CN114070885B - Multi-type information transmission method suitable for optical fiber network - Google Patents

Multi-type information transmission method suitable for optical fiber network Download PDF

Info

Publication number
CN114070885B
CN114070885B CN202111329237.0A CN202111329237A CN114070885B CN 114070885 B CN114070885 B CN 114070885B CN 202111329237 A CN202111329237 A CN 202111329237A CN 114070885 B CN114070885 B CN 114070885B
Authority
CN
China
Prior art keywords
data
optical fiber
data frame
frame
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111329237.0A
Other languages
Chinese (zh)
Other versions
CN114070885A (en
Inventor
郭卓锋
姚军
田禹泽
常晓航
苏银科
顿新箎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Electromechanical Engineering Research Institute
Original Assignee
Beijing Electromechanical Engineering Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Electromechanical Engineering Research Institute filed Critical Beijing Electromechanical Engineering Research Institute
Priority to CN202111329237.0A priority Critical patent/CN114070885B/en
Publication of CN114070885A publication Critical patent/CN114070885A/en
Application granted granted Critical
Publication of CN114070885B publication Critical patent/CN114070885B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Abstract

The application discloses a multi-type information transmission method suitable for an optical fiber network, belongs to the technical field of data transmission, and solves the problem that the prior art cannot meet the requirements of instantaneity and reliability in the data transmission process based on the optical fiber network. A multi-type information transmission method adapted to an optical fiber network, comprising: connecting each type of test equipment to a data transmitting port and a data receiving port of a multi-type information transmission device respectively, and connecting the multi-type information transmission device to an optical fiber network; test sampling data of each type of test equipment are respectively collected and encoded to obtain corresponding data frames; and converting the data frame into an optical signal, and uploading the optical fiber signal to an optical fiber network.

Description

Multi-type information transmission method suitable for optical fiber network
Technical Field
The application relates to the technical field of data transmission, in particular to a multi-type information transmission method suitable for an optical fiber network.
Background
In the data transmission process based on the optical fiber network, data of each test device needs to be transmitted through the optical fiber network. Since the process involves multiple types of test equipment, such as analog, switching, RS422 serial data, and LVDS buses. If each test device is directly connected to the optical fiber network, the following problems exist:
(1) A corresponding number of fiber buses need to be designed;
(2) Ensuring that the optical fiber bus is matched with a hardware interface of each test device;
(3) The specific situation of each test device needs to be considered;
(4) In the existing mode, the test equipment starts to collect and transmit data after receiving an instruction of acquiring the data of the upper computer, and the process is easy to cause transmission delay;
in summary, the above process cannot meet the real-time requirements of communication and data acquisition among distributed nodes in the data transmission process based on the optical fiber network, and the problem of remote transmission of signals, and meanwhile, is difficult to adapt to the complex working time sequence problem required in the data transmission process.
Therefore, there is a need for a multi-type information transmission method capable of adapting to an optical fiber network, so as to meet the real-time and reliability requirements in the data transmission process based on the optical fiber network.
Disclosure of Invention
In view of the above analysis, the present application aims to provide a multi-type information transmission method adapted to an optical fiber network, so as to solve the problem that the prior art cannot meet the requirements of real-time performance and reliability in the data transmission process based on the optical fiber network.
The embodiment of the application discloses a multi-type information transmission method suitable for an optical fiber network, which comprises the following steps:
connecting each type of test equipment to a data transmitting port and a data receiving port of a multi-type information transmission device respectively, and connecting the multi-type information transmission device to an optical fiber network;
test sampling data of each type of test equipment are respectively collected and encoded to obtain corresponding data frames;
and converting the data frame into an optical signal, and uploading the optical fiber signal to an optical fiber network.
The embodiment also makes the following improvements based on the scheme:
further, the data frame includes the following fields in order: a frame header synchronization flag, a data source node ID, the number of times a data frame has been forwarded, a data length, a high start address, a low start address, transmission valid data, a check code, and an end of frame flag.
Further, the data source node ID is configured to uniquely characterize a node ID of the current information transmission device;
the data length is the total length of the transmission data starting address and the transmission effective data; the transmission data starting address consists of the high-order starting address and the low-order starting address;
the high-order initial address is used for representing a special storage address of the current information transmission device, and the special storage address is matched with the data source node ID;
the low-order initial address is used for representing the initial transmission address for storing each type of data sending port and data receiving port in the current information transmission device and transmitting the effective transmission data, and the initial transmission address is matched with the data sending port and the data receiving port;
the transmission valid data consists of one or more valid data.
Further, the data frame is encoded by performing the following operations:
generating a frame header synchronization mark indicating the start of a data frame and a frame end mark indicating the end of the data frame;
generating information matched with the current multi-type information transmission device in the data frame, wherein the information comprises a data source node ID, data frame forwarding times and a high-order initial address;
generating information of test sampling data matched with the current type of test equipment in the data frame, wherein the information comprises data length, low-order initial address, transmission effective data and check code;
and combining the generated information in turn according to the data frame format to obtain the encoded data frame.
Further, the method further comprises:
receiving an optical signal from an optical fiber network and analyzing to obtain a data frame; the optical signal is generated by other multi-type information transmission devices or an upper computer; in a data frame corresponding to an optical signal generated by an upper computer, a data source node ID is the node ID of the upper computer, a high-order initial address is a special storage address of an information transmission device to be controlled, a low-order initial address is an initial transmission address of a data transmission port of the information transmission device to be controlled, and effective data is transmitted as control data;
judging whether the data source node ID in the analyzed data frame is the data source node ID of the current multi-type information transmission device, and if so, recovering the data frame; if not, modifying the data frame forwarding times in the data frame, and then converting the data frame into corresponding optical signals and transmitting the optical signals to an optical fiber network.
Further, if the data source node ID in the parsed data frame is not the data source node ID of the current multi-type information transmission device, further performing:
judging whether the high-order initial address in the data frame is the high-order initial address of the current multi-type information transmission device, if not, discarding the data frame; if yes, determining a matched data receiving port according to the low-order initial address in the data frame, and sending the transmission effective data in the data frame to the matched data receiving port.
Further, the sending the transmission valid data in the data frame to the matched data receiving port includes:
and carrying out data reconstruction on the transmission effective data, and then sending the reconstructed transmission effective data to a matched data receiving port.
Further, each field in the data frame is in 16 bits;
if the optical signal is also in 16bit units, directly performing the inter-conversion between the data frame and the optical signal;
if the optical signal takes 32 bits as a unit, sequentially combining two adjacent fields in the data frame, and then performing the interconversion between the data frame and the optical signal; at this time, the number of valid data in the transmission valid data is an even number.
Further, the types of the data sending port and the data receiving port are analog quantity, switching value, RS422 serial communication, 1M1553B, 4M1553B, CAN bus or LVDS bus.
Further, the multi-type information transmission device used in the process of executing the method comprises: the device comprises a plurality of types of data transmission ports, data receiving ports, an encoding module, a decoding module and an optical fiber receiving and transmitting integrated module; wherein,
the input end of each type of data transmission port is connected with the signal output end of the corresponding type of test equipment, and the output end of each type of data transmission port is connected with the input end of the coding module;
the input end of each type of data receiving port is connected with the output end of the decoding module, and the output end of each type of data receiving port is connected with the signal input end of the corresponding type of test equipment;
the data input end of the optical fiber receiving and transmitting integrated module is connected with the output end of the encoding module, the data output end of the optical fiber receiving integrated module is connected with the input end of the decoding module, and the optical fiber interface is connected with an optical fiber network and used for exchanging optical signals with the optical fiber network.
Compared with the prior art, the application has at least one of the following beneficial effects:
according to the multi-type information transmission method suitable for the optical fiber network, the testing equipment of various types is respectively connected with the data sending port and the data receiving port of the multi-type information transmission device and the multi-type information transmission device is connected to the optical fiber network, so that the testing equipment of various types can be connected to the optical fiber network through the device, the difficulty of accessing the testing equipment into the optical fiber network and the complexity of the whole network structure are effectively reduced, and the connection reliability of the optical fiber network is effectively improved.
Meanwhile, in the process of transmitting the optical signals, the method of adopting and forwarding simultaneously is adopted, so that the instantaneity in the data transmission process can be effectively improved, and the data transmission requirement of an optical fiber network can be met;
in addition, the application also defines the format of the data frame, wherein, the high-order initial address is used for representing the special storage address of the current information transmission device, and the special storage address is matched with the data source node ID; and the low-order initial address is used for representing the initial transmission address for storing each type of data sending port and data receiving port in the current information transmission device to transmit the transmission effective data, and the initial transmission address is matched with the data sending port and the data receiving port. By setting the data frame in the mode, the forwarding judging process of the optical fiber receiving and transmitting integrated module can be simplified, meanwhile, the decoding module can be convenient to quickly determine whether the received data frame is sent to the current multi-type information transmission device, and if yes, the data receiving port for transmitting effective data can be quickly positioned according to the low-order initial address. Therefore, the optical signals sent by the multi-type information transmission device and the optical signals sent by the upper computer to the multi-type information transmission device can be reliably and rapidly transmitted in the optical fiber network.
In the application, the technical schemes can be mutually combined to realize more preferable combination schemes. Additional features and advantages of the application will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the application. The objectives and other advantages of the application may be realized and attained by the structure particularly pointed out in the written description and drawings.
Drawings
The drawings are only for purposes of illustrating particular embodiments and are not to be construed as limiting the application, like reference numerals being used to refer to like parts throughout the several views.
Fig. 1 is a flowchart of a method for transmitting multi-type information adapted to an optical fiber network according to an embodiment of the present application.
Fig. 2 is a schematic structural diagram of a multi-type information transmission device adapted to an optical fiber network according to an embodiment of the present application.
Detailed Description
The following detailed description of preferred embodiments of the application is made in connection with the accompanying drawings, which form a part hereof, and together with the description of the embodiments of the application, are used to explain the principles of the application and are not intended to limit the scope of the application.
The embodiment of the application discloses a multi-type information transmission method suitable for an optical fiber network, wherein a flow chart is shown in fig. 1, and the method comprises the following steps:
step S1: connecting each type of test equipment to a data transmitting port and a data receiving port of a multi-type information transmission device respectively, and connecting the multi-type information transmission device to an optical fiber network;
step S2: test sampling data of each type of test equipment are respectively collected and encoded to obtain corresponding data frames;
step S3: and converting the data frame into an optical signal, and uploading the optical fiber signal to an optical fiber network.
The above steps describe the process of uploading optical signals to the optical fiber network by the multi-type information transmission device. Meanwhile, each of the multi-type information transmission apparatuses may also function as a signal receiving apparatus, at which time the following process is performed:
receiving an optical signal from an optical fiber network and analyzing to obtain a data frame; the optical signal is generated by other multi-type information transmission devices or an upper computer; in a data frame corresponding to an optical signal generated by an upper computer, a data source node ID is the node ID of the upper computer, a high-order initial address is a special storage address of an information transmission device to be controlled, a low-order initial address is an initial transmission address of a data transmission port of the information transmission device to be controlled, and effective data is transmitted as control data;
judging whether the data source node ID in the parsed data frame is the data source node ID of the current multi-type information transmission device,
if yes, the data frame sent by the current multi-type information transmission device is received again, and at the moment, the data frame is recovered;
if not, the data frame is the data frame of other multi-type information transmission devices, and is irrelevant to the current multi-type information transmission device, at the moment, the data frame forwarding times in the data frame are modified, and then the data frame is converted into corresponding optical signals and transmitted to the optical fiber network.
Preferably, the judging process of the data frame forwarding times can be further increased: and if the modified data frame forwarding frequency exceeds the forwarding frequency upper limit, recovering the data frame, otherwise, converting the data frame into a corresponding optical signal and transmitting the corresponding optical signal to an optical fiber network. To avoid "rogue frames" being transmitted in the fiber optic network.
Preferably, if the data source node ID in the parsed data frame is not the data source node ID of the current multi-type information transmission device, further performing: judging whether the high-order initial address in the data frame is the high-order initial address of the current multi-type information transmission device, if not, discarding the data frame, wherein the data frame is irrelevant to the current multi-type information transmission device; if yes, the data frame is related to the current multi-type information transmission device, a matched data receiving port is determined according to a low-order initial address in the data frame, and transmission effective data in the data frame is sent to the matched data receiving port. In the implementation process, the data of the transmission effective data is firstly reconstructed, and then the reconstructed transmission effective data is sent to the matched data receiving port.
A schematic structural diagram of a multi-type information transmission device used in the present embodiment is shown in fig. 2, and the device includes: the device comprises a plurality of types of data transmission ports, data receiving ports, an encoding module, a decoding module and an optical fiber receiving and transmitting integrated module; the input end of each type of data transmission port is connected with the signal output end of the corresponding type of test equipment, and the output end of each type of data transmission port is connected with the input end of the coding module; the input end of each type of data receiving port is connected with the output end of the decoding module, and the output end of each type of data receiving port is connected with the signal input end of the corresponding type of test equipment; the data input end of the optical fiber receiving and transmitting integrated module is connected with the output end of the encoding module, the data output end of the optical fiber receiving integrated module is connected with the input end of the decoding module, and the optical fiber interface is connected with an optical fiber network and used for exchanging optical signals with the optical fiber network.
Preferably, the device further comprises a data acquisition module arranged between the data transmission port and the coding module; the data acquisition module is used for respectively setting sampling parameters of each type of data transmission port; and the device is also used for respectively collecting test sampling data of each type of test equipment according to the set sampling parameters and sending the test sampling data to the coding module.
Preferably, the encoding module is configured to encode test sampling data of each type of test equipment to obtain corresponding data frames, and send the encoded data frames to the optical fiber transceiver module, so that the optical fiber transceiver module converts the encoded data frames into corresponding optical signals, and transmits the converted optical signals to an optical fiber network.
Preferably, to illustrate the encoding process of the encoding module, so that the technician can better implement the present embodiment, this embodiment illustrates an alternative format of the data frame; and actually exemplifies with a unit of 16 bits as a field: specifically, the data frame includes the following fields in order:
(1) Frame head synchronous sign
The frame head synchronizing mark is used for determining the beginning of a data frame, and the upper 8 bits and the lower 8 bits are respectively a frame head synchronizing mark 1 and a frame head synchronizing mark 2. In practical implementation, the frame header synchronization flag is a fixed value, for example, the frame header synchronization flag is fixed to 0x55AA.
(2) Data Source node ID
The data source node ID is used to uniquely characterize the node ID of the current information transmission device. The information transmission device is used as a node in the optical fiber network, and unique node IDs which are unique identifiers of the nodes are allocated in advance by the optical fiber network.
(3) The number of times the data frame has been forwarded
The number of times a data frame has been forwarded is used to represent the number of nodes through which the current data frame passes. When the number of forwarding is greater than the upper limit (e.g., 160), the data frame is determined to be illegal "rogue frames" and no longer forwarded for reclamation.
(4) Data length
The data length is the total length of the transmission data starting address and the transmission effective data, and the data length is expressed as N, and then the data length comprises 16 bits higher than AddrH, 16 bits lower than AddrL and N-2 effective data.
(5) Transmitting data start address
The transmission data start address comprises the high-order start address (AddrH high) and the low-order start address (AddrL low); in particular, the method comprises the steps of,
the high-order initial address is used for representing a special storage address of the current information transmission device, and the special storage address is matched with the data source node ID; illustratively, in this embodiment, the content of the lower 8 bits of the AddrH upper 16 bits is the same as the content of the lower 8 bits of the data source node ID, as shown in table 2, and in this way, it is convenient for the user to quickly and intuitively determine the matching relationship between the data source node ID and the upper start address of each information transmission device, and meanwhile, the difficulty and complexity of programming implementation are reduced.
And the low-order initial address is used for representing the initial transmission address for storing each type of data sending port and data receiving port in the current information transmission device to transmit the transmission effective data, and the initial transmission address is matched with the data sending port and the data receiving port.
(6) Transmitting payload data
The transmission valid data consists of one or more valid data.
In the process of encoding the received test sample data by the information transmission device, the data source node ID in the data frame is the data source node ID of the current information transmission device, the high-order start address is the special storage address of the current information transmission device, the low-order start address is the start transmission address of the data transmission port corresponding to the current type of test sample data, and the transmission valid data in the data frame is obtained based on the test sample data.
In the data transmission process of the optical fiber network, the upper computer in the optical fiber network may also send control data to the data receiving ports of the information transmission devices, so that the upper computer in the optical fiber network may generate a data frame according to the format, except that in the data frame generated by the upper computer, the data source node ID is the node ID of the upper computer, the high-order initial address is a special storage address of the information transmission device to be controlled, the low-order initial address is an initial transmission address of the data sending port of the information transmission device to be controlled, and the transmission effective data is specific control data. Since the information transmission device and the host computer in the optical fiber network both generate the data frame according to the format, the information transmission device receives the optical signal from the optical fiber network, can analyze the optical signal into the data frame, and can determine whether the signal is useful for itself by analyzing the data frame.
The low-order start address corresponds to the data receiving port and the data transmitting port, and transmits valid data. The specific correspondence may be specifically determined according to the size of the memory allocated to each information transmission device, the number of data transmission ports and data reception ports involved in the information transmission device, and the like, and the embodiment is not specifically limited. Meanwhile, in order to facilitate the user to better understand the corresponding relationship between the low-order start address and the transmission valid data, table 1 also provides examples of low-order start address allocation and valid data stored in each address.
Meanwhile, it should be noted that, in the process of outputting data, the test sample data of each type of data sending port needs to be sorted according to the valid data form in table 1, so as to obtain valid data for transmission, and the low-order start address is used for determining the corresponding start transmission address. Illustratively, when encoding switching value data, the low-order start address is 0x0002, and at this time, the 1 st bit transmission valid data is 12-channel data acquired by switching value; accordingly, stored in the low-order start address +1 (i.e., low-order address 0x 0003) is a switching value acquisition counter for use as a time stamp for acquiring the data.
Table 1 low-order address allocation and valid data examples stored at each address
(7) Check code
The check code can be selected from CRC check code, and 5+N th 16 bits of the data frame is CRC check of the data frameThe calculation of the code and the CRC check code is carried out from the 04 th 16bit to the 4+N 16bit of the data frame, and the CRC check algorithm adopts the 16bit wide international standard CRC-CCITT data check method, namely, the generation polynomial is G (x) =x 16 +x 12 +x 5 +1 cyclic redundancy check method.
(8) An end of frame flag;
6+N th 16 bits of the data frame are end-of-frame flags, which are used to mark the end of the data frame, and are fixed to 0xFFFF.
Examples of data frames are shown in table 2.
Table 2 data frame example
Preferably, the encoding module encodes the test sample data of each type of test equipment to obtain a corresponding data frame by performing the following operations:
generating a frame header synchronization mark indicating the start of a data frame and a frame end mark indicating the end of the data frame;
generating information matched with the current multi-type information transmission device in the data frame, wherein the information comprises a data source node ID, data frame forwarding times and a high-order initial address; specifically, the number of data frame forwarding times of the first encoded data frame is 0;
generating information of test sampling data matched with the current type of test equipment in the data frame, wherein the information comprises data length, low-order initial address, transmission effective data and check code; specifically, a low-order initial address is determined according to a data sending port corresponding to test sampling data, then the test sampling data are sorted according to a format of table 1 to form transmission effective data, then the data length is determined, and finally a corresponding check code is generated according to the data length, the low-order initial address and the transmission effective data.
And combining the generated information in turn according to the data frame format to obtain the encoded data frame.
The optical fiber transceiver module in this embodiment not only converts and transmits the optical signal of the data frame output by the encoding module, but also receives the optical signal from the optical fiber network. Specifically, the optical fiber transceiver module is configured to receive an optical signal from an optical fiber network, analyze the optical signal to obtain a data frame, determine whether a data source node ID of the analyzed data frame is a data source node ID of a current multi-type information transmission device, and if yes, recover the data frame; if not, transmitting the data frame to the decoding module; and modifying the data frame forwarding times of the data frame, and then converting the data frame into corresponding optical signals and transmitting the optical signals to an optical fiber network.
In the process of interconversion of a data frame and an optical signal, when each field in the data frame takes 16 bits as a unit, if the optical signal also takes 16 bits as a unit, the interconversion of the data frame and the optical signal is directly executed; if the optical signal takes 32 bits as a unit, sequentially combining two adjacent fields in the data frame, and then performing the interconversion between the data frame and the optical signal; at this time, the number of valid data in the transmission valid data is an even number.
Preferably, in this embodiment, the decoding module is configured to decode a received data frame to obtain a high-order start address, a low-order start address, and transmission valid data in the data frame; if the high-order initial address is not the high-order initial address of the current multi-type information transmission device, discarding the data frame; if yes, determining a matched data receiving port according to the low-order initial address, and sending the transmission effective data in the data frame to the matched data receiving port.
Preferably, the apparatus further comprises a data reconstruction module disposed between the decoding module and the data receiving port; the data reconstruction module is configured to reconstruct the transmission valid data based on the reconstruction parameters of the data receiving port, and send the reconstructed transmission valid data to the matched data receiving port.
Preferably, the types of the data transmitting port and the data receiving port in this embodiment are analog, switching, RS422 serial communication, 1M1553B, 4M1553B, CAN bus or LVDS bus. It should be noted that, because the manners of collecting and receiving data by the ports of different types are different, the manners of collecting and receiving data by the data transmitting port and the data receiving port corresponding to each type are also different. In the practical implementation process, a technician can set the corresponding data sending port and the corresponding data receiving port according to the types. In fig. 1, the data transmitting port corresponding to the analog is an a/D conversion port, and the data receiving port corresponding to the analog is a D/a conversion port; the data transmitting port and the data receiving port corresponding to the switching value are level conversion ports; the data transmitting port and the data receiving port corresponding to the RS422 serial communication are both signal conditioning ports.
It should be noted that, if the types of the data transmitting port and the data receiving port are the same, the sampling parameter of the data transmitting port is matched with the reconstruction parameter of the data receiving port. Illustratively, the sampling parameter is sampling frequency at the data transmission port of analog or switching type; and a data receiving port of analog quantity or switching quantity type, and reconstructing parameters to reconstruct frequency. Here, the sampling frequency and the reconstruction frequency should be kept identical.
In addition, for the RS422 serial communication type, the sampling parameter of the data transmitting port and the reconstruction parameter of the data receiving port both include the baud rate, the parity bit;
for the 1M1553B and 4M1553B types, the sampling parameters of the data transmission port and the reconstruction parameters of the data receiving port both comprise an operation mode and BC\RT\MT.
Those skilled in the art will appreciate that all or part of the flow of the methods of the embodiments described above may be accomplished by way of a computer program to instruct associated hardware, where the program may be stored on a computer readable storage medium. Wherein the computer readable storage medium is a magnetic disk, an optical disk, a read-only memory or a random access memory, etc.
The present application is not limited to the above-mentioned embodiments, and any changes or substitutions that can be easily understood by those skilled in the art within the technical scope of the present application are intended to be included in the scope of the present application.

Claims (6)

1. A method of transmitting multiple types of information adapted to a fiber optic network, the method comprising:
connecting each type of test equipment to a data transmitting port and a data receiving port of a multi-type information transmission device respectively, and connecting the multi-type information transmission device to an optical fiber network;
test sampling data of each type of test equipment are respectively collected and encoded to obtain corresponding data frames;
converting the data frame into an optical signal, and uploading the optical fiber signal to an optical fiber network;
the data frame comprises the following fields in sequence: a frame head synchronous mark, a data source node ID, the number of times a data frame has been forwarded, a data length, a high-order start address, a low-order start address, transmission effective data, a check code and a frame end mark;
the data source node ID is used for uniquely representing the node ID of the current information transmission device;
the data length is the total length of the transmission data starting address and the transmission effective data; the transmission data starting address consists of the high-order starting address and the low-order starting address;
the high-order initial address is used for representing a special storage address of the current information transmission device, and the special storage address is matched with the data source node ID;
the low-order initial address is used for representing the initial transmission address for storing each type of data sending port and data receiving port in the current information transmission device and transmitting the effective transmission data, and the initial transmission address is matched with the data sending port and the data receiving port;
the transmission valid data consists of one or more valid data;
encoding the resulting data frame by:
generating a frame header synchronization mark indicating the start of a data frame and a frame end mark indicating the end of the data frame;
generating information matched with the current multi-type information transmission device in the data frame, wherein the information comprises a data source node ID, data frame forwarding times and a high-order initial address;
generating information of test sampling data matched with the current type of test equipment in the data frame, wherein the information comprises data length, low-order initial address, transmission effective data and check code;
sequentially combining the generated information according to the data frame format to obtain an encoded data frame;
the method further comprises the steps of:
receiving an optical signal from an optical fiber network and analyzing to obtain a data frame; the optical signal is generated by other multi-type information transmission devices or an upper computer; in a data frame corresponding to an optical signal generated by an upper computer, a data source node ID is the node ID of the upper computer, a high-order initial address is a special storage address of an information transmission device to be controlled, a low-order initial address is an initial transmission address of a data transmission port of the information transmission device to be controlled, and effective data is transmitted as control data;
judging whether the data source node ID in the analyzed data frame is the data source node ID of the current multi-type information transmission device, and if so, recovering the data frame; if not, modifying the data frame forwarding times in the data frame, and then converting the data frame into corresponding optical signals and transmitting the optical signals to an optical fiber network.
2. The method for transmitting multi-type information adapted to an optical fiber network according to claim 1, wherein if the data source node ID in the parsed data frame is not the data source node ID of the current multi-type information transmission device, further performing:
judging whether the high-order initial address in the data frame is the high-order initial address of the current multi-type information transmission device, if not, discarding the data frame; if yes, determining a matched data receiving port according to the low-order initial address in the data frame, and sending the transmission effective data in the data frame to the matched data receiving port.
3. The method for transmitting multi-type information adapted to an optical fiber network according to claim 2, wherein the step of transmitting transmission valid data in a data frame to a matched data receiving port comprises:
and carrying out data reconstruction on the transmission effective data, and then sending the reconstructed transmission effective data to a matched data receiving port.
4. The method for transmitting multi-type information adapted to an optical fiber network according to claim 1, wherein each field in the data frame is in units of 16 bits;
if the optical signal is also in 16bit units, directly performing the inter-conversion between the data frame and the optical signal;
if the optical signal takes 32 bits as a unit, sequentially combining two adjacent fields in the data frame, and then performing the interconversion between the data frame and the optical signal; at this time, the number of valid data in the transmission valid data is an even number.
5. The method for transmitting multi-type information adapted to an optical fiber network according to claim 1, wherein the types of the data transmitting port and the data receiving port are analog quantity, switching value, RS422 serial communication, 1M1553B, 4M1553B, CAN bus or LVDS bus.
6. The method for transmitting multi-type information adapted to an optical fiber network according to claim 1, wherein the multi-type information transmitting apparatus used in performing the method comprises: the device comprises a plurality of types of data transmission ports, data receiving ports, an encoding module, a decoding module and an optical fiber receiving and transmitting integrated module; wherein,
the input end of each type of data transmission port is connected with the signal output end of the corresponding type of test equipment, and the output end of each type of data transmission port is connected with the input end of the coding module;
the input end of each type of data receiving port is connected with the output end of the decoding module, and the output end of each type of data receiving port is connected with the signal input end of the corresponding type of test equipment;
the data input end of the optical fiber receiving and transmitting integrated module is connected with the output end of the encoding module, the data output end of the optical fiber receiving integrated module is connected with the input end of the decoding module, and the optical fiber interface is connected with an optical fiber network and used for exchanging optical signals with the optical fiber network.
CN202111329237.0A 2021-11-10 2021-11-10 Multi-type information transmission method suitable for optical fiber network Active CN114070885B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111329237.0A CN114070885B (en) 2021-11-10 2021-11-10 Multi-type information transmission method suitable for optical fiber network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111329237.0A CN114070885B (en) 2021-11-10 2021-11-10 Multi-type information transmission method suitable for optical fiber network

Publications (2)

Publication Number Publication Date
CN114070885A CN114070885A (en) 2022-02-18
CN114070885B true CN114070885B (en) 2023-11-28

Family

ID=80274830

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111329237.0A Active CN114070885B (en) 2021-11-10 2021-11-10 Multi-type information transmission method suitable for optical fiber network

Country Status (1)

Country Link
CN (1) CN114070885B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114567416A (en) * 2022-04-06 2022-05-31 西安羚控电子科技有限公司 TCP-based data transmission verification-free method and system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0687122A2 (en) * 1994-06-10 1995-12-13 Harris Corporation Integrated network switch supporting a wide range of functions
WO2000019672A1 (en) * 1998-09-28 2000-04-06 Raytheon Company Method and system for communicating information in a network
US6507923B1 (en) * 1999-04-19 2003-01-14 I-Tech Corporation Integrated multi-channel fiber channel analyzer
WO2006000243A1 (en) * 2004-06-28 2006-01-05 Telecom Italia S.P.A. A method and an apparatus for preventing traffic interruptions between client ports exchanging information through a communication network
CN1791057A (en) * 2004-12-15 2006-06-21 华为技术有限公司 Method for transmitting data service in OTN and its device
CN101520944A (en) * 2008-02-29 2009-09-02 天津天地伟业数码科技有限公司 Data transmission system and data transmission method for monitoring terminal
CN104427377A (en) * 2013-09-09 2015-03-18 杭州海康威视数字技术股份有限公司 Multi-type-service point-to-point optical transceiver
WO2016154358A1 (en) * 2015-03-26 2016-09-29 Amazon Technologies, Inc. Optical transmittal storage networks
CN112085007A (en) * 2020-10-09 2020-12-15 长春工程学院 Electrical equipment testing system and method based on intelligentization of visible light communication Internet of things

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0687122A2 (en) * 1994-06-10 1995-12-13 Harris Corporation Integrated network switch supporting a wide range of functions
WO2000019672A1 (en) * 1998-09-28 2000-04-06 Raytheon Company Method and system for communicating information in a network
US6507923B1 (en) * 1999-04-19 2003-01-14 I-Tech Corporation Integrated multi-channel fiber channel analyzer
WO2006000243A1 (en) * 2004-06-28 2006-01-05 Telecom Italia S.P.A. A method and an apparatus for preventing traffic interruptions between client ports exchanging information through a communication network
CN1791057A (en) * 2004-12-15 2006-06-21 华为技术有限公司 Method for transmitting data service in OTN and its device
CN101520944A (en) * 2008-02-29 2009-09-02 天津天地伟业数码科技有限公司 Data transmission system and data transmission method for monitoring terminal
CN104427377A (en) * 2013-09-09 2015-03-18 杭州海康威视数字技术股份有限公司 Multi-type-service point-to-point optical transceiver
WO2016154358A1 (en) * 2015-03-26 2016-09-29 Amazon Technologies, Inc. Optical transmittal storage networks
CN112085007A (en) * 2020-10-09 2020-12-15 长春工程学院 Electrical equipment testing system and method based on intelligentization of visible light communication Internet of things

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fast and broadband fiber dispersion measurement with dense wavelength sampling;M.G et al;《Opt.express》;全文 *
光纤网络资源的智能化管理方法研究;赵光;《中国优秀硕士学位论文全文数据库》;全文 *

Also Published As

Publication number Publication date
CN114070885A (en) 2022-02-18

Similar Documents

Publication Publication Date Title
CN114070885B (en) Multi-type information transmission method suitable for optical fiber network
CN101651683B (en) Method for generating analysis source code of signaling message
WO2009004631A1 (en) Data packet header compression
CN111064545B (en) Device and method for realizing private network ground inspection with SPW interface based on FPGA
KR20140084297A (en) Multi-protocol sereds phy apparatus
CN106598889A (en) SATA (Serial Advanced Technology Attachment) master controller based on FPGA (Field Programmable Gate Array) sandwich plate
CN114070405B (en) Optical fiber network system based on multi-type test equipment
CN114050890B (en) Multi-type information transmission device suitable for optical fiber network
CN114070404B (en) Optical fiber network working method based on multi-type test equipment
CN114040018A (en) Data receiving and transmitting method and device based on JSON data format
CN113676386A (en) FC-AE-1553 bus protocol message communication system
CN102420675B (en) Methods and devices for transmitting and receiving using state information of buffer of data message
CN113784237A (en) Method, device, network equipment and computer medium for reporting collected data
CN112118197A (en) Overhead monitoring method and device and computer readable storage medium
CN109521942A (en) A kind of CAN bus protocol analysis system and method based on high-resolution oscillscope tube
CN116318385A (en) Signal modulation method and system of coherent light module
CN102307162A (en) Gateway based on MVB (multifunction vehicle bus) network
CN111835494B (en) Multi-channel network data transmission system and method
CN110138505B (en) CRC calculation method and system for heterogeneous protocol conversion
CN111385524B (en) Method and system for realizing high-speed long-distance data transmission of analog high-definition camera
CN112486885A (en) Data frame generation method, storage medium and computer equipment
KR20070119015A (en) Method and testing arrangement for testing a device using 8b/10b encoding and an 8b/10b encoder and decoder
CN117539818B (en) Interface based on PHY model, chip integrating interface and chip simulation system
CN116996590B (en) Ethernet speed reducer of FPGA prototype verification platform and data transmission method
CN117082161A (en) Capture filtration system for FCoE

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant