CN114066876B - 一种基于分类结果及cva-sgd法的建筑垃圾变化检测方法 - Google Patents

一种基于分类结果及cva-sgd法的建筑垃圾变化检测方法 Download PDF

Info

Publication number
CN114066876B
CN114066876B CN202111413389.9A CN202111413389A CN114066876B CN 114066876 B CN114066876 B CN 114066876B CN 202111413389 A CN202111413389 A CN 202111413389A CN 114066876 B CN114066876 B CN 114066876B
Authority
CN
China
Prior art keywords
value
construction waste
image
change
samples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111413389.9A
Other languages
English (en)
Other versions
CN114066876A (zh
Inventor
陈强
曹蓓蕾
杜明义
刘扬
周磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Civil Engineering and Architecture
Original Assignee
Beijing University of Civil Engineering and Architecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Civil Engineering and Architecture filed Critical Beijing University of Civil Engineering and Architecture
Priority to CN202111413389.9A priority Critical patent/CN114066876B/zh
Publication of CN114066876A publication Critical patent/CN114066876A/zh
Application granted granted Critical
Publication of CN114066876B publication Critical patent/CN114066876B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20021Dividing image into blocks, subimages or windows
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30181Earth observation
    • G06T2207/30184Infrastructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/58Construction or demolition [C&D] waste

Abstract

本发明涉及建筑垃圾变化检测技术领域,具体地说是一种基于分类结果及CVA‑SGD法的建筑垃圾变化检测方法,通过变化矢量分析法(CVA)和光谱斜率差异法(SGD)相结合的建筑垃圾变化检测框架通过定量评价验证了该方法的有效性,三种阈值分割算法和变化检测精度评价方法,并可以根据实际情况,综合考虑运算效率、运算的复杂程度等选择适合的阈值分割算法和调节因子,本发明同现有技术相比,通过变化矢量分析避免重复分类的累计误差所带来的影响,通过光谱斜率差异检测出由于类间光谱方差存在而导致的伪变化,再使用不同的阈值分割算法提取建筑垃圾的变化区域,实现对建筑垃圾变化信息的掌握。

Description

一种基于分类结果及CVA-SGD法的建筑垃圾变化检测方法
技术领域
本发明涉及建筑垃圾变化检测技术领域,具体地说是一种基于分类结果及CVA-SGD法的建筑垃圾变化检测方法。
背景技术
建筑垃圾作为城市建设中不可避免产生的固体废弃物,其带来的一系列环境污染问题与社会问题严重制约了国家循环经济、可持续发展战略的推进,因此研究建筑垃圾的特征信息,并能够快速准确发现其空间分布位置非常重要。
传统的建筑垃圾监测与管理主要是通过实地调研与现场测量,已经无法高效精准地定位当今城市快速发展所带来的大量建筑堆积地点与范围,而当前遥感技术快速发展,高空间分辨率、高时间分辨率遥感数据获取能力极大提升,为建筑垃圾监测提供了新的手段。
因此,需要设计一种基于分类结果及CVA-SGD法的建筑垃圾变化检测方法,对同一地区不同时期的两个影像提供的信息进行分析、处理与比较,获取该时间段内的土地利用与覆盖变化信息,实现对建筑垃圾变化信息的掌握。
发明内容
本发明的目的是克服现有技术的不足,提供了一种基于分类结果及CVA-SGD法的建筑垃圾变化检测方法,对同一地区不同时期的两个影像提供的信息进行分析、处理与比较,获取该时间段内的土地利用与覆盖变化信息,实现对建筑垃圾变化信息的掌握。
为了达到上述目的,本发明提供一种基于分类结果及CVA-SGD法的建筑垃圾变化检测方法,包括以下步骤:
【数据及预处理】:
S1:使用ARCGIS软件获取随机点作为验证样本,根据地物类别占比确定样本数量;
S2:通过实地勘察采集建筑垃圾堆积位置的GPS数据点,结合Google Earth确定建筑垃圾堆积范围;
S3:根据研究区内建筑垃圾类型以及堆积时间的差异,将其作为参考结果用于精度评价分析;
【建筑垃圾特征提取】:
通过使用ReliefF_J-M组合算法来对建筑垃圾及其他精细地物的特征进行优选;
选取特征的最邻近样本,再进行特征权重的计算;
如果同类样本中,该特征差别较小,而不同类样本中,差别较大,则表示该特征的贡献程度较大,即权重值大;权重值较大的特征在地物分类中是需要进行首要考虑的特征信息;权重值的具体计算公式如式:
Figure BDA0003375114400000021
式中:h为迭代次数;r为最邻近样本个数,disc()为样本之间的距离,p()类别,R为随机样本,它在类别不同的样本中的最邻近样本用Ij(v)表示;其中K=2(1-e-P),
Figure BDA0003375114400000022
式中:Δi和τi(i=1和2)都表征准备参与分类的两个类别中,样本对应特征参数。其中Δi为均值,τi(i=1和2)指标准差,P的取值范围为[0,+∞)。J-M距离计算出来的结果数值在的0到2之间,若K=0,表示两种类别在该特征上相似性极高,利用对应特征分类会出现大量错分现象;若K值大于0且越接近2,意味利用对应特征能够较好的分离出相关对象;
【面向对象的建筑垃圾遥感识别与分类】:通过利用基于ReliefF_J-M算法模型优选出的特征,设立阈值,最终得到面向对象分类的特征规则集,确立了研究区内的分类体系:
建筑垃圾:分布在建设用地及裸土旁,在影像中多呈灰色或亮白色。边界不清晰,纹理较复杂;
建设用地:分布集中,包括建筑物和道路,在影像中呈建筑物屋顶真实颜色(红色或蓝色),呈长条状或块状;
植被:分布在道路、居民区旁。在影像上呈深绿色,有一定的纹理;
水域:分布在道路一侧,为人工沟渠,反射率较低,影像中呈暗黑色;
裸土:分布在植被或建设用地旁,在影像中呈暗褐色或土黄色;
【变化矢量分析法(CVA)】:同时从强度和方向两个角度来描述影像发生变化的情况;
设时相T1和时相T2的遥感影像分别为G1和G2,第i行第j列的像元灰度值分别为
Figure BDA0003375114400000031
Figure BDA0003375114400000032
其中n为选择的波段数,
Figure BDA0003375114400000033
为第k波段第i行第j列的T时相该像元的灰度值,对G1和G2作差值,得到变化矢量式:
Figure BDA0003375114400000041
ΔG通过下式得到,它描述了整幅影像发生变化的信息:
Figure BDA0003375114400000042
对||ΔG||设定一个适当的阈值,当大于该值时,认为发生了变化,否则判定未变化;
【光谱斜率差异法(SGD)】:比较卫星在同一区域拍摄所得的两个不同时期的影像中地物光谱斜率的差异大小,若两个时期影像中同一处地物在光谱形状上发生了变化,就可以依据此变化来判断该处地物也发生了变化;若一幅遥感影像一共拥有M个多光谱波段,则它们会形成M-1个多光谱波段,这时计算连接每两个相邻多光谱波段之间线段的斜率,可以通过下式计算得到多光谱段(M,M+1)的斜率:
Figure BDA0003375114400000043
式中:Δref为波段M+1与波段M的光谱亮度值之间的差,Δρ是M+1波段与M波段波长之间的差,ρ′M是对第M波段的波长进行归一化后得到的值,可以通过下式计算得到:
Figure BDA0003375114400000044
式中:ρM为第M波段的波长值,min(ρ)为影像中波长最小值,max(ρ)为最大值,单位均为μm;
最终两时相同一处地物的光谱斜率的变化强度可以通过下式计算得到:
Figure BDA0003375114400000051
式中:refi,M+1为T1时相第M+1波段的光谱亮度值,refi,M为第M波段的光谱亮度值,refj,M+1为T2时相第M+1波段的光谱亮度值,refi,M分别为第M波段的光谱亮度值,ρ′M+1和ρ′M为对应波段的归一化波长,DifK为两斜率向量的变化强度,该值越大,表示区域内地表覆盖越可能发生变化,反之可能性较低,最后需要通过设定一个阈值,来判断是否发生变化;
【阈值分割算法】:合适的阈值分割算法能够将变化检测的错误率降到最低;
【精度评价指标】:选择遥感影像变化检测中常用的几种精度评价指标对建筑垃圾变化检测结果进行精度评价:
判定为建筑垃圾,真实为建筑垃圾:TW
判定为建筑垃圾,真实为非建筑垃圾:FW
判定为非建筑垃圾,真实为建筑垃圾:FC
判定为非建筑垃圾,真实为非建筑垃圾:TC
具体计算公式及说明如下:
(1)精确率:
Figure BDA0003375114400000052
(2)误检率:
Figure BDA0003375114400000053
(3)漏检率:
Figure BDA0003375114400000054
(4)Kappa系数:
Figure BDA0003375114400000055
式中:P0表示正确分类的建筑垃圾样本数量之和占总建筑垃圾样本数量的百分比,Pe表示建筑垃圾类和非建筑垃圾类真实样本的个数与预测的建筑垃圾和非建筑垃圾样本个数的乘积之和占影像中选取的所有样本个数的平方的百分比;
以上4个指标的大小均在0到1之间,误检率和漏检率的值接近于0,则表示本研究中建筑垃圾的检测效果越好;而当精确率和Kappa系数的值越接近1,就表示建筑垃圾的检测结果越可靠。
分类方式为:
在eCognition9.0软件中利用NDVI、Ratio R、Mean R等3维特征对植被分类;
利用GLCM Entropy(all dir.)、Ratio R、Ratio NIR、GLCM Dissimilarity(4)、GLCM Entropy(1)、GLCM Homogeneity(2)、等6维特征对建设用地分类;
利用GLCM Correlation(4)、GLCM Homogeneity(2)、GLCM Entropy(1)、GLCMContrast(4)、Maindirection等5维特征对裸土分类;
利用Mean B、Mean G、Main direction、GLCM Contrast(4)、GLCM Dissimilarity(4)等4维特征对水体分类;
利用GLCM Correlation(4)、GLCM Homogeneity(4)、Ratio NIR、Main direction、GLCM Entropy(all dir.)等6维特征对建筑垃圾分类。
阈值分割算法包括:
【全局阈值分割算法】:全局阈值算法只运用唯一一个阈值对得到的整幅变化影像进行分割,主要考虑图像自身的灰度值:
Figure BDA0003375114400000061
式中:T是一个初始估计值,它是针对全局阈值进行选择得出来的,m1表示所有像素平均灰度值,该值的灰度值需要大于T,而m2则相反,要得到最终合适的全局阈值,必须要对m1和m2进行重复性运算,直到计算出的T的差异比预先设置的ΔT小,计算才可以停止;
【自适应调节阈值分割算法】:通过该算法来确立某一像素在其位置上的局部二值化阈值,主要依据的是图像中不同区域像素值分布情况;
若某一图像中只存在目标和背景两种对象,则该图像的灰度直方图可以看作是将两种对象组合起来的概率密度函数,该函数的像素灰度值呈混合分布,一般会认为混合分布的两个分量p(i|0)和p(i|1)都是正态分布,则它们的均值、标准差和先验概率分别为μ0、μ1
Figure BDA0003375114400000071
P0、P1
Figure BDA0003375114400000072
公式为:
Figure BDA0003375114400000073
当满足:
Figure BDA0003375114400000074
时,可以认为目标和背景的灰度分布存在着较好的分离性,即利用该阈值可以做到将目标和背景完全分离,若不能满足上式,则还需要对分割出的目标区域再做分割,直到获得正确的分割结果为止才停止分割;
【EM算法】:利用最大似然估计的思想进行计算,它的优势在于对数据的完整性不做要求,不需要外来数据进行辅助,也不需要借鉴任何先验知识。在利用该算法进行变化检测时仅仅依靠观测数据就可以得到参数的估计值。
本发明同现有技术相比,通过变化矢量分析避免重复分类的累计误差所带来的影响,通过光谱斜率差异检测出由于类间光谱方差存在而导致的伪变化,再使用不同的阈值分割算法提取建筑垃圾的变化区域,实现对建筑垃圾变化信息的掌握。
附图说明
图1为本发明的研究区域卫星图。
图2为本发明的建筑垃圾表征影像图。
图3为本发明的建设用地表征影像图。
图4为本发明的植被表征影像图。
图5为本发明的水域表征影像图。
图6为本发明的裸土表征影像图。
图7为本发明目视解译后2018年参考变化检测融合影像图。
图8为本发明目视解译后2019年参考变化检测融合影像图。
图9为本发明目视解译后参考变化检测结果影像图。
图10为本发明的通过CVA获得光谱强度影像图。
图11为本发明的2019年融合影像图。
图12为本发明加权融合后的变化融合影像图。
图13为本发明融合后的全局阈值法算法检测结果影像图。
图14为本发明融合后的自适应调节阈值算法检测结果影像图。
图15为本发明融合后的EM算法因子为0.2的检测结果影像图。
图16为本发明融合后的EM算法因子为0.8的检测结果影像图。
图17为本发明建筑垃圾变化检测精度评价表示意图。
具体实施方式
现结合附图对本发明做进一步描述。
参见图1-5,本发明提供一种基于分类结果及CVA-SGD法的建筑垃圾变化检测方法,包括以下步骤:
【数据及预处理】:
S1:使用ARCGIS软件获取随机点作为验证样本,根据地物类别占比确定样本数量;
S2:通过实地勘察采集建筑垃圾堆积位置的GPS数据点,结合Google Earth确定建筑垃圾堆积范围;
S3:根据研究区内建筑垃圾类型以及堆积时间的差异,将其作为参考结果用于精度评价分析;
【建筑垃圾特征提取】:
通过使用ReliefF_J-M组合算法来对建筑垃圾及其他精细地物的特征进行优选;
选取特征的最邻近样本,再进行特征权重的计算;
如果同类样本中,该特征差别较小,而不同类样本中,差别较大,则表示该特征的贡献程度较大,即权重值大;权重值较大的特征在地物分类中是需要进行首要考虑的特征信息;权重值的具体计算公式如式:
Figure BDA0003375114400000091
式中:h为迭代次数;r为最邻近样本个数,disc()为样本之间的距离,p()类别,R为随机样本,它在类别不同的样本中的最邻近样本用Ij(v)表示;其中K=2(1-e-P),
Figure BDA0003375114400000092
式中:Δi和τi(i=1和2)都表征准备参与分类的两个类别中,样本对应特征参数。其中Δi为均值,τi(i=1和2)指标准差,P的取值范围为[0,+∞)。J-M距离计算出来的结果数值在的0到2之间,若K=0,表示两种类别在该特征上相似性极高,利用对应特征分类会出现大量错分现象;若K值大于0且越接近2,意味利用对应特征能够较好的分离出相关对象;
【面向对象的建筑垃圾遥感识别与分类】:通过利用基于ReliefF_J-M算法模型优选出的特征,设立阈值,最终得到面向对象分类的特征规则集,确立了研究区内的分类体系:
建筑垃圾:分布在建设用地及裸土旁,在影像中多呈灰色或亮白色。边界不清晰,纹理较复杂;
建设用地:分布集中,包括建筑物和道路,在影像中呈建筑物屋顶真实颜色(红色或蓝色),呈长条状或块状;
植被:分布在道路、居民区旁。在影像上呈深绿色,有一定的纹理;
水域:分布在道路一侧,为人工沟渠,反射率较低,影像中呈暗黑色;
裸土:分布在植被或建设用地旁,在影像中呈暗褐色或土黄色;
【变化矢量分析法(CVA)】:同时从强度和方向两个角度来描述影像发生变化的情况;
设时相T1和时相T2的遥感影像分别为G1和G2,第i行第j列的像元灰度值分别为
Figure BDA0003375114400000101
Figure BDA0003375114400000102
其中n为选择的波段数,
Figure BDA0003375114400000103
为第k波段第i行第j列的T时相该像元的灰度值,对G1和G2作差值,得到变化矢量式:
Figure BDA0003375114400000111
ΔG通过下式得到,它描述了整幅影像发生变化的信息:
Figure BDA0003375114400000112
对||ΔG||设定一个适当的阈值,当大于该值时,认为发生了变化,否则判定未变化;
【光谱斜率差异法(SGD)】:比较卫星在同一区域拍摄所得的两个不同时期的影像中地物光谱斜率的差异大小,若两个时期影像中同一处地物在光谱形状上发生了变化,就可以依据此变化来判断该处地物也发生了变化;若一幅遥感影像一共拥有M个多光谱波段,则它们会形成M-1个多光谱波段,这时计算连接每两个相邻多光谱波段之间线段的斜率,可以通过下式计算得到多光谱段(M,M+1)的斜率:
Figure BDA0003375114400000113
式中:Δref为波段M+1与波段M的光谱亮度值之间的差,Δρ是M+1波段与M波段波长之间的差,ρ′M是对第M波段的波长进行归一化后得到的值,可以通过下式计算得到:
Figure BDA0003375114400000114
式中:ρM为第M波段的波长值,min(ρ)为影像中波长最小值,max(ρ)为最大值,单位均为μm;
最终两时相同一处地物的光谱斜率的变化强度可以通过下式计算得到:
Figure BDA0003375114400000121
式中:refi,M+1为T1时相第M+1波段的光谱亮度值,refi,M为第M波段的光谱亮度值,refj,M+1为T2时相第M+1波段的光谱亮度值,refi,M分别为第M波段的光谱亮度值,ρ′M+1和ρ′M为对应波段的归一化波长,DifK为两斜率向量的变化强度,该值越大,表示区域内地表覆盖越可能发生变化,反之可能性较低,最后需要通过设定一个阈值,来判断是否发生变化;
【阈值分割算法】:合适的阈值分割算法能够将变化检测的错误率降到最低;
【精度评价指标】:选择遥感影像变化检测中常用的几种精度评价指标对建筑垃圾变化检测结果进行精度评价:
判定为建筑垃圾,真实为建筑垃圾:TW
判定为建筑垃圾,真实为非建筑垃圾:FW
判定为非建筑垃圾,真实为建筑垃圾:FC
判定为非建筑垃圾,真实为非建筑垃圾:TC
具体计算公式及说明如下:
精确率:
Figure BDA0003375114400000122
误检率:
Figure BDA0003375114400000123
漏检率:
Figure BDA0003375114400000124
Kappa系数:
Figure BDA0003375114400000125
式中:P0表示正确分类的建筑垃圾样本数量之和占总建筑垃圾样本数量的百分比,Pe表示建筑垃圾类和非建筑垃圾类真实样本的个数与预测的建筑垃圾和非建筑垃圾样本个数的乘积之和占影像中选取的所有样本个数的平方的百分比;
以上4个指标的大小均在0到1之间,误检率和漏检率的值接近于0,则表示本研究中建筑垃圾的检测效果越好;而当精确率和Kappa系数的值越接近1,就表示建筑垃圾的检测结果越可靠。
分类方式为:
在eCognition9.0软件中利用NDVI、Ratio R、Mean R等3维特征对植被分类;
利用GLCM Entropy(all dir.)、Ratio R、Ratio NIR、GLCM Dissimilarity(4)、GLCM Entropy(1)、GLCM Homogeneity(2)、等6维特征对建设用地分类;
利用GLCM Correlation(4)、GLCM Homogeneity(2)、GLCM Entropy(1)、GLCMContrast(4)、Main direction等5维特征对裸土分类;
利用Mean B、Mean G、Main direction、GLCM Contrast(4)、GLCM Dissimilarity(4)等4维特征对水体分类;
利用GLCM Correlation(4)、GLCM Homogeneity(4)、Ratio NIR、Main direction、GLCM Entropy(all dir.)等6维特征对建筑垃圾分类。
阈值分割算法包括:
【全局阈值分割算法】:全局阈值算法只运用唯一一个阈值对得到的整幅变化影像进行分割,主要考虑图像自身的灰度值:
Figure BDA0003375114400000131
式中:T是一个初始估计值,它是针对全局阈值进行选择得出来的,m1表示所有像素平均灰度值,该值的灰度值需要大于T,而m2则相反,要得到最终合适的全局阈值,必须要对m1和m2进行重复性运算,直到计算出的T的差异比预先设置的ΔT小,计算才可以停止;
【自适应调节阈值分割算法】:通过该算法来确立某一像素在其位置上的局部二值化阈值,主要依据的是图像中不同区域像素值分布情况;
若某一图像中只存在目标和背景两种对象,则该图像的灰度直方图可以看作是将两种对象组合起来的概率密度函数,该函数的像素灰度值呈混合分布,一般会认为混合分布的两个分量p(i|0)和p(i|1)都是正态分布,则它们的均值、标准差和先验概率分别为μ0、μ1
Figure BDA0003375114400000141
P0、P1
Figure BDA0003375114400000142
公式为:
Figure BDA0003375114400000143
当满足:
Figure BDA0003375114400000144
时,可以认为目标和背景的灰度分布存在着较好的分离性,即利用该阈值可以做到将目标和背景完全分离,若不能满足上式,则还需要对分割出的目标区域再做分割,直到获得正确的分割结果为止才停止分割;
【EM算法】:利用最大似然估计的思想进行计算,它的优势在于对数据的完整性不做要求,不需要外来数据进行辅助,也不需要借鉴任何先验知识。在利用该算法进行变化检测时仅仅依靠观测数据就可以得到参数的估计值。
实施例1:
下面结合附图和实施例对本发明作进一步的详细说明,此处所描述的具体实施例仅用于解释本发明,而非对本发明的限定。
参见图1,研究区位于北京市大兴区一处典型建筑垃圾堆存区域,该区域覆盖的主要地物类型有建筑物、道路、植被、裸土、水域和建筑垃圾,建筑垃圾的类型包括裸露型和覆盖防尘绿网型,经实地观察及调研发现,该处建筑垃圾多为拆除垃圾,主要组成成分为渣土、水泥和砖石等其他废弃物。
使用JL1-01A影像数据作为主要研究数据,使用GF-1WFV多光谱数据作为补充数据,为了验证JL1-01A数据改善前后对建筑垃圾遥感识别监测的精度,本文使用ARCGIS软件获取随机点作为验证样本,根据地物类别占比确定样本数量,研究区共有355个验证样本点,88个建筑垃圾验证样本,267个其他类型的验证样本,通过实地勘察采集建筑垃圾堆积位置的GPS数据点,结合Google Earth确定建筑垃圾堆积范围,根据研究区内建筑垃圾类型以及堆积时间的差异,将其作为参考结果用于精度评价分析。
通过使用ReliefF_J-M组合算法来对建筑垃圾及其他精细地物的特征进行优选;
选取特征的最邻近样本,再进行特征权重的计算;
如果同类样本中,该特征差别较小,而不同类样本中,差别较大,则表示该特征的贡献程度较大,即权重值大;权重值较大的特征在地物分类中是需要进行首要考虑的特征信息;权重值的具体计算公式如式:
Figure BDA0003375114400000151
式中:h为迭代次数;r为最邻近样本个数,disc()为样本之间的距离,p()类别,R为随机样本,它在类别不同的样本中的最邻近样本用Ij(v)表示;其中K=2(1-e-P),
Figure BDA0003375114400000161
式中:Δi和τi(i=1和2)都表征准备参与分类的两个类别中,样本对应特征参数。其中Δi为均值,τi(i=1和2)指标准差,P的取值范围为[0,+∞)。J-M距离计算出来的结果数值在的0到2之间,若K=0,表示两种类别在该特征上相似性极高,利用对应特征分类会出现大量错分现象;若K值大于0且越接近2,意味利用对应特征能够较好的分离出相关对象;
【面向对象的建筑垃圾遥感识别与分类】:通过利用基于ReliefF_J-M算法模型优选出的特征,设立阈值,最终得到面向对象分类的特征规则集,确立了研究区内的分类体系,参见图2-图6:
建筑垃圾:分布在建设用地及裸土旁,在影像中多呈灰色或亮白色。边界不清晰,纹理较复杂;
建设用地:分布集中,包括建筑物和道路,在影像中呈建筑物屋顶真实颜色(红色或蓝色),呈长条状或块状;
植被:分布在道路、居民区旁。在影像上呈深绿色,有一定的纹理;
水域:分布在道路一侧,为人工沟渠,反射率较低,影像中呈暗黑色;
裸土:分布在植被或建设用地旁,在影像中呈暗褐色或土黄色;
通过变化矢量分析法(CVA)可以同时从强度和方向两个角度来描述影像发生变化的情况:设时相T1和时相T2的遥感影像分别为G1和G2,第i行第j列的像元灰度值分别为
Figure BDA0003375114400000162
Figure BDA0003375114400000163
其中n为选择的波段数,
Figure BDA0003375114400000171
为第k波段第i行第j列的T时相该像元的灰度值,对G1和G2作差值,得到变化矢量式:
Figure BDA0003375114400000172
ΔG通过下式得到,它描述了整幅影像发生变化的信息:
Figure BDA0003375114400000173
对||ΔG||设定一个适当的阈值,当大于该值时,认为发生了变化,否则判定未变化;
通过光谱斜率差异(SGD)就是比较卫星在同一区域拍摄所得的两个不同时期的影像中地物光谱斜率的差异大小。若两个时期影像中同一处地物在光谱形状上发生了变化,就可以依据此变化来判断该处地物也发生了变化。SGD法打破了很多变化检测算法仅仅通过光谱空间的变化来获取光谱值变化强度大小的传统,可以准确地捕捉地物发生的真实变化,消除只依据光谱值检测带来的伪变化。光谱斜率描述了相邻两波段发生变化的趋势。
现有同一地区两个时相的遥感影像,对它们利用SGD法进行基于遥感影像的建筑垃圾变化检测。若一幅遥感影像一共拥有M个多光谱波段,则它们会形成M-1个多光谱波段,这时计算连接每两个相邻多光谱波段之间线段的斜率,可以通过式(6)计算得到多光谱段(M,M+1)的斜率:
Figure BDA0003375114400000174
式中:Δref为波段M+1与波段M的光谱亮度值之间的差;Δρ是M+1波段与M波段波长之间的差;ρ′M是对第M波段的波长进行归一化后得到的值,可以通过式(7)计算得到:
Figure BDA0003375114400000181
式中:ρM为第M波段的波长值;min(ρ)为影像中波长最小值;max(ρ)为最大值。单位均为μm。
最终两时相同一处地物的光谱斜率的变化强度可以通过式(8)计算得到:
Figure BDA0003375114400000182
式中:refi,M+1为T1时相第M+1波段的光谱亮度值,refi,M为第M波段的光谱亮度值;refj,M+1为T2时相第M+1波段的光谱亮度值,refi,M分别为第M波段的光谱亮度值。ρ′M+1和ρ′M为对应波段的归一化波长;DifK为两斜率向量的变化强度。该值越大,表示区域内地表覆盖越可能发生变化;反之可能性较低。最后需要通过设定一个阈值,来判断是否发生变化。
通过阈值分割算法将变化检测的错误率降到最低:
【全局阈值分割算法】:全局阈值算法只运用唯一一个阈值对得到的整幅变化影像进行分割,主要考虑图像自身的灰度值:
Figure BDA0003375114400000183
式中:T是一个初始估计值,它是针对全局阈值进行选择得出来的,m1表示所有像素平均灰度值,该值的灰度值需要大于T,而m2则相反,要得到最终合适的全局阈值,必须要对m1和m2进行重复性运算,直到计算出的T的差异比预先设置的ΔT小,计算才可以停止;
【自适应调节阈值分割算法】:通过该算法来确立某一像素在其位置上的局部二值化阈值,主要依据的是图像中不同区域像素值分布情况;
若某一图像中只存在目标和背景两种对象,则该图像的灰度直方图可以看作是将两种对象组合起来的概率密度函数,该函数的像素灰度值呈混合分布,一般会认为混合分布的两个分量p(i|0)和p(i|1)都是正态分布,则它们的均值、标准差和先验概率分别为μ0、μ1
Figure BDA0003375114400000191
P0、P1
Figure BDA0003375114400000192
公式为:
Figure BDA0003375114400000193
当满足:
Figure BDA0003375114400000194
时,可以认为目标和背景的灰度分布存在着较好的分离性,即利用该阈值可以做到将目标和背景完全分离,若不能满足上式,则还需要对分割出的目标区域再做分割,直到获得正确的分割结果为止才停止分割;
【EM算法】:利用最大似然估计的思想进行计算,它的优势在于对数据的完整性不做要求,不需要外来数据进行辅助,也不需要借鉴任何先验知识。在利用该算法进行变化检测时仅仅依靠观测数据就可以得到参数的估计值。
选择遥感影像变化检测中常用的几种精度评价指标对建筑垃圾变化检测结果进行精度评价:
判定为建筑垃圾,真实为建筑垃圾:TW
判定为建筑垃圾,真实为非建筑垃圾:FW
判定为非建筑垃圾,真实为建筑垃圾:FC
判定为非建筑垃圾,真实为非建筑垃圾:TC
具体计算公式及说明如下:
(5)精确率:
Figure BDA0003375114400000201
(6)误检率:
Figure BDA0003375114400000202
(7)漏检率:
Figure BDA0003375114400000203
(8)Kappa系数:
Figure BDA0003375114400000204
式中:P0表示正确分类的建筑垃圾样本数量之和占总建筑垃圾样本数量的百分比,Pe表示建筑垃圾类和非建筑垃圾类真实样本的个数与预测的建筑垃圾和非建筑垃圾样本个数的乘积之和占影像中选取的所有样本个数的平方的百分比;
以上4个指标的大小均在0到1之间,误检率和漏检率的值接近于0,则表示本研究中建筑垃圾的检测效果越好;而当精确率和Kappa系数的值越接近1,就表示建筑垃圾的检测结果越可靠。
不同阈值分割算法应用的研究区建筑垃圾变化检测影像为北京市大兴区一处建筑垃圾典型堆积区域2018年和2019年的JL1-O1A融合影像,影像大小为1915×2101,对研究区域建筑垃圾的变化情况进行目视解译,根据此结果制作参考变化检测影像图,如图7-图9所示;
在实验中对两期JL1-01A融合影像通过CVA获得光谱强度影像,通过SGD获得光谱差异影像,对影像的灰度值进行标准化处理,使两幅影像灰度值在0~255之间。以上实验过程均在matlab2018a软件平台中实现完成。得到两种差异信息之后,分别赋予两幅差异影像不同的权重因子,对他们进行加权融合,最终得到变化融合影像,如图10-图12所示;
将融合后的差异影像运用上一节提到的不同阈值分割算法,进行阈值分割,得到了研究区域初步的变化检测结果,该结果表现了研究区域所有类型地物的变化情况。由于本文最关注建筑垃圾的变化情况,只针对建筑垃圾的变化区域进行分析。因此对融合后的差异影像叠加分类结果,去除其他类型地物变化信息的干扰,获取到了最终的变化和未变化区域。结果如图13-16所示,图中黑色部分表示研究区域内建筑垃圾未发生变化区域以及其他地物覆盖的区域,白色部分表示建筑垃圾发生变化的区域,不同阈值分割算法建筑垃圾变化检测结果。
本发明中建筑垃圾变化检测结果的精度评价是以参考变化检测影像为依据,采用精确率、误检率、漏检率和Kappa系数为评价指标进行衡量,以Python3.7为平台实现完成,具体精度评价的结果如图17所示。
由变化检测结果和精度评价结果可知,本发明所采用的几种阈值分割算法均能有效检测出JL1-01A遥感影像中建筑垃圾的变化情况。其中,采用EM算法进行建筑垃圾的变化检测得到的精度相对来说更高,且当调节因子为0.8时的效果要好于调节因子为0.2的效果,由此可见,增大调节因子对改善建筑垃圾的变化检测结果有积极意义。从其他评价指标来看,自适应调节阈值法得到的误检率最低,为12.45%;而全局阈值法得到的漏检率最低,为11.56%。
综上所述,在进行JL1-01A遥感影像变化检测研究时,全局阈值法、自适应调节阈值法以及EM算法均能有效检测出建筑垃圾的变化情况。在实际应用中,可以综合考虑运算效率、运算的复杂程度等选择适合的阈值分割算法和调节因子,以获取建筑垃圾变化检测的最佳精度。
以上所述仅是本发明的优选实施方式,只是用于帮助理解本申请的方法及其核心思想,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
本发明从整体上解决了传统建筑垃圾监测与管理主要是通过实地调研与现场测量,已经无法高效精准地定位当今城市快速发展所带来的大量建筑堆积地点与范围的问题,通过变化矢量分析法(CVA)和光谱斜率差异法(SGD)相结合的建筑垃圾变化检测框架通过定量评价验证了该方法的有效性,三种阈值分割算法和变化检测精度评价方法,并可以根据实际情况,综合考虑运算效率、运算的复杂程度等选择适合的阈值分割算法和调节因子,以获取建筑垃圾变化检测的最佳精度,实现对建筑垃圾变化信息的掌握,为城市高速发展中的垃圾监测提供了保障。

Claims (3)

1.一种基于分类结果及CVA-SGD法的建筑垃圾变化检测方法,其特征在于:包括以下步骤:
数据及预处理:
S1:使用ARCGIS软件获取随机点作为验证样本,根据地物类别占比确定样本数量;
S2:通过实地勘察采集建筑垃圾堆积位置的GPS数据点,结合Google Earth确定建筑垃圾堆积范围;
S3:根据研究区内建筑垃圾类型以及堆积时间的差异,将其作为参考结果用于精度评价分析;
建筑垃圾特征提取:
通过使用ReliefF_J-M组合算法来对建筑垃圾及其他精细地物的特征进行优选;
选取特征的最邻近样本,再进行特征权重的计算;
如果同类样本中,该特征差别较小,而不同类样本中,差别较大,则表示该特征的贡献程度较大,即权重值大;权重值较大的特征在地物分类中是需要进行首要考虑的特征信息;权重值的具体计算公式如式:
Figure FDA0003668631180000011
式中:h为迭代次数;r为最邻近样本个数,disc为样本之间的距离,p为类别,R为随机样本,它在类别不同的样本中的最邻近样本用Ij(v)表示;其中K=2(1-e-P),
Figure FDA0003668631180000012
式中:Δi和τi,i=1和2都表征准备参与分类的两个类别中,样本对应特征参数,其中Δi为均值,τi,i=1和2指标准差,P的取值范围为[0,+∞),J-M距离计算出来的结果数值在的0到2之间,若K=0,表示两种类别在该特征上相似性极高,利用对应特征分类会出现大量错分现象;若K值大于0且越接近2,意味利用对应特征能够较好的分离出相关对象;
面向对象的建筑垃圾遥感识别与分类:通过利用基于ReliefF_J-M算法模型优选出的特征,设立阈值,最终得到面向对象分类的特征规则集,确立了研究区内的分类体系:
建筑垃圾:分布在建设用地及裸土旁,在影像中多呈灰色或亮白色,边界不清晰,纹理较复杂;
建设用地:分布集中,包括建筑物和道路,在影像中呈建筑物屋顶真实颜色,红色或蓝色,呈长条状或块状;
植被:分布在道路、居民区旁,在影像上呈深绿色,有一定的纹理;
水域:分布在道路一侧,为人工沟渠,反射率较低,影像中呈暗黑色;
裸土:分布在植被或建设用地旁,在影像中呈暗褐色或土黄色;
变化矢量分析法:同时从强度和方向两个角度来描述影像发生变化的情况;
设时相T1和时相T2的遥感影像分别为G1和G2,第i行第j列的像元灰度值分别为
Figure FDA0003668631180000021
Figure FDA0003668631180000022
其中n为选择的波段数,
Figure FDA0003668631180000023
为第k波段第i行第j列的T时相该像元的灰度值,对G1和G2作差值,得到变化矢量式:
Figure FDA0003668631180000024
ΔG通过下式得到,它描述了整幅影像发生变化的信息:
Figure FDA0003668631180000031
对||ΔG||设定一个适当的阈值,当大于该值时,认为发生了变化,否则判定未变化;
光谱斜率差异法:比较卫星在同一区域拍摄所得的两个不同时期的影像中地物光谱斜率的差异大小,若两个时期影像中同一处地物在光谱形状上发生了变化,就依据此变化来判断该处地物也发生了变化;
若一幅遥感影像一共拥有M个多光谱波段,则它们会形成M-1个多光谱波段,这时计算连接每两个相邻多光谱波段之间线段的斜率,通过下式计算得到多光谱段(M,M+1)的斜率:
Figure FDA0003668631180000032
式中:Δref为波段M+1与波段M的光谱亮度值之间的差,Δρ是M+1波段与M波段波长之间的差,ρ′M是对第M波段的波长进行归一化后得到的值,通过下式计算得到:
Figure FDA0003668631180000033
式中:ρM为第M波段的波长值,min(ρ)为影像中波长最小值,max(ρ)为最大值,单位均为μm;
最终两时相同一处地物的光谱斜率的变化强度通过下式计算得到:
Figure FDA0003668631180000034
式中:refi,M+1为T1时相第M+1波段的光谱亮度值,refi,M为第M波段的光谱亮度值,refj,M+1为T2时相第M+1波段的光谱亮度值,refi,M分别为第M波段的光谱亮度值,ρ′M+1和ρ′M为对应波段的归一化波长,DifK为两斜率向量的变化强度,该值越大,表示区域内地表覆盖越可能发生变化,反之可能性较低,最后需要通过设定一个阈值,来判断是否发生变化;
阈值分割算法:合适的阈值分割算法能够将变化检测的错误率降到最低;
精度评价指标:选择遥感影像变化检测中常用的几种精度评价指标对建筑垃圾变化检测结果进行精度评价:
判定为建筑垃圾,真实为建筑垃圾:TW
判定为建筑垃圾,真实为非建筑垃圾:FW
判定为非建筑垃圾,真实为建筑垃圾:FC
判定为非建筑垃圾,真实为非建筑垃圾:TC
具体计算公式及说明如下:
(1)精确率:
Figure FDA0003668631180000041
(2)误检率:
Figure FDA0003668631180000042
(3)漏检率:
Figure FDA0003668631180000043
(4)Kappa系数:
Figure FDA0003668631180000044
式中:P0表示正确分类的建筑垃圾样本数量之和占总建筑垃圾样本数量的百分比,Pe表示建筑垃圾类和非建筑垃圾类真实样本的个数与预测的建筑垃圾和非建筑垃圾样本个数的乘积之和占影像中选取的所有样本个数的平方的百分比;
以上4个指标的大小均在0到1之间,误检率和漏检率的值接近于0,则表示本研究中建筑垃圾的检测效果越好;而当精确率和Kappa系数的值越接近1,就表示建筑垃圾的检测结果越可靠。
2.根据权利要求1所述的一种基于分类结果及CVA-SGD法的建筑垃圾变化检测方法,其特征在于所述分类方式为:
在eCognition9.0软件中利用NDVI、Ratio R、Mean R的3维特征对植被分类;
利用GLCM Entropyall(alldir.)、Ratio R、Ratio NIR、GLCM Dissimilarity(4)、GLCMEntropy(1)、GLCM Homogeneity(2)的6维特征对建设用地分类;
利用GLCM Correlation(4)、GLCM Homogeneity(2)、GLCM Entropy(1)、GLCM Contrast(4)、Main direction的5维特征对裸土分类;
利用Mean B、Mean G、Main direction、GLCM Contrast(4)、GLCM Dissimilarity(4)的4维特征对水体分类;
利用GLCM Correlation(4)、GLCM Homogeneity(4)、Ratio NIR、Main direction、GLCMEntropy(all dir.)的6维特征对建筑垃圾分类。
3.根据权利要求1所述的一种基于分类结果及CVA-SGD法的建筑垃圾变化检测方法,其特征在于所述阈值分割算法包括:
全局阈值分割算法:全局阈值算法只运用唯一一个阈值对得到的整幅变化影像进行分割,考虑图像自身的灰度值:
Figure FDA0003668631180000051
式中:T是一个初始估计值,它是针对全局阈值进行选择得出来的,m1表示所有像素平均灰度值,该值的灰度值需要大于T,而m2则相反,要得到最终合适的全局阈值,必须要对m1和m2进行重复性运算,直到计算出的T的差异比预先设置的ΔT小,计算才停止;
自适应调节阈值分割算法:通过该算法来确立某一像素在其位置上的局部二值化阈值,依据的是图像中不同区域像素值分布情况;
若某一图像中只存在目标和背景两种对象,则该图像的灰度直方图看作是将两种对象组合起来的概率密度函数,该函数的像素灰度值呈混合分布,混合分布的两个分量p(i|0)和p(i|1)都是正态分布,它们的均值、标准差和先验概率分别为μ0、μ1
Figure FDA0003668631180000061
P0、P1
Figure FDA0003668631180000062
公式为:
Figure FDA0003668631180000063
当满足:
Figure FDA0003668631180000064
时,认为目标和背景的灰度分布存在着较好的分离性,即利用该阈值做到将目标和背景完全分离,若不能满足上式,则还需要对分割出的目标区域再做分割,直到获得正确的分割结果为止才停止分割;
EM算法:利用最大似然估计的思想进行计算,它的优势在于对数据的完整性不做要求,不需要外来数据进行辅助,也不需要借鉴任何先验知识,在利用该算法进行变化检测时仅仅依靠观测数据就得到参数的估计值。
CN202111413389.9A 2021-11-25 2021-11-25 一种基于分类结果及cva-sgd法的建筑垃圾变化检测方法 Active CN114066876B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111413389.9A CN114066876B (zh) 2021-11-25 2021-11-25 一种基于分类结果及cva-sgd法的建筑垃圾变化检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111413389.9A CN114066876B (zh) 2021-11-25 2021-11-25 一种基于分类结果及cva-sgd法的建筑垃圾变化检测方法

Publications (2)

Publication Number Publication Date
CN114066876A CN114066876A (zh) 2022-02-18
CN114066876B true CN114066876B (zh) 2022-07-08

Family

ID=80276350

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111413389.9A Active CN114066876B (zh) 2021-11-25 2021-11-25 一种基于分类结果及cva-sgd法的建筑垃圾变化检测方法

Country Status (1)

Country Link
CN (1) CN114066876B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115147421B (zh) * 2022-09-05 2023-04-25 深圳市洪桦环保科技有限公司 一种用于建筑垃圾回收的再生骨料分级评价方法
CN116935384B (zh) * 2023-09-18 2023-12-08 上海大学 一种细胞异常样本智能化检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002212615A1 (en) * 2000-09-12 2002-04-08 Tariffic, Inc Master universal tariff system and method
CN110276746A (zh) * 2019-05-28 2019-09-24 河海大学 一种鲁棒性遥感图像变化检测方法
CN110309780A (zh) * 2019-07-01 2019-10-08 中国科学院遥感与数字地球研究所 基于bfd-iga-svm模型的高分辨率影像房屋信息快速监督识别
CN111861786A (zh) * 2020-06-12 2020-10-30 国网浙江省电力有限公司电力科学研究院 一种基于特征选择和孤立随机森林的专变窃电识别方法
CN112183432A (zh) * 2020-10-12 2021-01-05 中国科学院空天信息创新研究院 一种基于中分辨率sar图像的建筑区提取方法以及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103049916B (zh) * 2013-01-18 2015-04-15 国家基础地理信息中心 一种基于光谱斜率差异检测地表覆盖变化的方法
US11295231B2 (en) * 2017-05-12 2022-04-05 Microsoft Technology Licensing, Llc Systems, methods, and computer-readable media for parallel stochastic gradient descent with linear and non-linear activation functions
CN110852420B (zh) * 2019-11-11 2021-04-13 北京智能工场科技有限公司 一种基于人工智能的垃圾分类方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002212615A1 (en) * 2000-09-12 2002-04-08 Tariffic, Inc Master universal tariff system and method
CN110276746A (zh) * 2019-05-28 2019-09-24 河海大学 一种鲁棒性遥感图像变化检测方法
CN110309780A (zh) * 2019-07-01 2019-10-08 中国科学院遥感与数字地球研究所 基于bfd-iga-svm模型的高分辨率影像房屋信息快速监督识别
CN111861786A (zh) * 2020-06-12 2020-10-30 国网浙江省电力有限公司电力科学研究院 一种基于特征选择和孤立随机森林的专变窃电识别方法
CN112183432A (zh) * 2020-10-12 2021-01-05 中国科学院空天信息创新研究院 一种基于中分辨率sar图像的建筑区提取方法以及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BACKDATING OF INVARIANT PIXELS: COMPARISON OF ALGORITHMS FOR LAND USE AND LAND COVER CHANGE (LUCC) DETECTION IN THE SUBTROPICAL BRAZILIAN ATLANTIC FOREST;Silva, Murilo Schramm da;《Boletim de Ciências Geodésicas》;20210930;全文 *
Research on Remote Sensing Feature Selection;Shu Hong1;《Earth and Environmental Science》;20201230;全文 *
超像素分割和多方法融合的遥感影像变化检测方法;肖明虹;《测 绘 通 报》;20181230;全文 *

Also Published As

Publication number Publication date
CN114066876A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
KR101922831B1 (ko) 콘크리트 상태를 판정하는 영상분석장치 및 영상분석방법
Pan et al. Detection of asphalt pavement potholes and cracks based on the unmanned aerial vehicle multispectral imagery
Akagic et al. Pavement crack detection using Otsu thresholding for image segmentation
CN114066876B (zh) 一种基于分类结果及cva-sgd法的建筑垃圾变化检测方法
Yu et al. Automated detection of urban road manhole covers using mobile laser scanning data
Garilli et al. Automatic detection of stone pavement's pattern based on UAV photogrammetry
US20180341859A1 (en) Detection of Hazardous Leaks from Pipelines Using Optical Imaging and Neural Network
Friman et al. Methods for large-scale monitoring of district heating systems using airborne thermography
Pan et al. Object-based and supervised detection of potholes and cracks from the pavement images acquired by UAV
CN107238821A (zh) 一种基于特征谱特征的机场跑道异物检测方法及装置
WO2021083394A1 (zh) 一种基于图谱灰度自适应选取的沥青路面水损害检测方法
CN113255580A (zh) 抛洒物识别、车辆抛洒滴漏识别方法和装置
Vivekananthan et al. Concrete bridge crack detection by image processing technique by using the improved OTSU method
Larsen et al. Traffic monitoring using very high resolution satellite imagery
CN114882400A (zh) 一种基于ai智能机器视觉技术的骨料检测分类方法
CN114299457A (zh) 积水深度检测方法及装置
Crognale et al. Damage detection with image processing: A comparative study
Hidayati et al. A comparative study of various indices for extraction urban impervious surface of Landsat 8 OLI
Sirmacek et al. Damaged building detection in aerial images using shadow information
CN113378912B (zh) 一种基于深度学习目标检测的林区非法开垦地块检测方法
JP2004191276A (ja) 路面状態判別装置
CN115527118A (zh) 一种融合注意力机制的遥感图像目标检测方法
Cetin et al. Building detection in satellite images by textural features and Adaboost
Tepljakov et al. Deep learning for detection of pavement distress using nonideal photographic images
CN112241691A (zh) 基于无人机巡检与图像特征的渠道冰情智能识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant