CN114061650B - 顶管施工智能化监控系统及方法 - Google Patents

顶管施工智能化监控系统及方法 Download PDF

Info

Publication number
CN114061650B
CN114061650B CN202111105275.8A CN202111105275A CN114061650B CN 114061650 B CN114061650 B CN 114061650B CN 202111105275 A CN202111105275 A CN 202111105275A CN 114061650 B CN114061650 B CN 114061650B
Authority
CN
China
Prior art keywords
pipe
jacking
monitoring
real
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111105275.8A
Other languages
English (en)
Other versions
CN114061650A (zh
Inventor
陈晓龙
张鹏
刘锴鑫
曾聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences
Original Assignee
China University of Geosciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences filed Critical China University of Geosciences
Priority to CN202111105275.8A priority Critical patent/CN114061650B/zh
Publication of CN114061650A publication Critical patent/CN114061650A/zh
Application granted granted Critical
Publication of CN114061650B publication Critical patent/CN114061650B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

本发明提供一种顶管施工智能化监控系统及方法,包括监测模块、控制器、无线传输模块和智能物联网云平台,监测模块包括分别用于监测施工参数、管节受力和顶管机及管节姿态的数据的第一监测组件、第二监测组件和第三监测组件;控制器用于控制顶管机、主千斤顶和注浆调节阀工作;无线传输模块和智能物联网云平台均与监测模块和控制器通信连接。通过监测模块实时监测顶管施工过程中的数据,避免了因操作人员在复杂工况下经验不足难以控制导致的一系列工程问题,通过无线传输模块将监测模块监测到的数据传输至智能物联网云平台,进而对监测数据进行快速的分析整合后发送至控制器,实现顶管施工的智能化调整控制,保证顶管工程安全、高效地开展。

Description

顶管施工智能化监控系统及方法
技术领域
本发明涉及顶管施工监测技术领域,尤其涉及一种顶管施工智能化监控系统及方法。
背景技术
随着城市建设的飞速发展,城市空间不断压缩,顶管法施工以其不开挖地表、交通影响小和施工速度快等优点,在市政工程中得到了广泛应用。当穿越区地质条件良好,操作班组技术可靠时,顶管工程往往能够顺利竣工。然而在穿越一些特殊地层时,往往遇到一系列问题,如管周摩擦阻力过大或轴线偏差引起卡管现象、顶进力过大导致管节破坏等,严重时将造成工程失败。出现这些问题的主要原因在于目前绝大多数顶管施工存在一些弊端,比如对顶进力和顶管机姿态的控制以操作人员经验为主,无法确定管节实时姿态和受力情况等,在复杂工况下容易诱发一系列工程问题。
发明内容
有鉴于此,本发明的实施例提供了一种顶管施工智能化监控系统,用于对施工期间的施工参数、顶管机及管节受力进行实时监测,实现顶管施工的智能化调整控制,保证顶管工程的安全高效开展。
本发明的实施例提供一种顶管施工智能化监控系统,包括:
监测模块,包括第一监测组件、第二监测组件和第三监测组件,分别用于监测施工参数、管节受力和顶管机及管节姿态的数据;
控制器,用于控制所述顶管机、主千斤顶和注浆调节阀工作;
智能物联网云平台,与所述监测模块和所述控制器通信连接,以处理所述监测模块监测的数据并向所述控制器发送指令;以及,
无线传输模块,与所述监测模块、所述控制器和所述智能物联网云平台通信连接,以建立所述监测模块、所述智能物联网云平台和所述控制器的无线通信联系。
可选地,所述施工参数包括所述顶管机的实时顶进力、开挖舱的压力、顶进速度及顶进距离;
所述第一监测组件包括:
防爆油压表,安装在油泵站的出油管路上,用于监测所述顶管机的实时顶进力;
第一土压力传感器,安装在开挖舱的后面板上,所述第一土压力传感器的受压面与所述开挖舱中的泥水或土体接触,用于监测所述开挖舱的压力;以及,
滚轮式计米仪,设于所述管节上方,用于监测顶进速度和顶进距离。
可选地,所述第一土压力传感器设有多个,多个所述第一土压力传感器对称布设于所述开挖舱的后面板上。
可选地,所述管节受力包括管节轴向端部受力、管节轴向内部受力、管周压力分布和管周泥浆压力;
所述第二监测组件包括:
多个薄膜压力传感器,沿所述管节圆周方向均匀粘贴在所述管节的接头垫板表面,用于监测所述管节轴向端部受力;
多个应变计,与所述薄膜压力传感器一一对应,多个所述应变计安装在所述管节中部位置上,用于监测所述管周轴向内部受力;
第二土压力传感器,安装于所述管节上,靠近注浆孔布设,用于监测管周压力分布;以及,
孔隙水压力传感器,安装于所述管节上,靠近注浆孔布设,用于监测管周泥浆压力。
可选地,所述第三监测组件包括:
智能型全站仪,包括主全站仪和转站全站仪,主全站仪固定在主千斤顶的中间位置,主全站仪中心高度与所述顶管的设计轴线相当,转站全站仪固定在管节内壁一侧;
至少三个目标圆棱镜,布置于所述顶管机和管节的中部断面上,每个断面安装三个所述目标圆棱镜,当所述顶管机或管节吊放于导轨时,三个所述目标棱镜分别位于所述管节顶部和左右两侧;以及,
360°转站棱镜,设于所述转站全站仪后方的管节上,固定于所述转站全站仪安装位置的对侧。
可选地,所述无线传输模块包括WiFi、以太网、4G、GPRS中的任意一种。
可选地,所述无线传输模块还包括信号放大器和信号接收器,所述信号放大器安装于所述主千斤顶的中部位置处,所述信号放大器的中心正对于洞口中心,所述信号接收器安装于地面。
本发明还提供一种顶管施工智能化监控方法,应用于如上所述顶管施工智能化监控系统,包括如下步骤:
获得所述顶管机穿越区间的地层详勘资料;
根据获得的所述地层详勘资料,确定所述穿越区泥浆的配方,计算地层压力;
根据所述地层压力,设置泥浆压力设定值;
根据所述监测模块的监测数据,获取所述管周泥浆压力实测值;
比对所述管周泥浆压力实测值与所述泥浆压力设定值,根据二者的差值控制注浆量的大小;
当所述管周泥浆压力实测值与所述泥浆压力设定值的差值在10%范围内时,所述控制器控制所述注浆调节阀维持现状;
当所述管周泥浆压力实测值小于所述泥浆压力设定值,且二者的差值超过10%时,所述控制器控制加大相邻位置注浆支管上的所述注浆调节阀的开度,以增加该位置注浆量,直至所述管周泥浆压力实测值达到所述泥浆压力设定值;
当所述管周泥浆压力实测值大于所述泥浆压力设定值,且二者的差值超过10%时,所述控制器控制减小相邻位置注浆支管上的所述注浆调节阀的开度,以降低该位置注浆量,直至所述管周泥浆压力实测值降至所述泥浆压力设定值;
根据所述监测模块的监测数据,获取所述顶管机的实时顶进力和所述顶管机的实时顶进速度,并计算所述顶管机所需要的顶进力和所述顶管机顶进过程中的平均速度;
比对所述顶管机的实时顶进力和所需的顶进力、实时顶进速度和平均速度大小关系,控制主千斤顶的顶力大小;
根据所述顶管机的设计轴线起始点坐标,利用BIM模型轻量化软件建立所述顶管机在精准施工条件下的空间模型;
根据所述监测模块的监测数据,利用BIM模型轻量化软件建立所述顶管机和管节的实时三维模型;
比对所述顶管机在精准施工条件下的空间模型和实时三维模型,获取所述顶管机相较于设计轴线的偏差量、仰俯角、水平方位角和旋转角,获得管节之间的相对位置关系;
依据所述偏差量、俯仰角、水平方位角和旋转角,所述控制器智能操纵纠偏千斤顶完成实时纠偏。
可选地,所述比对所述顶管机的实时顶进力和所需的顶进力、实时顶进速度和平均速度大小关系,控制主千斤顶的顶力大小的步骤还包括:
若实时顶进力小于或等于所需的顶进力,且实时顶进速度大于或等于平均速度时,所述控制器控制所述主千斤顶的顶进力不变;
若实时顶进力小于或等于所需的顶进力,且实时顶进速度小于平均速度时,所述控制器控制增大所述主千斤顶的顶进力至所需的顶进力;
若实时顶进力大于所需的顶进力时,所述控制器控制降低所述主千斤顶的顶进力至所需的顶进力。
可选地,所述第三监测组件包括:
智能型全站仪,包括主全站仪和转站全站仪,主全站仪固定在主千斤顶的中间位置,主全站仪中心高度与所述顶管的设计轴线相当,转站全站仪固定在管节内壁一侧;
至少三个目标圆棱镜,布置于所述顶管机和管节的中部断面上,每个断面安装三个所述目标圆棱镜,当所述顶管机或管节吊放于导轨时,三个所述目标棱镜分别位于所述管节顶部和左右两侧;以及,
360°转站棱镜,设于所述转站全站仪后方的管节上,固定于所述转站全站仪安装位置的对侧;
根据所述监测模块的监测数据,利用BIM模型轻量化软件建立所述顶管机和管节的实时三维模型的步骤包括:
控制所述主全站仪自动依次完成各所述目标圆棱镜的识别、照准和测量,将所述目标圆棱镜测得的所述顶管机和管节的实时坐标通过所述无线传输模块传输至所述BIM模型轻量化软件,建立顶管机和管节的三维空间模型后传递至所述智能物联网云平台。
本发明的实施例提供的技术方案带来的有益效果是:本发明的顶管施工智能化监控系统通过监测模块实时监测顶管施工过程中的施工参数、管节受力和顶管机及管节姿态的数据,避免了因操作人员在复杂工况下经验不足难以控制导致的一系列工程问题,通过无线传输模块将监测模块监测到的数据传输至智能物联网云平台,智能物联网云平台可以对监测数据进行快速的分析整合,智能物联网云平台再将处理好的数据和处理指令通过无线传输模块发送给控制器,从而实现顶管施工的智能化调整控制,保证顶管工程安全、顺利、高效地开展。
附图说明
图1是本发明提供的顶管施工智能化监控系统的一实施例的示意图;
图2位图1中的顶管机目标圆棱镜及开挖舱后面板第一土压力传感器布置示意图;
图3为管节薄膜压力传感器、应变计。第二土压力传感器及孔隙水压力传感器布置示意图;
图4为管节姿态监测示意图;
图5为图1中管节目标圆棱镜布置示意图;
图6为图1中管节内部注浆量自动调控示意图;
图7是本发明提供的顶管施工智能化监控方法的一实施例的流程示意图。
图中:顶管施工智能化监控系统100、监测模块1、防爆油压表11、第一土压力传感器12、滚轮式计米仪13、滚轮13a、编码器13b、限位杆件13c、限位弹簧13d、计米器13e、薄膜压力传感器14、应变计15、第二土压力传感器16、孔隙水压力传感器17、主全站仪18、转站全站仪19、目标圆棱镜20、360°转站棱镜21、控制器2、无线传输模块3、信号放大器31、信号接收器32、智能物联网云平台4、云平台客户端41、系统服务器42、顶管机200、开挖舱210、管节300、注浆支管310、调节阀320、注浆孔330、垫板340、油泵站400、主千斤顶500。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地描述。
顶管法是指隧道或地下管道穿越铁路、道路、河流或建筑物等各种障碍物时采用的一种暗挖式施工方法。如图1所示,在施工时,通过传力顶铁和导向轨道,用支撑于基坑后座上的液压千斤顶将管节300压入土层中,同时挖除并运走管节300正面的泥土。当第一管节300全部顶入土层后,接着将第二管节300接在后面继续顶进,这样将一节节管节300顶入,做好接口,建成涵管。通常会在地面上设置油泵站400,通过油管与液压千斤顶连接,从而为液压千斤顶供油。在顶管法施工中,通常会在管节300中设置多个注浆孔330,在多个注浆孔330处对应安装多个注浆支管310,注浆支管310上安装有调节阀320来调节注浆量,通过注浆可以减小顶进摩擦力和支撑管节300周边土体减少地面沉降。在本文中,液压千斤顶统称为主千斤顶500,顶管机200壳体内部所含的千斤顶为纠偏千斤顶。
为了保证顶管项目的顺利完成,本发明提供一种施工智能化监控系统,在顶管施工期间采取完善可靠的监测手段,快速准确地获取实时数据,利用信息化技术对监测数据进行分析整合,实现顶管施工的智能化调整控制,形成监测-分析-调控的智能化循环系统。
请参考图1至图6,本发明提供的一种顶管施工智能化监控系统100,包括监测模块1、控制器2、智能物联网云平台4和无线传输模块3,监测模块1包括第一监测组件、第二监测组件和第三监测组件,分别用于监测施工参数、管节300受力和顶管机200及管节300姿态的数据;控制器2用于控制所述顶管机200、主千斤顶500和注浆调节阀320工作;智能物联网云平台4与所述监测模块1和所述控制器2通信连接,以处理所述监测模块1监测的数据并向所述控制器2发送指令;无线传输模块3与所述监测模块1、所述控制器2和所述智能物联网云平台4通信连接,以建立所述监测模块1、所述智能物联网云平台4和所述控制器2的无线通信联系。
通过监测模块1实时监测顶管施工过程中的施工参数、管节300受力和顶管机200及管节300姿态的数据,避免了因操作人员在复杂工况下经验不足难以控制导致的一系列工程问题,通过无线传输模块3将监测模块1监测到的数据传输至智能物联网云平台4,智能物联网云平台4可以对监测数据进行快速的分析整合,智能物联网云平台4再将处理好的数据和处理指令通过无线传输模块4发送给控制器2,从而实现顶管施工的智能化调整控制,保证顶管工程安全、顺利、高效地开展。
智能物联网云平台4(AIoT)包括云平台客户端41和系统服务器42,用于接收和处理数据,云平台客户端41可以提供操作界面,便于用户操作和查看数据,系统服务器42可以处理数据,对监测数据分析整合后将结果发送给控制器以执行控制命令。。
进一步地,所述无线传输模块3包括WiFi、以太网、4G、GPRS中的任意一种。所述无线传输模块3还包括信号放大器31和信号接收器32,所述信号放大器31安装于所述主千斤顶500的中部位置处,所述信号放大器31的中心正对于洞口中心,所述信号接收器32安装于地面。监测模块1测得的数据通过WiFi、以太网、4G、GPRS等网络方式进行无线传输至智能物联网云平台4和控制器2,用户可以在智能物联网云平台4的客户端进行查看、编辑和发送指令。在主千斤顶500中部位置安装信号放大器31与工作井外的信号接收器32相连,可以保证顶管内部监测数据与外部控制器2和智能物联网云平台4的实时高效传输。
在本实施例中,所述控制器2采用PLC控制器2进行控制。
进一步地,参照图1和图2所示,所述施工参数包括所述顶管机200的实时顶进力、开挖舱210的压力、顶进速度及顶进距离;所述第一监测组件包括防爆油压表11、第一土压力传感器12和滚轮式计米仪13,防爆油压表11安装在油泵站400的出油管路上,用于监测所述顶管机200的实时顶进力;第一土压力传感器12安装在开挖舱210的后面板上,所述第一土压力传感器12的受压面与所述开挖舱210中的泥水或土体接触,用于监测所述开挖舱210的压力;以及,滚轮式计米仪13设于所述管节300上方,用于监测顶进速度和顶进距离。
具体地,所述滚轮式计米仪13由滚轮13a、编码器13b、限位杆件13c、限位弹簧13d和计米器13e组成,所述限位杆件13c包括两段,两段之间通过轴承连接并安装有限位弹簧13d,限位杆件13c一端固定在始发洞门的上方,另一端通过轴承安装有滚轮13a和编码器13b,在弹簧拉伸状态下将滚轮13a限位于顶进管节300正上方,滚轮13a随着管节300的逐节顶进滚动并带动编码器13b工作,计米器13e获取编码器13b数据。所述得到的监测数据通过无线传输模块3上传至智能物联网云平台4(AIoT)。此处,滚轮式计米仪13所测得的数据为顶进速度和顶进距离,顶进速度为顶管机200的掘进速度vt,顶进距离为开挖面与始发门洞之间的距离s。
在本实施例中,所述第一土压力传感器12设有多个,多个所述第一土压力传感器12对称布设于所述开挖舱210的后面板上。顶管施工期间,顶进力主要克服管周摩阻力和迎面阻力的作用,通过防爆油压表11测得的顶进力为主千斤顶500实际提供的顶力大小P,通过第一土压力传感器12测得的开挖舱210压力可等同于迎面阻力Pf,开挖舱210压力取开挖舱210后面板上安装的多个第一土压力传感器12监测结果的平均值,取平均值作为开挖舱210压力更为合理。
进一步地,参照图3所示,所述管节300受力包括管节300轴向端部受力、管节300轴向内部受力、管周压力分布和管周泥浆压力;所述第二监测组件包括多个薄膜压力传感器14、多个应变计15、第二土压力传感器16和孔隙水压力传感器17,多个薄膜压力传感器14沿所述管节300圆周方向均匀粘贴在所述管节300的接头垫板340表面,用于监测所述管节300轴向端部受力;多个应变计15与所述薄膜压力传感器14一一对应,多个所述应变计15安装在所述管节300中部位置上,用于监测所述管周轴向内部受力;第二土压力传感器16安装于所述管节300上,靠近注浆孔330布设,用于监测管周压力分布;孔隙水压力传感器17安装于所述管节300上,靠近注浆孔330布设,用于监测管周泥浆压力。
在使用过程中,所述薄膜压力传感器14在使用前利用标定台进行标定,标定时选取工程中实际采用的垫板340材料。应变计15的类型和安装方式结合实际使用的管材确定,对于钢筋混凝土顶管,浇注混凝土前将预埋式应变计15安装在钢筋笼骨架的纵向钢筋中部位置,每层钢筋笼上安装一组;对于刚顶管,在吊放管节300前将表贴士应变计15焊接于钢管内壁的中部位置。所述薄膜压力传感器14和应变计15安装在同一管节300上,第一根监测管节300置于顶管机200后方,第二根监测管节300位于第一根监测管节300后方20米处,后续每一定距离设置一根监测管节300,应保证间隔距离不超过50米为宜。
其中,薄膜压力传感器14设在管节300垫板340径向中部最佳,通过在不同位置安装薄膜压力传感器14和应变计15监测的数据大小可以反映出管节300的轴向受力分布。所述管节300轴向受力分布分为管节300轴向端部受力和管节300轴向内部受力。所述管节300轴向端部受力F1由不同位置薄膜压力传感器14测得的压强(p1,p2,...pm)取平均值后乘以管节300的截面积A得到,即端面受力
Figure BDA0003272042400000111
所述管节300轴向内部受力F2由不同位置的应变计15测量的应变(ε12,K,εm)取平均值后乘以管节300弹性模量E和截面积A得到,即
Figure BDA0003272042400000112
不同监测断面之间的距离通过管节300编号差值(b-a)乘以单管长度l计算得到,即Sb-a=(b-a)·l。不同监测断面管节300轴向受力的差值可视为两个监测断面区间内管周摩阻力的累积,则区间内管周单位长度摩阻力可由
Figure BDA0003272042400000113
Figure BDA0003272042400000114
计算得到,并取值
Figure BDA0003272042400000115
综上监测模块1监测的数据中,可以得到在任意顶进距离s,已知迎面阻力为Pf,计算所需的顶进力Pˊ大小为P'=Pf+∑fi·Si,其中fi为任意两个相邻监测断面区间内的管周单位长度摩阻力,Si为相应的区间长度(不处于两个监测断面之间的区域,管周单位长度摩阻力与相邻区间取为一致)。通过第二土压力传感器16监测得到安装位置处受到的总压力,即得到管周压力分布,孔隙水压力传感器17监测得到安装位置出受到的孔隙水压力大小,即为注浆后管周泥浆压力大小。
进一步地,参照图4和图5所示,所述第三监测组件包括智能型全站仪、至少三个目标圆棱镜20和360°转站棱镜21,智能型全站仪包括主全站仪18和转站全站仪19,主全站仪18固定在主千斤顶500的中间位置,主全站仪18中心高度与所述顶管的设计轴线相当,转站全站仪19固定在管节300内壁一侧;至少三个目标圆棱镜20布置于所述顶管机200和管节300的中部断面上,每个断面安装三个所述目标圆棱镜20,当所述顶管机200或管节300吊放于导轨时,三个所述目标棱镜分别位于所述管节300顶部和左右两侧;360°转站棱镜21设于所述转站全站仪19后方的管节300上,固定于所述转站全站仪19安装位置的对侧。
值得注意的是,此处所述的每根管节300上三个目标圆棱镜20的位置并不是唯一确定的,仅是为了方便通视测量,但三个目标圆棱镜20必须处于管节300的同一个横断面上。此处,可以设置多个目标圆棱镜20,每个横断面上均布置三个。在测量时对每个目标圆棱镜20进行命名和编码,智能型全站仪测量后输出“点名,编码,坐标”的格式。通过安装智能型全站仪、目标圆棱镜20和360°转站棱镜21实时采集顶管机200及管节300的坐标数据,通过无线传输模块3将坐标数据传输至智能物联网云平台4后,基于BIM模型轻量化软件自动获取每个断面上三个目标圆棱镜20的实时坐标,确定断面的空间位置,进而通过已知的尺寸建立顶管机200和管节300的实时三维模型,实现利用智能物联网云平台4对顶管机200和管节300位置模型的管理。所述BIM模型轻量化软件可以根据目标圆棱镜20实时坐标建立顶管机200及管节300的三维模型,并可以保存历史三维模型,展示顶管机200及管节300姿态变化趋势。BIM模型轻量化软件属于现有的工具,此处不做过多介绍。
根据上述测得的管节300的轴向受力分布和管节300之间的相对位置关系,还可以进一步推导管节300不同接触状态下的受力传递规律。当然,在实际顶管施工过程中,PLC控制器2还可以设置报警程序,当主千斤顶500顶进力或管节300内里监测结果接近管节300设计承载力时,或者根绝建立的管节300实时三维模型,当管节300之间出现较为严重的相对剪切或偏转时,可以通过智能物联网云平台4进行报警提醒,从而便于操作人员采取措施。
本发明还提供一种顶管施工智能化监控方法,应用于上述顶管施工智能化监控系统100,参照图7所示,包括以下步骤:
步骤S10:获得所述顶管机200穿越区间的地层详勘资料;
步骤S20:根据获得的所述地层详勘资料,确定所述穿越区泥浆的配方,计算地层压力;
步骤S30:根据所述地层压力,设置泥浆压力设定值;
值得注意的是,泥浆压力设定值一般取地层压力的1.1~1.4倍,本实施例中取值为1.2倍地层压力。
步骤S40:根据所述监测模块1的监测数据,获取所述管周泥浆压力实测值;
此处管周泥浆压力通过孔隙水压力传感器17监测得到安装位置出受到的孔隙水压力大小,即为注浆后管周泥浆压力大小。
步骤S50:比对所述管周泥浆压力实测值与所述泥浆压力设定值,根据二者的差值控制注浆量的大小;
当所述管周泥浆压力实测值与所述泥浆压力设定值的差值在10%范围内时,所述控制器2控制所述注浆调节阀320维持现状;
当所述管周泥浆压力实测值小于所述泥浆压力设定值,且二者的差值超过10%时,所述控制器2控制加大相邻位置注浆支管310上的所述注浆调节阀320的开度,以增加该位置注浆量,直至所述管周泥浆压力实测值达到所述泥浆压力设定值,参照图6所示;
当所述管周泥浆压力实测值大于所述泥浆压力设定值,且二者的差值超过10%时,所述控制器2控制减小相邻位置注浆支管310上的所述注浆调节阀320的开度,以降低该位置注浆量,直至所述管周泥浆压力实测值降至所述泥浆压力设定值;
此处,通过孔隙水压力传感器17实时监测,并通过无线传输模块3的及时传送,可以对不同位置的注浆量同时进行调控,利用控制器2对顶管施工实现智能控制。
步骤S60:根据所述监测模块1的监测数据,获取所述顶管机200的实时顶进力和所述顶管机200的实时顶进速度,并计算所述顶管机200所需要的顶进力和所述顶管机200顶进过程中的平均速度;
步骤S70:比对所述顶管机200的实时顶进力和所需的顶进力、实时顶进速度和平均速度大小关系,控制主千斤顶500的顶力大小;
在此步骤中,还包括步骤S71:若实时顶进力小于或等于所需的顶进力,且实时顶进速度大于或等于平均速度时,所述控制器2控制所述主千斤顶500的顶进力不变;
步骤S72:若实时顶进力小于或等于所需的顶进力,且实时顶进速度小于平均速度时,所述控制器2控制增大所述主千斤顶500的顶进力至所需的顶进力;
步骤S73:若实时顶进力大于所需的顶进力时,所述控制器2控制降低所述主千斤顶500的顶进力至所需的顶进力。
步骤S80:根据所述顶管机200的设计轴线起始点坐标,利用BIM模型轻量化软件建立所述顶管机200在精准施工条件下的空间模型;
步骤S90:根据所述监测模块1的监测数据,利用BIM模型轻量化软件建立所述顶管机200和管节300的实时三维模型;
在此步骤中,控制所述主全站仪18自动依次完成各所述目标圆棱镜20的识别、照准和测量,将所述目标圆棱镜20测得的所述顶管机200和管节300的实时坐标通过所述无线传输模块3传输至所述BIM模型轻量化软件,建立顶管机200和管节300的三维空间模型后传递至所述智能物联网云平台4。
实际操作过程中,每隔三日,可通过地面上的基准点对主全站仪18的坐标进行校准,此处,主全站仪18安放点与顶管顶进控制点的坐标通过同一基准点确定。
步骤S100:比对所述顶管机200在精准施工条件下的空间模型和实时三维模型,获取所述顶管机200相较于设计轴线的偏差量、仰俯角、水平方位角和旋转角,获得管节300之间的相对位置关系;
步骤S110:依据所述偏差量、俯仰角、水平方位角和旋转角,所述控制器2智能操纵所述纠偏千斤顶完成实时纠偏。
本发明具有以下优点:在开挖舱210后面板对称布置多个第一土压力传感器12,能够更精确地反映出开挖舱210内压力的分布情况,取平均值的方法更为合理;利用滚轮式计米仪13测量顶进距离更加精准可靠,避免依据管节300编号和人为目测确定顶进距离存在的误差;通过不同位置处管节300端部和内部轴向实时受力的差值确定管周摩阻力,能够精确反映出管节300顶进过程中的实际摩阻力大小,结合开挖舱210实时压力、实时顶进距离进行计算所需顶进力,实现顶进力的实时调整控制;依据管周孔隙水压力传感器17测量得到管周泥浆压力分布情况,利用PLC控制器2和调节阀320实现不同支管注浆压力的独立精确控制,保证管周形成完整的泥浆套;将智能型全站仪和BIM模型轻量化软件结合使用,建立起顶管机200及管节300直观的三维空间模型,智能控制顶管机200实时精准纠偏,实现管节300相对位置形态可视化并识别危险区域;应用智能物联网云平台4(AIoT)技术,将顶管工程中的各独立项整合起来,将监测、分析及控制集成化,实现顶管安全、高效、智能化施工。
在本文中,所涉及的前、后、上、下等方位词是以附图中零部件位于图中以及零部件相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解,所述方位词的使用不应限制本申请请求保护的范围。
在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种顶管施工智能化监控系统,其特征在于,包括:
监测模块,包括第一监测组件、第二监测组件和第三监测组件,分别用于监测施工参数、管节受力和顶管机及管节姿态的数据;
控制器,用于控制所述顶管机、主千斤顶和注浆调节阀工作;
智能物联网云平台,与所述监测模块和所述控制器通信连接,以处理所述监测模块监测的数据并向所述控制器发送指令;以及,
无线传输模块,与所述监测模块、所述控制器和所述智能物联网云平台通信连接,以建立所述监测模块、所述智能物联网云平台和所述控制器的无线通信联系;
其中,所述第三监测组件包括:
智能型全站仪,包括主全站仪和转站全站仪,主全站仪固定在主千斤顶的中间位置,主全站仪中心高度与所述顶管的设计轴线相当,转站全站仪固定在管节内壁一侧;
至少三个目标圆棱镜,布置于所述顶管机和管节的中部断面上,每个断面安装三个所述目标圆棱镜,当所述顶管机或管节吊放于导轨时,三个所述目标棱镜分别位于所述管节顶部和左右两侧;以及,
360°转站棱镜,设于所述转站全站仪后方的管节上,固定于所述转站全站仪安装位置的对侧。
2.如权利要求1所述的顶管施工智能化监控系统,其特征在于,所述施工参数包括所述顶管机的实时顶进力、开挖舱的压力、顶进速度及顶进距离;
所述第一监测组件包括:
防爆油压表,安装在油泵站的出油管路上,用于监测所述顶管机的实时顶进力;
第一土压力传感器,安装在开挖舱的后面板上,所述第一土压力传感器的受压面与所述开挖舱中的泥水或土体接触,用于监测所述开挖舱的压力;以及,
滚轮式计米仪,设于所述管节上方,用于监测顶进速度和顶进距离。
3.如权利要求2所述的顶管施工智能化监控系统,其特征在于,所述第一土压力传感器设有多个,多个所述第一土压力传感器对称布设于所述开挖舱的后面板上。
4.如权利要求1所述的顶管施工智能化监控系统,其特征在于,所述管节受力包括管节轴向端部受力、管节轴向内部受力、管周压力分布和管周泥浆压力;
所述第二监测组件包括:
多个薄膜压力传感器,沿所述管节圆周方向均匀粘贴在所述管节的接头垫板表面,用于监测所述管节轴向端部受力;
多个应变计,与所述薄膜压力传感器一一对应,多个所述应变计安装在所述管节中部位置上,用于监测所述管周轴向内部受力;
第二土压力传感器,安装于所述管节上,靠近注浆孔布设,用于监测管周压力分布;以及,
孔隙水压力传感器,安装于所述管节上,靠近注浆孔布设,用于监测管周泥浆压力。
5.如权利要求1所述的顶管施工智能化监控系统,其特征在于,所述无线传输模块包括WiFi、以太网、4G、GPRS中的任意一种。
6.如权利要求5所述的顶管施工智能化监控系统,其特征在于,所述无线传输模块还包括信号放大器和信号接收器,所述信号放大器安装于所述主千斤顶的中部位置处,所述信号放大器的中心正对于洞口中心,所述信号接收器安装于地面。
7.一种顶管施工智能化监控方法,应用于如权利要求1-6任意一项所述顶管施工智能化监控系统,其特征在于,包括如下步骤:
获得所述顶管机穿越区间的地层详勘资料;
根据获得的所述地层详勘资料,确定所述穿越区泥浆的配方,计算地层压力;
根据所述地层压力,设置泥浆压力设定值;
根据所述监测模块的监测数据,获取所述管周泥浆压力实测值;
比对所述管周泥浆压力实测值与所述泥浆压力设定值,根据二者的差值控制注浆量的大小;
当所述管周泥浆压力实测值与所述泥浆压力设定值的差值在10%范围内时,所述控制器控制所述注浆调节阀维持现状;
当所述管周泥浆压力实测值小于所述泥浆压力设定值,且二者的差值超过10%时,所述控制器控制加大相邻位置注浆支管上的所述注浆调节阀的开度,以增加该位置注浆量,直至所述管周泥浆压力实测值达到所述泥浆压力设定值;
当所述管周泥浆压力实测值大于所述泥浆压力设定值,且二者的差值超过10%时,所述控制器控制减小相邻位置注浆支管上的所述注浆调节阀的开度,以降低该位置注浆量,直至所述管周泥浆压力实测值降至所述泥浆压力设定值;
根据所述监测模块的监测数据,获取所述顶管机的实时顶进力和所述顶管机的实时顶进速度,并计算所述顶管机所需要的顶进力和所述顶管机顶进过程中的平均速度;
比对所述顶管机的实时顶进力和所需的顶进力、实时顶进速度和平均速度大小关系,控制主千斤顶的顶力大小;
根据所述顶管机的设计轴线起始点坐标,利用BIM模型轻量化软件建立所述顶管机在精准施工条件下的空间模型;
根据所述监测模块的监测数据,利用BIM模型轻量化软件建立所述顶管机和管节的实时三维模型;
比对所述顶管机在精准施工条件下的空间模型和实时三维模型,获取所述顶管机相较于设计轴线的偏差量、仰俯角、水平方位角和旋转角,获得管节之间的相对位置关系;
依据所述偏差量、俯仰角、水平方位角和旋转角,所述控制器智能操纵纠偏千斤顶完成实时纠偏。
8.如权利要求7所述的顶管施工智能化监控方法,其特征在于,所述比对所述顶管机的实时顶进力和所需的顶进力、实时顶进速度和平均速度大小关系,控制主千斤顶的顶力大小的步骤还包括:
若实时顶进力小于或等于所需的顶进力,且实时顶进速度大于或等于平均速度时,所述控制器控制所述主千斤顶的顶进力不变;
若实时顶进力小于或等于所需的顶进力,且实时顶进速度小于平均速度时,所述控制器控制增大所述主千斤顶的顶进力至所需的顶进力;
若实时顶进力大于所需的顶进力时,所述控制器控制降低所述主千斤顶的顶进力至所需的顶进力。
9.如权利要求7所述的顶管施工智能化监控方法,其特征在于,根据所述监测模块的监测数据,利用BIM模型轻量化软件建立所述顶管机和管节的实时三维模型的步骤包括:
控制所述主全站仪自动依次完成各所述目标圆棱镜的识别、照准和测量,将所述目标圆棱镜测得的所述顶管机和管节的实时坐标通过所述无线传输模块传输至所述BIM模型轻量化软件,建立顶管机和管节的三维空间模型后传递至所述智能物联网云平台。
CN202111105275.8A 2021-09-22 2021-09-22 顶管施工智能化监控系统及方法 Active CN114061650B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111105275.8A CN114061650B (zh) 2021-09-22 2021-09-22 顶管施工智能化监控系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111105275.8A CN114061650B (zh) 2021-09-22 2021-09-22 顶管施工智能化监控系统及方法

Publications (2)

Publication Number Publication Date
CN114061650A CN114061650A (zh) 2022-02-18
CN114061650B true CN114061650B (zh) 2023-01-17

Family

ID=80234099

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111105275.8A Active CN114061650B (zh) 2021-09-22 2021-09-22 顶管施工智能化监控系统及方法

Country Status (1)

Country Link
CN (1) CN114061650B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114578713B (zh) * 2022-03-17 2022-09-13 山东拓新电气有限公司 一种顶管机姿态控制方法及其装置
CN115263326A (zh) * 2022-08-29 2022-11-01 中国地质大学(武汉) 一种基于三轴倾角传感器的顶管管道偏移实时监测方法
CN116858584B (zh) * 2023-07-07 2024-04-05 长沙理工大学 一种多功能顶管模型试验装置及试验方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003214090A (ja) * 2002-01-28 2003-07-30 Asaharagumi Co Ltd 曲推進における推進機の自動追尾方式
CN103994752A (zh) * 2014-06-05 2014-08-20 中铁上海工程局集团有限公司 一种有关顶管施工的自动测量导向系统及方法
CN106123776A (zh) * 2016-07-08 2016-11-16 上海市政建设有限公司 一种顶管智能顶进测量系统以及测量方法
CN109299575A (zh) * 2018-11-09 2019-02-01 上海市基础工程集团有限公司 基于bim技术的顶管施工过程的监测方法
CN209727321U (zh) * 2019-04-22 2019-12-03 中铁上海工程局集团有限公司 一种基于bim技术的顶管管节安装监测装置
CN111504533A (zh) * 2020-05-09 2020-08-07 核工业井巷建设集团有限公司 一种顶管机机头及管道关键位置受力监测装置及方法
CN111946356A (zh) * 2020-08-24 2020-11-17 中铁十八局集团有限公司 超长距离硬岩顶管施工方法
CN112032408A (zh) * 2020-09-23 2020-12-04 核工业井巷建设集团有限公司 基于全程实时监测的顶管施工方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003214090A (ja) * 2002-01-28 2003-07-30 Asaharagumi Co Ltd 曲推進における推進機の自動追尾方式
CN103994752A (zh) * 2014-06-05 2014-08-20 中铁上海工程局集团有限公司 一种有关顶管施工的自动测量导向系统及方法
CN106123776A (zh) * 2016-07-08 2016-11-16 上海市政建设有限公司 一种顶管智能顶进测量系统以及测量方法
CN109299575A (zh) * 2018-11-09 2019-02-01 上海市基础工程集团有限公司 基于bim技术的顶管施工过程的监测方法
CN209727321U (zh) * 2019-04-22 2019-12-03 中铁上海工程局集团有限公司 一种基于bim技术的顶管管节安装监测装置
CN111504533A (zh) * 2020-05-09 2020-08-07 核工业井巷建设集团有限公司 一种顶管机机头及管道关键位置受力监测装置及方法
CN111946356A (zh) * 2020-08-24 2020-11-17 中铁十八局集团有限公司 超长距离硬岩顶管施工方法
CN112032408A (zh) * 2020-09-23 2020-12-04 核工业井巷建设集团有限公司 基于全程实时监测的顶管施工方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
阳澄湖引水工程超长距离钢顶管施工技术;王祺等;《中国市政工程》;20201231;全文 *
顶管自动导向系统在三曲线顶管工程中的应用;潘国荣等;《大地测量与地球动力学》;20140831;全文 *

Also Published As

Publication number Publication date
CN114061650A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
CN114061650B (zh) 顶管施工智能化监控系统及方法
CN114894154B (zh) 一种盾构施工段稳定性判断方法及设备
CN106123776B (zh) 一种顶管智能顶进测量系统以及测量方法
US8061050B2 (en) Hydrostatic sensor device and method for measuring below-ground elevation changes in grade
CN101487249A (zh) 土压力盒埋设装置及其埋设方法
CN112576812B (zh) 一种大直径长距离直线顶管顶进方法
CN104596405B (zh) 地下雨污管道变形接触式实时监测装置与方法
CN110185844A (zh) 浅覆土大直径顶管施工方法
CN103603330B (zh) 一种用全站仪测深层土体水平位移的方法
CN102168969A (zh) 一种船闸闸室墙变形监测装置及监测方法
AU773458B2 (en) Device and method for drilling in a subsurface
CN106482707B (zh) 自行式循迹测斜装置及方法
CN103994753B (zh) 用于黄土填料高填方路堤的分层沉降装置及测量方法
CN206223091U (zh) 一种顶管智能顶进测量系统
CN114016489A (zh) 沉降监测用的基准点固定装置
CN112503248A (zh) 长距离砼涵管曲线顶管安装方法
CN210036720U (zh) 箱涵顶进监测装置
CN211201968U (zh) 一种隧道顶进施工导向的监测装置
CN206609418U (zh) 建筑物沉降倾斜一体化监测装置
CN114087421A (zh) 一种箱涵内敷设压力管道施工方法
CN112413229A (zh) 一种用于长距离顶管的触变泥浆减阻优化施工方法
CN113653150B (zh) 一种回转钻机钻穿污水管线的施工方法
CN219891755U (zh) 一种高填路堤边坡服役安全智能监测预警系统
CN216791179U (zh) 一种地下结构纵向不均匀沉降自动化监测系统
CN115326004A (zh) 一种基于bim的顶管顶进结构受力特性及环境影响感知系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant