluorometer for the measurement of chlorophyll fluorescence induction in plants
CN101581770B (zh) 一种led灯具流明效率测试方法
US7470917B1 (en) Submersible apparatus for measuring active fluorescence
US7301158B1 (en) Method and apparatus for measuring active fluorescence
CN201622322U (zh) Oled光电性能综合测试装置
CN101625314B (zh) 一种高等植物生化参数非接触监测装置
KR20120016189A (ko) 양자 효율 측정 시스템 및 사용 방법
CN109115697A (zh) 一种集合光学探头的水质多参数在线监测装置
CN114112314B (zh) 一种多功能光电探测系统探测性能测试方法
CN104062265A (zh) 基于光谱分析的变压器油中多组分气体检测装置及方法
CN206683758U (zh) 可调微弱光发生装置
CN201311327Y (zh) 一种红外辐射测量系统
CN105527483A (zh) 一种电光独立调制的瞬态光电压测试系统
CN105424624A (zh) 一种基于半导体激光器的检测器及其参数调整方法
CN105841931A (zh) 一种光谱响应测试系统及测试方法
CN216483846U (zh) 一种高效集成多功能光电探测系统
CN207215284U (zh) 一种滤光探测系统
CN203745380U (zh) 反射式光电比色检测装置
CN101893679A (zh) 一种太阳能电池量子效率的直流测量装置及其使用方法
CN113465737A (zh) 宽波段光电探测器测试装置
CN203870023U (zh) 一种内置空白的光纤光谱仪
CN205748879U (zh) 一种光谱响应测试系统
CN103499557B (zh) 一种纸页水分检测方法及设备
CN207897093U (zh) Ccd/cmos参数检测系统
CN103616377A (zh) 反射式光电比色检测方法及其检测装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant