CN114111859A - 基于近红外波段双峰pcf温度与磁场双参量传感系统 - Google Patents

基于近红外波段双峰pcf温度与磁场双参量传感系统 Download PDF

Info

Publication number
CN114111859A
CN114111859A CN202111442876.8A CN202111442876A CN114111859A CN 114111859 A CN114111859 A CN 114111859A CN 202111442876 A CN202111442876 A CN 202111442876A CN 114111859 A CN114111859 A CN 114111859A
Authority
CN
China
Prior art keywords
magnetic field
temperature
double
change
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111442876.8A
Other languages
English (en)
Other versions
CN114111859B (zh
Inventor
沈涛
杨添宇
刘驰
李云强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN202111442876.8A priority Critical patent/CN114111859B/zh
Publication of CN114111859A publication Critical patent/CN114111859A/zh
Application granted granted Critical
Publication of CN114111859B publication Critical patent/CN114111859B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/3538Optical fibre sensor using a particular arrangement of the optical fibre itself using a particular type of fiber, e.g. fibre with several cores, PANDA fiber, fiber with an elliptic core or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02323Core having lower refractive index than cladding, e.g. photonic band gap guiding
    • G02B6/02328Hollow or gas filled core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明专利提供了基于近红外波段双峰PCF温度与磁场双参量传感系统,它包括近红外光源、单模光纤、传感单元、光谱分析仪、光电转化器、信号处理模块和计算机。利用表面等离子体共振原理,通过一个特殊结构的光子晶体光纤的两个共振峰的间距来检测温度与磁场,结果在计算机中显示。本发明由双峰灵敏度公式来取代传统的波长灵敏度的计算方法,提出的新的传感系统采用了双峰灵敏度的传感方法,具有灵敏度高、设计灵活、结构紧凑、稳定性强等优点,在生化分析物检测、水污染监控等实际使用中具有更高的价值。

Description

基于近红外波段双峰PCF温度与磁场双参量传感系统
技术领域
本发明属于光纤传感技术领域,具体涉及基于近红外波段双峰PCF温度与磁场双参量传感系统。
背景技术
表面等离子体共振(SPR)存在于金属和介质(或空气)之间,利用全反射倏逝波激发表面等离子体极化激元(SPP)。SPR传感技术因其灵敏度高、无背景干扰、样品无标签、无需进一步纯化、实时快速检测等特点,已经成为监测分析物的折射率、过滤特定频率的光和检测纳米生物膜的形成的多功能工具。近年来,基于光子晶体光纤(PCF)的SPR传感器的概念已被提出。光子晶体光纤的特点是其设计的灵活性,因此可以通过不同的气孔布置来定制色散、双折射、非线性等。这些方面使得光子晶体光纤在许多领域特别引人注目,并在基于气体的非线性光学、原子和粒子制导、超高非线性、掺稀土激光和传感等领域有广泛的应用。PCF-SPR传感器可以实现等离子体模式和基模模式的完美匹配,因为基模的有效折射率可以设计为零到核心材料的折射率之间,在折射率检测方面具有很高的灵敏度和分辨率,克服了基于棱镜和传统光纤的SPR传感器体积大、传输损耗高、灵敏度低的缺点,目前PCF-SPR传感器的结构很多。
Zhang W等人(Zhang W,Chen H,LiuY,et al.Analysis of a magnetic fieldsensor based on photonic crystal fiber selectively infiltrated with magneticfluids[J].Optical Fiber Technology,2018,46:43-47)提出一种基于SPR的PCF磁场传感器,采用磁流体(MFs)作为填充材料,纤芯的左右两侧由两个较大的圆形气孔组成,上下两侧由四个较小的圆形气孔组成,有利于增强双折射,所测量的磁场范围为30-130Oe;Zhao L等人(Zhao L,Han H,Luan N,et al.A temperature plasmonic sensor based on a sideopening hollow fiber filled with high refractive index sensing medium[J].Sensors,2019,19(17):3730)提出了一种基于侧开口的空芯微结构光纤的表面等离子体共振温度传感器,所测量的温度范围为13-50℃;S.Singh等人(S.Singh,Y.K.Prajapati,Highly sensitive refractive index sensor based on D-shaped PCF with gold-graphene layers on the polished surface,Applied Physics A,2019,125:437)提出一种在抛光表面涂有金和石墨烯层的D型PCF折射率传感器,在固体纤芯x方向放置两个大空气孔,研究x方向偏振光发生耦合时的限制损耗谱;Mollah MA等人(Mollah M A,Islam S MR,Yousufali M,et al.Plasmonic temperature sensor using D-shaped photoniccrystal fiber[J].Results in Physics,2020,16:102966.)提出一种工作在近红外波段的D型光子晶体光纤的温度传感器,采用苯作为填充材料,纤芯的左右两侧气孔呈菱形排布,所测量的温度范围为10-70℃;沈涛等人(沈涛、梁涵、杨添宇等,CN202011302617,一种基于SPR的D型光子晶体光纤温度传感装置及方法。)公开了一种可检测温度的D型光子晶体光纤传感装置及方法,以及沈涛等人(沈涛、张智文、王韶峰等,CN2020112985743,基于SPR的D型光子晶体光纤磁场敏感传感系统及方法。)公开了一种可检测磁场的D型光子晶体光纤传感系统,都是通过单峰的波长漂移来检测温度及磁场。
以上已公开PCF-SPR的检测方法都是基于某种耦合模式,检测单一损耗峰的共振波长与其漂移变化。但PCF-SPR传感器是同时拥有多个耦合模式,只检测一个耦合模式的峰值是困难,不稳定的。因为在实际使用中存在无法区分具体耦合模式所对应的约束损耗峰和约束损耗峰的共振波长波动不稳定导致无法检测的问题,Ying Guo等人提出(Guo Y,LiJ,Wang X,et al.Highly sensitive sensor based on D-shaped microstructure fiberwith hollow core[J].Optics&Laser Technology,2020,123:105922.)了双峰检测光子晶体光纤传感器,分别检测两个峰的波长漂移量,同时拥有两个灵敏度,但是与上述单峰光子晶体光纤传感器在检测方法上没有区别。Gongli Xiao等人提出(Xiao G,Ou Z,Yang H,etal.An Integrated Detection Based on a Multi-Parameter Plasmonic Optical FiberSensor[J].Sensors,2021,21(3):803.)了双峰检测双参量光子晶体光纤传感器,通过两个耦合模式下的损耗峰同时检测两种参量,同样依据单峰的共振波长与共振波物长漂移量来判断检测的折射率与灵敏度,稳定性较低。以上PCF-SPR传感器与本发明在对分析物状态的判别与灵敏度计算方法上有本质区别,且目前提出的高灵敏度传感器同样受限于光谱仪的性能,所以目前大多数PCF-SPR传感器只存在于理论仿真阶段,实际制造效果较差。所以提出一种新的工作在近红外波段的PCF结构及检测方法是十分重要的。
发明内容
针对上述问题,本发明要解决的技术问题是提出基于近红外波段双峰PCF温度与磁场双参量传感系统,并提出一种新的分析物状态(包括温度和磁场)判定方法与稳定的灵敏度计算方法。
本发明为解决其技术问题所采用的技术方案如下:
技术方案:基于近红外波段双峰PCF温度与磁场双参量传感系统,其特征在于:由近红外光源(1)、单模光纤(2)、传感单元(3)、光谱分析仪(4)、光电转化器(5)、信号处理模块(6)和计算机(7)组成;
进一步地,所述传感单元(3)为光子晶体光纤(3-1);由包层(3-2)、21个位于包层内的空气孔(3-4)、1个分析液空气孔(3-3)、二氧化钛膜(3-5)和分析液(3-6)构成;其特征在于:空气孔(3-4)关于光纤y轴对称排列;分析液空气孔(3-3)位于空气孔(3-4)中间;二氧化钛膜(3-5)在包层(3-2)与分析液(3-6)交界处;
进一步地,所述的传感单元(3),其特征在于:包层(3-2)内空气孔间距Λ为1.8μm,包层(3-2)直径为14.5μm,分析液空气孔(3-3)直径为1.0μm,空气孔(3-4)直径为1.5μm;二氧化钛膜(3-5)厚度为35nm;包层材料为二氧化硅,其折射率由Sellmeier公式定义;
进一步地,所述的二氧化钛膜(3-5)利用物理气相沉积方法涂覆;采用溶胶凝胶技术制备光子晶体光纤(3-1),光子晶体光纤(3-1)长度为15mm,具体制备方法为:
首先制造出一系列金属棒的模型,接着向模型中填充pH较高的硅胶颗粒,颗粒的尺寸要控制在纳米量级,pH降低的过程就是溶胶到凝胶的过程,凝胶完成后,去除金属棒,在凝胶体内形成圆柱形的空气孔,最后采用热化学方法来处理凝胶体以达到消除水蒸气、有机物和金属的污染;
进一步地,所述分析液(3-6)填充水基四氧化三铁磁流体(MFs),其制备方法采用氧化沉淀法,首先将聚乙二醇溶于蒸馏水中,静置2分钟后,将其移入装有搅拌器、冷凝管、和氮气入口的四颈瓶中,然后按顺序加入浓度为0.180mol/L的氯化亚铁溶液30ml、浓度为0.007%的过氧化氢水溶液10ml,控制搅拌速度在50r/min,随后滴加浓度为3.0mol/L的氢氧化钠水溶液将混合液的pH调整为13,同时在氮气的保护下,在50℃的条件下反应4.5h,最终得到水基四氧化三铁磁流体(MFs),其折射率由Langevi公式定义;
Figure BDA0003383239190000031
式中nm是水基四氧化三铁磁流体(MFs)能达到的最大折射率值,ni是外磁场的原始折射率,Hc,n是临界磁场强度,αMF是设定参数,nMF表示水基四氧化三铁磁流体(MFs)的折射率随外界磁场强度的变化而变化的值,H表示外界磁场,T为300℃;磁场的变化会改变水基四氧化三铁磁流体(MFs)的折射率,而分析液空气孔(3-3)选择性填充聚二甲基硅氧烷(PDMS),其制备方法如下:
取10g二甲基一甲基乙烯基硅氧烷溶液与1g二甲基一甲基氢硅氧烷溶液放入搅拌机中搅拌30min至均匀混合,混合完成后,将其置于干燥空箱内脱气1h,使混合液中无气泡,得到未固化的无气泡聚二甲基硅氧烷(PDMS)液,外界温度的变化会改变聚二甲基硅氧烷(PDMS)的折射率,所以可以达到双参量测量的目的;
进一步地,所述近红外光源(1)输出750-2000nm波段的光信号;
进一步地,所述的基于近红外波段双峰PCF温度与磁场双参量传感系统,其特征在于:近红外光源(1)发射光信号经过单模光纤(2)传输到传感单元(3),传感单元(3)输出至光谱分析仪(4)与光电转化器(5),光电转化器(5)将光信号转化为电信号输出到信号处理模块(6),最终在计算机(7)中显示;
进一步地,所述的光信号经过单模光纤(2)传输到传感单元(3),其特征在于:二氧化钛膜(3-5)表面激发的等离子体波波矢与入射光场的波矢在特定的波长范围内达到相位匹配,发生两次耦合,出现两个共振损耗峰;表面等离子体共振(SPR)对介质环境十分敏感,外界磁场的变化会改变分析液(3-6)的折射率,外界温度的变化会改变分析液空气孔(3-3)的折射率,两种分析液折射率的变化会使共振条件发生变化,导致两个共振损耗峰发生明显变化,由此可以实现对外界温度和磁场的高灵敏度、实时性探测;
进一步地,所述的基于近红外波段双峰PCF温度与磁场双参量传感系统,其特征在于:由近红外光源(1)发出光信号,经单模光纤(2)传输至传感单元(3),当分析液(3-6)折射率改变时,光子晶体光纤(3-1)等离子体共振现象的条件发生改变,两种耦合模式发生变化,在光谱分析仪(4)中显示的两个峰的距离Δλpeak发生明显的改变,当分析液(3-6)的折射率增大时,两个峰的距离减少,当分析液(3-6)的折射率减少时,两个峰的距离增加,经双峰灵敏度公式计算灵敏度。
进一步地,所述双峰灵敏度公式为:
s=(Δλpeak2-Δλpeak1)/Δna (2)
式中s为双峰灵敏度,Δλpeak2-Δλpeak1为两种不同温度与磁场状态下的两个峰的波长距离的差值,Δλpeak为同一折射率下的两个损耗峰的波长差值,Δna为温度/磁场变化量。其中Δλpeak的大小与传感单元(3)所处的温度/磁场状态对应;传感单元(3)将携带Δλpeak数值的光信号传输至光电转化器(5),光电转化器(5)将光信号转化为电信号输出至信号处理模块(6),最终在计算机(7)中显示分析液(3-6)的信息;
进一步地,所述的基于近红外波段双峰PCF温度与磁场双参量传感系统,其特征在于:在同时测量温度与磁场时需要用以下公式进行计算:
Figure BDA0003383239190000041
Figure BDA0003383239190000042
式(3)中Δλpeak2-Δλpeak1为两种不同温度与磁场状态下的两个峰的波长距离的差值,Δλ1为温度改变后两峰间距的变化量,Δλ2为磁场改变后两峰间距的变化量,ST,SH分别为温度与磁场的灵敏度,ΔT与ΔH分别为温度与磁场的变化量,进而从公式(4)可得出温度与磁场的变化量。
结构发明:基于近红外波段双峰PCF温度与磁场双参量传感系统
与已公开技术相比,本发明专利的有益效果是:
1.本发明所述的基于近红外波段双峰PCF温度与磁场双参量传感系统结构特殊,极大地增加了双折射特性以及色散特性,有利于偏振态的保持,可广泛应用于偏振控制、精密光纤传感等领域。
2.本发明所述的基于近红外波段双峰PCF温度与磁场双参量传感系统拥有两个约束损耗峰,通过本发明所提出的双峰灵敏度公式计算,解决了传统PCF-SPR传感器灵敏度测量精度差,实际测试效果差的问题,增加了测量系统的稳定性。
3.本发明所述的基于近红外波段双峰PCF温度与磁场双参量传感系统工作波长位于近红外波段,可忽略外界环境光对传感器的干扰。
4.本发明所述的基于近红外波段双峰PCF温度与磁场双参量传感系统,采用二氧化钛作为SPR激发材料,相较于传统的激发材料金银等金属,二氧化钛拥有更好的激发效果,并且更节约成本,采用水基四氧化三铁磁流体(MFs)作为分析液,并且选择性填充聚二甲基硅氧烷(PDMS),可以实现温度与磁场双参量测量,达到最大灵敏度-48.86nm/℃和35nm/Oe,可广泛应用于样品检测,如生命科学研究、生物化学、环境监测等领域。
附图说明
图1为本发明提供基于近红外波段双峰PCF温度与磁场双参量传感系统的装置图。
图2为本发明提供基于近红外波段双峰PCF温度与磁场双参量传感系统的传感单元横截面图。
图3为本发明提供基于近红外波段双峰PCF温度与磁场双参量传感系统的耦合图。
图4为本发明提供基于近红外波段双峰PCF温度与磁场双参量传感系统的温度为10℃,磁场为15Oe和温度为15℃,磁场为20Oe时的损耗谱变化图。
具体实施方式
下面结合附图对本发明提出的基于近红外波段双峰PCF温度与磁场双参量传感系统的具体实施方式加以说明。
如图1所示,为本发明提供基于近红外波段双峰PCF温度与磁场双参量传感系统的装置图,近红外光源(1)发射光信号经过单模光纤(2)传输到传感单元(3),当光传输至二氧化钛膜(3-5),由于分析液(3-6)与包层(3-2)的折射率不一致,光在二氧化钛膜(3-5)处发生表面等离子体共振现象,出现两个约束损耗峰。传感单元(3)输出至光谱分析仪(4)与光电转化器(5),光电转化器(5)将光信号转化为电信号输出到信号处理模块(6),最终在计算机(7)中显示;
如图2所示,为本发明提供基于近红外波段双峰PCF温度与磁场双参量传感系统的传感单元(3)横截面图,传感单元(3)为光子晶体光纤(3-1);由包层(3-2)、21个位于包层内的空气孔(3-4)、1个分析液空气孔(3-3)、二氧化钛膜(3-5)和分析液(3-6)构成;其特征在于:空气孔(3-4)关于光纤y轴对称排列;分析液空气孔(3-3)位于空气孔(3-4)中间;二氧化钛膜(3-5)在包层(3-2)与分析液(3-6)交界处;空气孔影响模式性质,可以把光控制在纤芯内,二氧化钛膜(3-5)在包层(3-2)与分析液(3-6)交界处,当光信号传输至光子晶体光纤(3-1),二氧化钛膜(3-5)的存在导致表面等离子共振现象的发生,从而实现高灵敏度检测;
如图3所示,为本发明提供基于近红外波段双峰PCF温度与磁场双参量传感系统的两次耦合图,当工作波长为1150-1975nm时,本传感系统可以检测到两个约束损耗峰,发生两次纤芯与二氧化钛膜(3-5)的耦合。
如图4所示,为本发明提供基于近红外波段双峰PCF温度与磁场双参量传感系统的温度为10℃,磁场为15Oe和温度为15℃,磁场为20Oe时的损耗谱变化图,当温度从10℃变化到15℃,磁场从15Oe变化到20Oe时,本传感系统的两个损耗峰的变化情况,并可根据相应公式求出灵敏度分别为-48.86nm/℃和35nm/Oe。

Claims (1)

1.基于近红外波段双峰PCF温度与磁场双参量传感系统,其特征在于:由近红外光源(1)、单模光纤(2)、传感单元(3)、光谱分析仪(4)、光电转化器(5)、信号处理模块(6)和计算机(7)组成;
所述传感单元(3)为光子晶体光纤(3-1);由包层(3-2)、21个位于包层内的空气孔(3-4)、1个分析液空气孔(3-3)、二氧化钛膜(3-5)和分析液(3-6)构成;其特征在于:空气孔(3-4)关于光纤y轴对称排列;分析液空气孔(3-3)位于空气孔(3-4)中间;二氧化钛膜(3-5)在包层(3-2)与分析液(3-6)交界处;
所述的传感单元(3),其特征在于:包层(3-2)内空气孔间距Λ为1.8μm,包层(3-2)直径为14.5μm,分析液空气孔(3-3)直径为1.0μm,空气孔(3-4)直径为1.5μm;二氧化钛膜(3-5)厚度为35nm;包层材料为二氧化硅,其折射率由Sellmeier公式定义;
所述的二氧化钛膜(3-5)利用物理气相沉积方法涂覆;采用溶胶凝胶技术制备光子晶体光纤(3-1),光子晶体光纤(3-1)长度为15mm,具体制备方法为:
首先制造出一系列金属棒的模型,接着向模型中填充pH较高的硅胶颗粒,颗粒的尺寸要控制在纳米量级,pH降低的过程就是溶胶到凝胶的过程,凝胶完成后,去除金属棒,在凝胶体内形成圆柱形的空气孔,最后采用热化学方法来处理凝胶体以达到消除水蒸气、有机物和金属的污染;
所述分析液(3-6)填充水基四氧化三铁磁流体(MFs),其制备方法采用氧化沉淀法,首先将聚乙二醇溶于蒸馏水中,静置2分钟后,将其移入装有搅拌器、冷凝管、和氮气入口的四颈瓶中,然后按顺序加入浓度为0.180mol/L的氯化亚铁溶液30ml、浓度为0.007%的过氧化氢水溶液10ml,控制搅拌速度在50r/min,随后滴加浓度为3.0mol/L的氢氧化钠水溶液将混合液的pH调整为13,同时在氮气的保护下,在50℃的条件下反应4.5h,最终得到水基四氧化三铁磁流体(MFs),其折射率由Langevi公式定义;
Figure FDA0003383239180000011
式中nm是水基四氧化三铁磁流体(MFs)能达到的最大折射率值,ni是外磁场的原始折射率,Hc,n是临界磁场强度,αMF是设定参数,nMF表示水基四氧化三铁磁流体(MFs)的折射率随外界磁场强度的变化而变化的值,H表示外界磁场,T为300℃;磁场的变化会改变水基四氧化三铁磁流体(MFs)的折射率,而分析液空气孔(3-3)选择性填充聚二甲基硅氧烷(PDMS),其制备方法如下:
取10g二甲基一甲基乙烯基硅氧烷溶液与1g二甲基一甲基氢硅氧烷溶液放入搅拌机中搅拌30min至均匀混合,混合完成后,将其置于干燥空箱内脱气1h,使混合液中无气泡,得到未固化的无气泡聚二甲基硅氧烷(PDMS)液,外界温度的变化会改变聚二甲基硅氧烷(PDMS)的折射率,所以可以达到双参量测量的目的;
所述近红外光源(1)输出750-2000nm波段的光信号;
所述的基于近红外波段双峰PCF温度与磁场双参量传感系统,其特征在于:近红外光源(1)发射光信号经过单模光纤(2)传输到传感单元(3),传感单元(3)输出至光谱分析仪(4)与光电转化器(5),光电转化器(5)将光信号转化为电信号输出到信号处理模块(6),最终在计算机(7)中显示;
所述的光信号经过单模光纤(2)传输到传感单元(3),其特征在于:二氧化钛膜(3-5)表面激发的等离子体波波矢与入射光场的波矢在特定的波长范围内达到相位匹配,发生两次耦合,出现两个共振损耗峰;表面等离子体共振(SPR)对介质环境十分敏感,外界磁场的变化会改变分析液(3-6)的折射率,外界温度的变化会改变分析液空气孔(3-3)的折射率,两种分析液折射率的变化会使共振条件发生变化,导致两个共振损耗峰发生明显变化,由此可以实现对外界温度和磁场的高灵敏度、实时性探测;
所述的基于近红外波段双峰PCF温度与磁场双参量传感系统,其特征在于:由近红外光源(1)发出光信号,经单模光纤(2)传输至传感单元(3),当分析液(3-6)折射率改变时,光子晶体光纤(3-1)等离子体共振现象的条件发生改变,两种耦合模式发生变化,在光谱分析仪(4)中显示的两个峰的距离Δλpeak发生明显的改变,当分析液(3-6)的折射率增大时,两个峰的距离减少,当分析液(3-6)的折射率减少时,两个峰的距离增加,经双峰灵敏度公式计算灵敏度;
所述双峰灵敏度公式为:
s=(Δλpeak2-Δλpeak1)/Δna (2)
式中s为双峰灵敏度,Δλpeak2-Δλpeak1为两种不同温度与磁场状态下的两个峰的波长距离的差值,为同一折射率下的两个损耗峰的波长差值,Δna为温度/磁场的变化量,其中Δλpeak的大小与传感单元(3)所处的温度/磁场状态对应;传感单元(3)将携带Δλpeak数值的光信号传输至光电转化器(5),光电转化器(5)将光信号转化为电信号输出至信号处理模块(6),最终在计算机(7)中显示分析液(3-6)的信息;
所述的基于近红外波段双峰PCF温度与磁场双参量传感系统,其特征在于:在同时测量温度与磁场时需要用以下公式进行计算:
Figure FDA0003383239180000021
Figure FDA0003383239180000022
式(3)中Δλpeak2-Δλpeak1为两种不同温度与磁场状态下的两个峰的波长距离的差值,Δλ1为温度改变后两峰间距的变化量,Δλ2为磁场改变后两峰间距的变化量,ST,SH分别为温度与磁场的灵敏度,ΔT与ΔH分别为温度与磁场的变化量,进而从公式(4)可得出温度与磁场的变化量。
CN202111442876.8A 2021-11-30 2021-11-30 基于近红外波段双峰pcf温度与磁场双参量传感系统 Active CN114111859B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111442876.8A CN114111859B (zh) 2021-11-30 2021-11-30 基于近红外波段双峰pcf温度与磁场双参量传感系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111442876.8A CN114111859B (zh) 2021-11-30 2021-11-30 基于近红外波段双峰pcf温度与磁场双参量传感系统

Publications (2)

Publication Number Publication Date
CN114111859A true CN114111859A (zh) 2022-03-01
CN114111859B CN114111859B (zh) 2024-04-02

Family

ID=80368383

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111442876.8A Active CN114111859B (zh) 2021-11-30 2021-11-30 基于近红外波段双峰pcf温度与磁场双参量传感系统

Country Status (1)

Country Link
CN (1) CN114111859B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103196488A (zh) * 2013-03-12 2013-07-10 东北大学 用于磁场和温度同时检测的光子晶体光纤光栅传感方法
US20170052119A1 (en) * 2014-02-14 2017-02-23 The General Hospital Corporation System and method for tomographic lifetime multiplexing
CN110132894A (zh) * 2019-05-16 2019-08-16 中国矿业大学 一种温度补偿的光子晶体光纤甲烷传感装置
CN112098339A (zh) * 2020-07-22 2020-12-18 桂林电子科技大学 一种d型光子晶体光纤表面等离子体共振的多参量传感器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103196488A (zh) * 2013-03-12 2013-07-10 东北大学 用于磁场和温度同时检测的光子晶体光纤光栅传感方法
US20170052119A1 (en) * 2014-02-14 2017-02-23 The General Hospital Corporation System and method for tomographic lifetime multiplexing
CN110132894A (zh) * 2019-05-16 2019-08-16 中国矿业大学 一种温度补偿的光子晶体光纤甲烷传感装置
CN112098339A (zh) * 2020-07-22 2020-12-18 桂林电子科技大学 一种d型光子晶体光纤表面等离子体共振的多参量传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
肖功利 等: "D型对称双芯光子晶体光纤双谐振峰折射率传感器", 《光学学报》, vol. 40, no. 12 *

Also Published As

Publication number Publication date
CN114111859B (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
MacCraith Enhanced evanescent wave sensors based on sol-gel-derived porous glass coatings
CN108680531B (zh) 二氧化钛薄膜涂覆倾斜光纤光栅折射率传感器及检测系统
CN112432715B (zh) 一种基于spr的d型光子晶体光纤温度传感装置及方法
Teng et al. Plastic optical fiber based SPR sensor for simultaneous measurement of refractive index and liquid level
CN114062309B (zh) 基于近红外波段双峰pcf浓度与磁场双参量传感系统
Liu et al. High sensitive methane sensor with temperature compensation based on selectively liquid-infiltrated photonic crystal fibers
CN112432924B (zh) 基于spr的方孔光子晶体光纤折射率传感装置
CN112432925B (zh) 基于spr的d型光子晶体光纤折射率传感器装置及方法
Opoku et al. Design and numerical analysis of a circular SPR based PCF biosensor for aqueous environments
CN114111859B (zh) 基于近红外波段双峰pcf温度与磁场双参量传感系统
NL2029744B1 (en) Device and method for sensing refractive index of d-type photonic crystal fiber with triangular pores
Liu et al. Design of methane sensor based on slow light effect in hollow core photonic crystal fiber
CN114062317B (zh) 基于近红外波段双峰pcf湿度与磁场双参量传感系统
CN112433179B (zh) 一种判别变压器故障程度的气敏光纤传感器及方法
CN114062310B (zh) 基于近红外波段双峰pcf浓度与应力双参量传感系统
CN114136484B (zh) 基于近红外波段双峰pcf温度与应力双参量传感系统
Fu et al. A highly sensitive six-conjoined-tube anti-resonance optical fiber temperature sensor based on surface plasmon resonance
CN216870370U (zh) 一种基于双层空气孔排布的d型光子晶体光纤传感装置
Teng et al. Low crosstalk plastic optical fiber based dual-parameter SPR sensor with stepped side-polished structure and differentiated Au-film thickness
CN113405991A (zh) 双通道同步检测的光子晶体光纤传感器
Guo et al. Research on a New Type of Biological Solution Fiber Sensor Based on Hybrid-PCF
CN114136919B (zh) 基于近红外波段双峰pcf湿度与应力双参量传感系统
Yasli et al. Photonic crystal fiber based surface plasmon sensor design and analyze with elliptical air holes
Zakaria et al. Exploration of long-range surface plasmon resonance on multilayer single mode optical fiber with function of MgF2
Liu et al. ARF Dual-Channel Magnetic Field and Temperature Sensor Based on the SPR Effect

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant