CN114109367A - Shaft annulus liquid level monitoring method and system - Google Patents

Shaft annulus liquid level monitoring method and system Download PDF

Info

Publication number
CN114109367A
CN114109367A CN202111409986.4A CN202111409986A CN114109367A CN 114109367 A CN114109367 A CN 114109367A CN 202111409986 A CN202111409986 A CN 202111409986A CN 114109367 A CN114109367 A CN 114109367A
Authority
CN
China
Prior art keywords
level monitoring
liquid level
well
monitoring device
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111409986.4A
Other languages
Chinese (zh)
Other versions
CN114109367B (en
Inventor
胡中志
王佩赛
刘鑫阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University of Science and Engineering
Original Assignee
Sichuan University of Science and Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University of Science and Engineering filed Critical Sichuan University of Science and Engineering
Priority to CN202111409986.4A priority Critical patent/CN114109367B/en
Publication of CN114109367A publication Critical patent/CN114109367A/en
Application granted granted Critical
Publication of CN114109367B publication Critical patent/CN114109367B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/04Measuring depth or liquid level
    • E21B47/047Liquid level
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

The invention discloses a shaft annulus liquid level monitoring method and a system, and the shaft annulus liquid level monitoring method comprises the step of setting the maximum pressure P when a liquid level monitoring device operatesmaxAnd a minimum pressure Pmin(ii) a Installing a liquid level monitoring device on the drill rod element; numbering the liquid level monitoring devices according to the well entry sequence i of the drill rod elements; the signal receiving and processing device is arranged at the wellhead of the drilling well; the liquid level monitoring device is at the environmental pressure PiIs Pmin≤Pi<PmaxThe liquid level monitoring device runs to transmit the dynamically changed environmental pressure P to the signal receiving and processing device in real timeiAnd a well entry order i; when P is presentiAt other values, level monitoringThe device stops running; the signal receiving and processing device receives the environmental pressure PiAnd entering well order i and storing, and also storing reception PiTime t of (c). The invention can quickly determine the position of the liquid level of the annulus, and has positive effects on finding the well leakage in time and guaranteeing the drilling safety.

Description

Shaft annulus liquid level monitoring method and system
Technical Field
The invention belongs to the field of resource exploration and development, and particularly relates to a shaft annulus liquid level monitoring method and system.
Background
The well leakage is a complex condition which often occurs in the well drilling process, and when the well leakage occurs, effective leakage stopping measures must be timely and quickly applied, so that the leakage of drilling fluid is reduced or prevented, and serious accidents such as collapse of a well and burying of a drilling tool, well kick, overflow or blowout are avoided. When serious leakage occurs and drilling fluid returns due to loss, the annular space drilling fluid level is monitored to estimate the leakage rate of the drilling fluid besides rapid leakage stopping and continuous drilling fluid filling into the well, so that the property of the well leakage is judged, the well collapse and well control risks are evaluated, and a basis is provided for optimizing a leakage stopping scheme and rapidly stopping a leakage layer. The invention provides a method and a system for monitoring the liquid level of a shaft annulus, which can monitor the position of the liquid level of the annulus in real time and provide a method for calculating the leakage rate of drilling fluid.
Currently, existing fluid level monitoring devices generally determine fluid level position by calculating the time difference between the transmission and reception of sound waves. However, the liquid level monitoring device based on the sound wave is generally installed at the wire end part of a branch pipe of a ground throttle manifold and is installed in a fixed mode, the pressure bearing capacity cannot be lower than the pressure grade of the manifold, and the device is complex in structure, large in size and high in cost; the sound source is variable cross-section sonic boom, acoustic shock wave, infrasonic wave, electric control sound wave and the like, the anti-interference capability is weak, additional operation steps such as drill stopping, well sealing and the like are needed, the operation period is long, especially, the liquid level is reduced less, and when the reflection time of the sound part is too short, the liquid level value is difficult to obtain accurately; for directional well and highly-deviated well, the error of the monitoring result of the liquid level position is larger.
Disclosure of Invention
The invention aims to: aiming at the problems in the prior art, the method and the system for monitoring the liquid level of the shaft annulus are provided, and the technical problems of complex equipment, limited installation position, complex operation procedure, long measurement period and poor anti-interference capability in the prior art are mainly solved.
The purpose of the invention is realized by the following technical scheme:
a wellbore annulus fluid level monitoring method comprises the following steps:
step 1, arranging a liquid level monitoring deviceMaximum pressure P at set-upmaxSetting the minimum pressure P when the liquid level monitoring device is operatedmin
Step 2, mounting the liquid level monitoring device on a drill rod element, and arranging the signal receiving and processing device outside the well drilling shaft;
step 3, numbering the liquid level monitoring devices according to the well entering sequence i of the drill rod elements;
step 4, the environment pressure P of the liquid level monitoring deviceiIs Pmin≤Pi<PmaxThe liquid level monitoring device runs to transmit the dynamically changed environmental pressure P to the signal receiving and processing device in real timeiAnd a well entry order i;
step 5, when P isi≥PmaxWhen is, or Pi<PminWhen the pressure is not detected, the liquid level monitoring device stops transmitting the environmental pressure P to the signal receiving and processing deviceiAnd a well entry order i;
step 6, the signal receiving and processing device receives the environmental pressure P emitted by the liquid level monitoring deviceiAnd entering the well sequence i and storing, and simultaneously storing and receiving PiTime t of (c).
In this technical scheme, PminThe value is set manually before the liquid level monitoring device is placed in the well, wherein PminThe value is set to be less than or equal to the atmospheric pressure value, PmaxThe value is set according to the height of the annular liquid column penetrated by the electromagnetic wave and the intensity of the electromagnetic wave after the electromagnetic wave penetrates the annular liquid column. When the liquid level monitoring device on the drill rod elements with the well entering sequence i monitors the environment pressure PiBetween PminAnd PmaxAnd meanwhile, the annular liquid level is positioned at a drill rod element with a well entering sequence i, at the moment, the page monitoring device operates to transmit well entering sequence information and real-time environment pressure information to the signal receiving and processing device, so that the signal receiving and processing device can determine the position of the annular liquid level, the pressure change value, the annular liquid level descending speed and other data after receiving the information transmitted from the liquid level monitoring device.
Further, in the above-mentioned case,
further comprising the step 7 of calculating the distance L between the liquid level monitoring device with the well entry sequence i at the moment t and the well headi(t) wherein LdpThe number of drill rod elements from the liquid level monitoring device with the length of the drill rod and the sequence of entering the well as i to the well mouth of the well is Li(t)=n·Ldp
Further, in the above-mentioned case,
further comprising, step 8, based on PiCalculating the liquid level Di(t):Di(t)=Pi/(ρ·g)。
In the technical scheme, a calculation formula P ═ rho gh based on liquid column pressure, rho is liquid density, g is gravity acceleration, h is liquid column height, namely pressure PiHeight of hour liquid level Di(t)=Pi/(ρ·g)。
Further, in the above-mentioned case,
further comprising the step 9 of calculating the annular liquid level position L at the time ttop(t), wherein h is the distance between the liquid level monitoring device arranged on the drill rod element with the well entering sequence i and the top of the drill rod element with the liquid level monitoring device:
Ltop(t)=Li(t)+(h-Di(t))。
preferably, the first and second liquid crystal materials are,
further comprising step 10, calculating a pressure change value Δ p (t) at time t, where Δ t is a set time interval:
ΔP(t)=Pi(t)-Pi(t+Δt)。
furthermore, the method also comprises the following steps of,
step 11, calculating a liquid level lowering speed Δ l (t) at time t:
ΔL(t)=ΔP(t)/Δt·(ρ·g)-1
furthermore, the method also comprises the following steps of,
step 12, calculating the leak rate Δ Q, wherein r1To drill the wellbore radius, r2Radius of outer surface of drill rod element:
ΔQ=π·ΔL(t)·(r1 2-r2 2)。
preferably, the first and second liquid crystal materials are,
in the step 2, 1-2 liquid level monitoring devices are arranged on the drill rod element;
when 2 liquid level monitoring devices are arranged on the drill rod element, the 2 liquid level monitoring devices are connected in parallel and are mutually standby.
In the technical scheme, 2 liquid level monitoring devices are arranged in parallel on one drill rod element, so that the accuracy and stability of the environmental pressure information and the well entering sequence information transmitted by the liquid level monitoring devices are improved.
Based on the shaft annulus liquid level monitoring method, the shaft annulus liquid level monitoring system comprises a liquid level monitoring module and a signal receiving and processing module, wherein,
in the liquid level monitoring device, the liquid level monitoring device is arranged,
the pressure sensing module monitors the environmental pressure in real time and transmits the monitored environmental pressure information to the data transmission module, and the signal transmission module receives the environmental pressure information from the pressure sensing module and transmits well entry sequence i information and the environmental pressure information to the signal receiving and processing device;
the first power supply module is used for supplying power to the pressure sensing module and the signal transmission module;
in the signal receiving and processing device, the wireless signal receiving module receives well entering sequence i information and environmental pressure information transmitted by the liquid level monitoring device and transmits the environmental pressure information and the well entering sequence i information to the data processing module;
the data processing module outputs result information to external display equipment for display according to a set algorithm;
the second power supply module is used for supplying power to the wireless signal receiving module and the data processing module.
In the technical scheme, the pressure sensing module entering the well is always in an operating state, the environmental pressure Pi of the liquid level monitoring device is monitored in real time, and when the pressure sensing module monitors PiIs Pmin≤Pi<PmaxThen, the signal receiving module and the signal transmission module start to operateLine, wherein the data transmission module transmits the received PiThe value and the well entering sequence information stored in the data transmission module are coded and transmitted to the signal receiving and processing device, and the signal receiving module of the signal receiving and processing device receives the PiAnd (4) decoding the information and the well entering sequence i, and then outputting a result by the data processing module according to a set algorithm.
In conclusion, the beneficial effects of the invention are as follows:
1. the system is based on electromagnetic wave signal transmission, and has the advantages of high speed, no time delay and strong anti-interference capability;
2. the liquid level monitoring device is triggered by the pressure sensor, runs fully automatically, does not need manual intervention, does not need additional operation steps, and has high monitoring efficiency;
3. the liquid level position and the drilling fluid leakage rate are obtained by calculation of the received determination signals and are irrelevant to the well type and the liquid level position, and the monitoring result is reliable and accurate;
4. the signal receiving and processing device is installed in an open position of a ground wellhead, has no special requirements, is simple to operate and has no interference to a drilling system.
Drawings
In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the drawings that are required to be used in the embodiments will be briefly described below, it should be understood that the following drawings only illustrate some embodiments of the present invention and therefore should not be considered as limiting the scope, and those skilled in the art can also obtain other related drawings based on the drawings without inventive step.
FIG. 1 is a flow chart of embodiment 1 of a wellbore annulus fluid level monitoring method of the present invention;
FIG. 2 is a flow chart of embodiment 2 of the drilling annulus fluid level monitoring method of the present invention;
FIG. 3 is a flow chart of embodiment 3 of the drilling annulus fluid level monitoring method of the present invention;
FIG. 4 is a schematic illustration of a wellbore annulus level monitoring device installation in accordance with the present invention;
FIG. 5 is a schematic diagram of a fluid level monitoring device of a wellbore annulus fluid level monitoring system according to the present invention;
FIG. 6 is a block diagram of a signal receiving and processing device of a wellbore annulus level monitoring system according to the present invention.
Detailed Description
The present invention will be described in detail below with reference to the accompanying drawings.
In order to make the objects, technical solutions and advantages of the embodiments of the present invention more clearly apparent, the technical solutions of the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings of the embodiments of the present invention. All other embodiments, which can be obtained by a person skilled in the art without any inventive step based on the embodiments of the present invention, are within the scope of the present invention. Thus, the following detailed description of the embodiments of the present invention, presented in the figures, is not intended to limit the scope of the invention, as claimed, but is merely representative of selected embodiments of the invention.
Example 1
Referring to fig. 1 and 4, a method for monitoring the liquid level in the annulus of a wellbore needs to prepare a plurality of liquid level detection devices and a plurality of drill pipe elements before monitoring, wherein the drill pipe elements are structurally composed of drill pipes and drill pipe joints as shown in fig. 5. Before entering the well, the length of the drill pipe elements is measured and the drill pipe elements are numbered.
In this embodiment, the wellbore annulus level monitoring method includes steps S1-S6, which are specifically as follows:
s1, setting the maximum pressure P when the liquid level monitoring device operatesmaxSetting the minimum pressure P when the liquid level monitoring device is operatedmin
S2, mounting the liquid level monitoring device on the drill rod element, and arranging the signal receiving and processing device outside the well drilling shaft;
s3, numbering the liquid level monitoring devices according to the well entering sequence i of the drill rod elements;
preferably, the liquid level monitoring devices are numbered sequentially from small to large according to the well entry sequence of the drill rod element in which the liquid level monitoring devices are located, each liquid level monitoring device corresponds to one drill rod element, and numbering information corresponding to the number of the corresponding drill rod element is preset in each liquid level monitoring device before the liquid level monitoring devices enter the well; preferably, the liquid level monitoring device is arranged at the bottom of the drill rod element, namely the liquid level monitoring device is positioned at the lower part of the drill rod joint;
preferably, at least 2 liquid level monitoring devices are installed on the drill rod element, the at least 2 liquid level monitoring devices are connected in parallel, and at least 2 liquid level monitoring devices connected in parallel are arranged on one drill rod element, so that the liquid level monitoring devices are mutually standby, and the stability and the accuracy of the number information transmitted by the liquid level monitoring devices are improved.
S4, the environment pressure P of the liquid level monitoring device isiIs Pmin≤Pi<PmaxThe liquid level monitoring device runs to transmit the dynamically changed environmental pressure P to the signal receiving and processing device in real timeiAnd a well entry order i;
s5, when P isi≥PmaxWhen is, or Pi<PminWhen the pressure is not detected, the liquid level monitoring device stops transmitting the environmental pressure P to the signal receiving and processing deviceiAnd a well entry order i.
S6, the signal receiving and processing device receives the environmental pressure P transmitted by the liquid level monitoring deviceiAnd entering the well sequence i and storing, and simultaneously storing and receiving PiTime t of (c).
In this embodiment, since the length of each drill pipe element is known before entering the well, the position of the annulus fluid level can be determined after determining the entering sequence of the drill pipe elements in which the fluid level monitoring device is in operation, and the error between the position of the annulus fluid level determined according to the above method and the actual position of the annulus fluid level is negligible over the length of one drill pipe element relative to the actual depth of the well during drilling operations.
Example 2
Referring to fig. 1, 2 and 4, fig. 2 shows a flow chart of another method of monitoring the fluid level in the annulus of the wellbore.
The present embodiment proposes another embodiment based on embodiment 1, and the differences between the present embodiment and embodiment 1 are specifically as follows:
s7, calculating the distance L between the liquid level monitoring device with the well entering sequence i at the time t and the well mouth of the welli(t) wherein LdpThe number of drill rod elements from the liquid level monitoring device with the length of the drill rod and the sequence of entering the well as i to the well mouth of the well is Li(t)=n·Ldp
S8, based on PiCalculating the liquid level Di(t), where ρ is the well fluid density, g is the acceleration of gravity: di(t)=Pi/(ρ·g);
S9, calculating the annular liquid level position L at the time ttop(t), wherein h is the distance between the liquid level monitoring device arranged on the drill rod element with the well entering sequence i and the top of the drill rod element with the liquid level monitoring device:
Ltop(t)=Li(t)+(h-Di(t))。
in the embodiment, the method for calculating the real-time annular liquid level position is provided, the shaft annular liquid level position is obtained by calculating the received determination signal and is irrelevant to the drilling type and the shaft annular liquid level position, and the detection result is objective, accurate and reliable.
Example 3
Referring to fig. 1, 3 and 4, fig. 3 is a flow chart of another method of monitoring the fluid level in the annulus of a wellbore.
The present embodiment proposes another embodiment based on embodiment 1, and the differences between the present embodiment and embodiment 1 are specifically as follows:
s10, calculating a pressure change value delta P (t) at the time t, wherein delta t is a set acquisition interval:
ΔP(t)=Pi(t)-Pi(t+Δt);
s11, calculating the liquid level height lowering speed Δ l (t) at time t:
ΔL(t)=ΔP(t)/Δt·(ρ·g)-1
s12, calculating the leakage velocity delta Q, wherein r1To drill the wellbore radius, r2Radius of outer surface of drill rod element:
ΔQ=π·ΔL(t)·(r1 2-r2 2)。
in the embodiment, the method for calculating the real-time annular liquid level descending speed is provided, the shaft annular liquid level position is obtained by calculating the received determination signal and is irrelevant to the drilling type and the shaft annular liquid level position, and the detection result is objective, accurate and reliable.
Example 4
As shown in fig. 1 to 6, this embodiment includes all the technical features of embodiment 1, embodiment 2, and embodiment 3, and this embodiment provides a wellbore annulus level monitoring system based on embodiment 1, embodiment 2, and embodiment 3.
Comprises a liquid level monitoring device 100 arranged on a drill rod element and a signal receiving and processing device 200 arranged outside a well bore;
the liquid level monitoring device 100 is composed of a pressure sensing module 101, a signal storage and processing module 102, a signal transmission module 103 and a first power supply module 104;
the signal receiving and processing device 200 is composed of a wireless signal receiving module 201, a data processing module 202 and a second power supply module 203.
The pressure sensing module 101 monitors the environmental pressure of a drill rod element where the current liquid level monitoring device 100 is located in real time, and transmits the monitored environmental pressure information to the signal storage and processing module 102, and the signal storage and processing module 102 receives the environmental pressure information from the pressure sensing module 101 and then transmits the information of the well entry sequence i and the environmental pressure information to the signal transmission module 103; the first power supply module 104 is used for supplying power to the pressure sensing module 101, the signal storage and processing module 102 and the signal transmission module 103;
in the signal receiving and processing device 200, the wireless signal receiving module 201 receives information of a well entering sequence i and environmental pressure information transmitted from the liquid level monitoring device 100, and transmits the information of the environmental pressure and the information of the well entering sequence i to the data processing module 202;
the second power supply module 203 is configured to supply power to the wireless signal receiving module 201 and the data processing module 202;
the data processing module 202 outputs the result information to the external display device for display according to the established algorithm.
The hardware device of the pressure sensing module 101 of this embodiment is a commercially available or commercially available pressure sensor, the signal storage and processing module 102 of this embodiment includes, but is not limited to, STM32, STC89C52, and CC2530, the signal transmission module 103 includes, but is not limited to, NRF24L01, Zigbee, and Lora, and the wireless signal receiving module 201 includes, but is not limited to, NRF24L01, Zigbee, and Lora. The data processing module 202 includes, but is not limited to, STM32, STC89C52, CC2530, and the like.
The first power supply module and the second power supply module can be lithium batteries, button batteries, dry batteries and the like, and the external display equipment can be mobile phones, ipads, computers and other display terminals.
As described above, the present invention can be preferably realized.
It is noted that the concept of the present invention is not only applied to solving the problem of well leakage in drilling, but also applied to the technical field of dynamic liquid level monitoring of wells such as oil wells and natural gas production wells.
All features disclosed in all embodiments in this specification, or all methods or process steps implicitly disclosed, may be combined and/or expanded, or substituted, in any way, except for mutually exclusive features and/or steps.
The foregoing is only a preferred embodiment of the present invention, and the present invention is not limited thereto in any way, and any simple modification, equivalent replacement and improvement made to the above embodiment within the spirit and principle of the present invention still fall within the protection scope of the present invention.

Claims (10)

1. A shaft annulus liquid level monitoring method is characterized by comprising the following steps:
step 1, setting the maximum value of the liquid level monitoring device during operationPressure PmaxSetting the minimum pressure P when the liquid level monitoring device is operatedmin
Step 2, mounting the liquid level monitoring device on a drill rod element, and arranging the signal receiving and processing device outside the well drilling shaft;
step 3, numbering the liquid level monitoring devices according to the well entering sequence i of the drill rod elements;
step 4, the environment pressure P of the liquid level monitoring deviceiIs Pmin≤Pi<PmaxThe liquid level monitoring device runs to transmit the dynamically changed environmental pressure P to the signal receiving and processing device in real timeiAnd a well entry order i;
step 5, when P isi≥PmaxWhen is, or Pi<PminWhen the pressure is not detected, the liquid level monitoring device stops transmitting the environmental pressure P to the signal receiving and processing deviceiAnd a well entry order i;
step 6, the signal receiving and processing device receives the environmental pressure P emitted by the liquid level monitoring deviceiAnd entering the well sequence i and storing, and simultaneously storing and receiving PiTime t of (c).
2. The wellbore annulus fluid level monitoring method of claim 1, wherein: also comprises the following steps of (1) preparing,
step 7, calculating the distance L between the drill rod elements with the well entering sequence i at the time t and the well drilling wellheadi(t) wherein LdpAnd n is the number of drill rod elements between the liquid level monitoring device with the well entering sequence i and the well drilling wellhead:
Li(t)=n·Ldp
3. the wellbore annulus fluid level monitoring method of claim 2, wherein: also comprises the following steps of (1) preparing,
step 8, based on PiCalculating the liquid level Di(t), where ρ is the well fluid density, g is the acceleration of gravity:
Di(t)=Pi/(ρ·g)。
4. a wellbore annulus fluid level monitoring method as claimed in claim 3 wherein: further comprising the step 9 of calculating the annular liquid level position L at the time ttop(t), wherein h is the distance from the liquid level monitoring device arranged on the drill rod element with the well entering sequence i to the top of the drill rod element with the liquid level monitoring device:
Ltop(t)=Li(t)+(h-Di(t))。
5. the wellbore annulus fluid level monitoring method of claim 1, wherein: further comprising step 10, calculating a pressure change value Δ p (t) at time t, wherein Δ t is a set acquisition interval:
ΔP(t)=Pi(t)-Pi(t+Δt)。
6. the wellbore annulus fluid level monitoring method of claim 5, wherein: further, step 11 includes calculating a liquid level lowering speed Δ l (t) at time t:
ΔL(t)=ΔP(t)/Δt·(ρ·g)-1
7. the wellbore annulus fluid level monitoring method of claim 6, wherein: also comprises the following steps of (1) preparing,
step 12, calculating the leak rate Δ Q, wherein r1To drill the borehole radius, r2The radius of the outer surface of the drill rod is as follows:
ΔQ=π·ΔL(t)·(r1 2-r2 2)。
8. a wellbore annulus fluid level monitoring method as claimed in any one of claims 1 to 7 wherein: in the step 2, 1-2 liquid level monitoring devices are arranged on the drill rod element;
when 2 liquid level monitoring devices are arranged on the drill rod element, the 2 liquid level monitoring devices are connected in parallel.
9. A wellbore annulus fluid level monitoring system using a wellbore annulus fluid level monitoring method according to any one of claims 1-7, comprising fluid level monitoring means provided in the drill string element and signal receiving and processing means provided outside the drilled wellbore;
the liquid level monitoring device consists of a pressure sensing module, a signal storage and processing module, a signal transmission module and a first power supply module;
the signal receiving and processing device is composed of a wireless signal receiving module, a data processing module and a second power supply module.
10. The wellbore annulus fluid level monitoring system of claim 9, wherein: in the liquid level monitoring device, the liquid level monitoring device is arranged,
the pressure sensing module monitors the environmental pressure in real time and transmits the monitored environmental pressure information to the signal storage and processing module, and the signal storage and processing module receives the environmental pressure information from the pressure sensing module and transmits well entry sequence i information and the environmental pressure information to the signal transmission module;
the first power supply module is used for supplying power to the pressure sensing module, the signal storage and processing module and the signal transmission module;
in the signal receiving and processing device, the wireless signal receiving module receives well entering sequence i information and environmental pressure information transmitted by the liquid level monitoring device and transmits the environmental pressure information and the well entering sequence i information to the data processing module;
the data processing module outputs result information to external display equipment for display according to a set algorithm;
the second power supply module is used for supplying power to the wireless signal receiving module and the data processing module.
CN202111409986.4A 2021-11-25 2021-11-25 Method and system for monitoring annular liquid level of well bore Active CN114109367B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111409986.4A CN114109367B (en) 2021-11-25 2021-11-25 Method and system for monitoring annular liquid level of well bore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111409986.4A CN114109367B (en) 2021-11-25 2021-11-25 Method and system for monitoring annular liquid level of well bore

Publications (2)

Publication Number Publication Date
CN114109367A true CN114109367A (en) 2022-03-01
CN114109367B CN114109367B (en) 2023-07-25

Family

ID=80372662

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111409986.4A Active CN114109367B (en) 2021-11-25 2021-11-25 Method and system for monitoring annular liquid level of well bore

Country Status (1)

Country Link
CN (1) CN114109367B (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1039464A (en) * 1987-08-03 1990-02-07 潘盖伊公司 Adopt the drilling rod and the sleeve pipe of many conduits tubing
US5715890A (en) * 1995-12-13 1998-02-10 Nolen; Kenneth B. Determing fluid levels in wells with flow induced pressure pulses
CA2400051A1 (en) * 2000-02-22 2001-08-30 Weatherford/Lamb, Inc. Artificial lift apparatus with automated monitoring characteristics
US20140124210A1 (en) * 2012-11-07 2014-05-08 Chevron U.S.A. Inc. Systems And Methods For Sensing A Fluid Level Within A Pipe
WO2015053784A1 (en) * 2013-10-11 2015-04-16 Halliburton Energy Services, Inc. Estimation of formation properties by analyzing response to pressure changes in a wellbore
CN105275454A (en) * 2015-10-14 2016-01-27 中国石油集团渤海钻探工程有限公司 Recyclable air pressure type wellbore annulus liquid level detection device and detection method thereof
US20170145763A1 (en) * 2014-07-15 2017-05-25 Endress + Hauser Messtechnik GmbH + Co. KG Drilling Rig and Method of Operating It
CN107605463A (en) * 2017-11-10 2018-01-19 中国石油集团川庆钻探工程有限公司 Shaft dynamic liquid level monitoring method for drilling plugging construction
CN112031685A (en) * 2019-06-04 2020-12-04 中石化石油工程技术服务有限公司 Liquid level stability control system and control method thereof
CN112065296A (en) * 2020-10-10 2020-12-11 中国石油天然气集团有限公司 Well completion operation method combining fine pressure control technology
CN112502695A (en) * 2021-02-05 2021-03-16 西安海联石化科技有限公司 Drilling liquid level and leakage monitoring method
CN213016323U (en) * 2021-02-05 2021-04-20 西安海联石化科技有限公司 Drilling liquid level and leakage monitoring device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1039464A (en) * 1987-08-03 1990-02-07 潘盖伊公司 Adopt the drilling rod and the sleeve pipe of many conduits tubing
US5715890A (en) * 1995-12-13 1998-02-10 Nolen; Kenneth B. Determing fluid levels in wells with flow induced pressure pulses
CA2400051A1 (en) * 2000-02-22 2001-08-30 Weatherford/Lamb, Inc. Artificial lift apparatus with automated monitoring characteristics
US20140124210A1 (en) * 2012-11-07 2014-05-08 Chevron U.S.A. Inc. Systems And Methods For Sensing A Fluid Level Within A Pipe
WO2015053784A1 (en) * 2013-10-11 2015-04-16 Halliburton Energy Services, Inc. Estimation of formation properties by analyzing response to pressure changes in a wellbore
US20170145763A1 (en) * 2014-07-15 2017-05-25 Endress + Hauser Messtechnik GmbH + Co. KG Drilling Rig and Method of Operating It
CN105275454A (en) * 2015-10-14 2016-01-27 中国石油集团渤海钻探工程有限公司 Recyclable air pressure type wellbore annulus liquid level detection device and detection method thereof
CN107605463A (en) * 2017-11-10 2018-01-19 中国石油集团川庆钻探工程有限公司 Shaft dynamic liquid level monitoring method for drilling plugging construction
CN112031685A (en) * 2019-06-04 2020-12-04 中石化石油工程技术服务有限公司 Liquid level stability control system and control method thereof
CN112065296A (en) * 2020-10-10 2020-12-11 中国石油天然气集团有限公司 Well completion operation method combining fine pressure control technology
CN112502695A (en) * 2021-02-05 2021-03-16 西安海联石化科技有限公司 Drilling liquid level and leakage monitoring method
CN213016323U (en) * 2021-02-05 2021-04-20 西安海联石化科技有限公司 Drilling liquid level and leakage monitoring device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
张乃禄;皇甫王欢;刘选朝;刘峰;翟磊;: "存储式油井动液面监测系统研制", 现代电子技术, no. 06 *
王晨宇等: "环空带压气井保护液液位测试方法研究", vol. 15, no. 04, pages 77 - 83 *
王浩儒等: "基于测压资料的井筒液面位置快速确定方法", vol. 24, no. 03, pages 76 - 78 *
黄天朋等: "高压气井液面测试仪在平桥南区块页岩气井中的应用", vol. 10, no. 01, pages 84 - 89 *

Also Published As

Publication number Publication date
CN114109367B (en) 2023-07-25

Similar Documents

Publication Publication Date Title
CN109386279B (en) Shaft gas invasion detection method and system
CN103061753A (en) Device for measuring downhole flow while drilling and monitoring early overflow
US20020149500A1 (en) Casing mounted sensors, actuators and generators
CN111364978B (en) Well kick and leakage monitoring device and monitoring method
CN102031962B (en) System and method for measuring downhole micro-flow of oil and gas well
CN203822381U (en) Drilling and embedding layered electromagnetic-acoustic monitoring device for underground water disasters
CN114109365B (en) Dynamic liquid level monitoring method for drilling well
CN104343437A (en) Hole drilling track measuring device and method based on laser gyroscope
CN204402465U (en) A kind of drilling fluid leakage judges instrument
CN117287188A (en) Drilling well leakage monitoring method based on downhole pressure data stream
CN105804724A (en) Petroleum drilling supersonic liquid level monitoring device
CN104727815A (en) Real-time well drilling formation correction method and device
US6540021B1 (en) Method for detecting inflow of fluid in a well while drilling and implementing device
US6513591B1 (en) Leak detection method
CN207701122U (en) It is programmable to automatically control downgoing communication device
CN106761804A (en) One kind is equipped on TBM advanced hydraulic pressure detection device and method in real time
CN103510949A (en) Directional drill hole profile measurement and detection system and method
CN212272167U (en) While-drilling well leakage prediction and leakage point measurement nipple
CN114109367B (en) Method and system for monitoring annular liquid level of well bore
CN217877897U (en) Geothermal well liquid level measuring structure
CN103556981B (en) A kind of drilling construction automatic monitoring system
CN202220566U (en) Wired communication screw
CN114109366B (en) Drilling annulus liquid level monitoring method and system
CN207485417U (en) Underground survey device
CN115596430A (en) Underground multistage gas cut monitoring device and gas cut identification method for oil and gas drilling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant