CN114050609A - 一种高比例新能源电力系统自适应鲁棒日前优化调度方法 - Google Patents

一种高比例新能源电力系统自适应鲁棒日前优化调度方法 Download PDF

Info

Publication number
CN114050609A
CN114050609A CN202111303134.7A CN202111303134A CN114050609A CN 114050609 A CN114050609 A CN 114050609A CN 202111303134 A CN202111303134 A CN 202111303134A CN 114050609 A CN114050609 A CN 114050609A
Authority
CN
China
Prior art keywords
new energy
unit
representing
cost
power system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111303134.7A
Other languages
English (en)
Other versions
CN114050609B (zh
Inventor
周洪益
沙骏
胥峥
冯定东
邵林
柏晶晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yancheng Power Supply Co of State Grid Jiangsu Electric Power Co Ltd
Original Assignee
Yancheng Power Supply Co of State Grid Jiangsu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yancheng Power Supply Co of State Grid Jiangsu Electric Power Co Ltd filed Critical Yancheng Power Supply Co of State Grid Jiangsu Electric Power Co Ltd
Priority to CN202111303134.7A priority Critical patent/CN114050609B/zh
Publication of CN114050609A publication Critical patent/CN114050609A/zh
Application granted granted Critical
Publication of CN114050609B publication Critical patent/CN114050609B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J3/0075Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source according to economic or energy efficiency considerations, e.g. economic dispatch
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Power Engineering (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Educational Administration (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Wind Motors (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种高比例新能源电力系统自适应鲁棒日前优化调度方法,用于解决高比例新能源电力系统中风力发电和光伏发电出力的不确定性对系统运行调度的影响。本发明首先通过蒙特卡洛模拟依据有限的新能源历史数据,生成新能源出力的不确定场景集。然后,构造以系统运行经济性最优为目标的高比例新能源电力系统自适应鲁棒日前优化调度模型,并构建模型约束条件;采用场景法以及引入辅助变量来求解高比例新能源电力系统自适应鲁棒日前优化调度模型,能够优化高比例新能源电力系统的能量调度。

Description

一种高比例新能源电力系统自适应鲁棒日前优化调度方法
技术领域
本发明属于电力系统电源调度领域,特别涉及计及新能源不确定性的电力系统优化调度方法。
背景技术
目前,由于新能源具有较高的低碳效益,新能源发电在我国发展迅猛,研究表明尽管风电、光伏发电储量巨大、干净清洁,但往往具有很强的随机性,单独并网会对电网造成很大的冲击,不利于电网的稳定运行。风电站和光伏电站发电的这种随机性,同时也会导致风电和光伏发电的效能低下,不仅造成了巨大的浪费,也导致新能源发电这种清洁干净的能源一直无法广泛的应用于电力系统中。另一方面随着国内可再生能源装机容量的快速发展,新能源在电力系统中的占比快速增大,但是高比例新能源接入后,带来了波动性、随机性等不确定性因素,负荷低谷期地区电网潮流倒送功率过大且波动剧烈,可能引起电压波动、设备过载、电能质量下降等问题,新能源消纳面临挑战。
为妥善处置当下新能源发展速度明显快于电网建设和用电负荷增长速度的现实问题,对含高比例新能源的地区电网电力时序生产进行模拟以及研究运行优化辅助决策技术能够有效的解决新能源发电的不合理浪费,提升新能源的消纳能力,避免新能源并网对电网的稳定安全运行造成危害,强化资源高效清洁利用。鲁棒优化作为一种处理不确定性的方法,相比于备用准测法、随机优化及机会约束规划,具有无需知道不确定参数概率分布、计算快捷、规避风险能力好等优点,成为电力系统等领域的不确定性优化问题的重要研究方法。通过自适应鲁棒优化的方法处理新能源系统的不确定性,以实现系统调度对新能源发电不确定性的自适应调整,能够有效促进可再生能源的消纳,降低系统的成本。
发明内容
发明目的:针对以上问题,本发明提出一种高比例新能源电力系统的自适应鲁棒日前优化调度方法,从而提高了算法的求解效率。
技术方案:为实现本发明的目的,本发明所采用的技术方案是:一种高比例新能源电力系统的自适应鲁棒日前优化调度方法,包括如下步骤:
步骤1,高比例新能源电力系统的优化调度需要考虑新能源不确定性的影响:通过蒙特卡洛模拟依据有限的新能源历史数据,生成新能源出力的不确定场景集;
步骤2,构建以高比例新能源电力系统日运行总成本最小为目标函数,将日前能量—备用调度作为第一阶段决策、实时功率平衡调整作为第二阶段决策,建立高比例新能源电力系统自适应鲁棒三层优化调度模型;
步骤3,构建模型约束条件所述约束条件包括:常规机组约束、ESS约束、系统功率平衡约束、网络约束、新能源出力约束;
步骤4,根据所述步骤3的约束条件,对所述步骤2中的高比例新能源电力系统自适应鲁棒模型进行计算,得到高比例新能源电力系统最优调度策略。
进一步的,在所述步骤1中通过蒙特卡洛模拟依据有限的新能源历史数据,生成新能源出力的不确定场景集。
进一步的,在所述步骤2中构建以高比例新能源电力系统日运行总成本最小为目标函数,包括日前能量-备用调度成本和实时能量调整成本,其目标函数表示为:
Figure BDA0003339091270000021
式中,T为模拟调度周期的时段数;
Figure BDA0003339091270000031
分别为t时段常规机组的运行成本、储能运行成本、新能源出力成本、备用成本和风光储的环境效益,下标0表示基准场景,下同;NG表示机组数量s表示可能出现的不确定场景;Ωs表示所有不确定性可能出现的场景集合;
Figure BDA0003339091270000032
分别表示机组、储能、风电、光伏的实时调整量;s代表不确定场景,下同。λi、λW、λPV分别表示常规机组和风光机组的成本系数;βESS、βW、βPV分别表示储能、风电、光伏的环境效益
常规机组的运行成本可以表示为:
Figure BDA0003339091270000033
Figure BDA0003339091270000034
Figure BDA0003339091270000035
式中,
Figure BDA0003339091270000036
表示机组t时段的出力所需煤耗;λcoal、λi
Figure BDA0003339091270000037
分别表示燃煤成本、机组i的固定成本、启动成本;布尔变量μ0,i,t表示机组i在t时段是否运行,0表示不运行,1表示运行;布尔变量
Figure BDA0003339091270000038
表示机组i在t时段是否启机,0表示不启机,1表示启机;
Figure BDA0003339091270000039
分别表示机组SO2和NOx的排放量;kS、kN分别表示单位煤燃烧产生的SO2和NOx;ηS、ηN分别表示机组脱除SO2和NOx的效率;JN、JS分别表示SO2和NOx污染当量数;λEN表示污染税额。
储能电站的运行成本可以表示为:
Figure BDA00033390912700000310
其中,λch、λdis分别表示储能充放电成本;
Figure BDA00033390912700000311
分别表示t时段储能的充放电功率。
系统备用成本可以表示为:
Figure BDA00033390912700000312
式中,
Figure BDA0003339091270000041
分别表示常规机组和储能的备用成本;
Figure BDA0003339091270000042
分别表示常规机组和储能提供的的备用容量,其中U表示上备用;D表示下备用。
风光出力成本可以表示为:
Figure BDA0003339091270000043
式中,
Figure BDA0003339091270000044
表示t时段风电机组j的出力;
Figure BDA0003339091270000045
表示t时段风电机组k的出力。
风光储环境效益可以表示为:
Figure BDA0003339091270000046
进一步的,在步骤3中设立了高比例新能源电力系统的自适应鲁棒日前优化调度模型的约束条件,包括以下约束条件:
(1)常规机组约束条件:
Figure BDA0003339091270000047
Figure BDA0003339091270000048
Figure BDA0003339091270000049
Figure BDA00033390912700000410
Figure BDA00033390912700000411
Figure BDA00033390912700000412
Figure BDA00033390912700000413
Figure BDA00033390912700000414
Figure BDA00033390912700000415
Figure BDA00033390912700000416
Figure BDA00033390912700000417
式中,Pi G,max,Pi G,min分别表示常规机组i的最大技术出力和最小技术出力;μ0,i,t为布尔变量,表示常规机组i在t时刻的运行状态,0表示机组处于关机状态,1表示机组处于运行状态;Pi G,U,Pi G,D表示机组i的上爬坡率和下爬坡率;
Figure BDA0003339091270000051
为布尔变量,表示机组i在t时刻的启机状态,0表示未处于启机状态,1表示处于启机状态;
Figure BDA0003339091270000052
为布尔变量,表示机组i在t时刻的停机状态,0表示未处于停机状态,1表示处于停机状态;Ti on,Ti off分别表示机组i的最小开机时间和最小停机时间;
(2)电储能系统(ESS)约束条件:
Figure BDA0003339091270000053
Figure BDA0003339091270000054
Figure BDA0003339091270000055
Figure BDA0003339091270000056
Figure BDA0003339091270000057
Figure BDA0003339091270000058
Figure BDA0003339091270000059
Figure BDA00033390912700000510
Figure BDA00033390912700000511
式中,
Figure BDA00033390912700000512
表示t时段储能电站e的储电量;
Figure BDA00033390912700000513
表示储能电站的电量自损失系数;
Figure BDA00033390912700000514
表示储能充放电效率;
Figure BDA00033390912700000515
分别表示储能电站e的最大、最小存储容量;
Figure BDA00033390912700000516
Figure BDA00033390912700000517
表示储能电站e始末时刻的储电量;
(3)新能源出力约束条件:
Figure BDA00033390912700000518
Figure BDA00033390912700000519
Figure BDA0003339091270000061
Figure BDA0003339091270000062
式中,
Figure BDA0003339091270000063
表示第j台风电机组在t时刻的最大出力;
Figure BDA0003339091270000064
表示第k台光伏机组在t(1)时刻的最大出力;kw、kPV为弃风光率,旨在以合理的弃风比例提高系统的新能源消纳水平;
(4)系统功率平衡约束
Figure BDA0003339091270000065
(5)网络约束
Figure BDA0003339091270000066
Figure BDA0003339091270000067
-1≤θ0,m,t≤1 (36)
式中,n表示母线节点;
Figure BDA0003339091270000068
表示与母线节点m相连的常规机组集合;
Figure BDA0003339091270000069
表示与母线节点m相连的风电机组集合;
Figure BDA00033390912700000610
表示与节点m相连的光伏机组集合;Ωm表示与节点m相连的其它节点;θ0,m,t,θ0,n,t分别表示母线节点m,n的节点电压相角;xm,n表示节点m和节点n所连支路的阻抗值;
Figure BDA00033390912700000611
表示支路mn传输功率上限。
进一步的,根据步骤3中的约束条件,在Gams中调用求解器进行求解,得到高比例新能源系统的最优化调度策略。
有益效果:与现有技术相比,本发明的技术方案具有以下有益的技术效果:本发明基于鲁棒优化,建立了高比例新能源电力系统的自适应鲁棒日前优化调度模型,能够有效促进可再生能源的消纳,提高系统的经济性和可靠性。
附图说明
图1是本发明的流程图;
图2是30节点系统结构图;
图3(a)是系统运行费用优化结果图,图3(b)是系统储能效益对比图;
图4是系统备用容量优化结果。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步的说明。
本发明所述的高比例新能源电力系统的自适应鲁棒日前优化调度方法,如图1所示,包括以下步骤:
步骤1,高比例新能源电力系统的优化调度需要考虑新能源不确定性的影响:通过蒙特卡洛模拟依据有限的新能源历史数据,生成新能源出力的不确定场景集;
步骤2,构建以高比例新能源电力系统日运行总成本最小为目标函数,将日前能量—备用调度作为第一阶段决策、实时功率平衡调整作为第二阶段决策,建立高比例新能源电力系统自适应鲁棒三层优化调度模型;
步骤3,构建模型约束条件所述约束条件包括:常规机组约束、ESS约束、系统功率平衡约束、网络约束、新能源出力约束;
步骤4,根据所述步骤3的约束条件,对所述步骤2中的高比例新能源电力系统自适应鲁棒模型进行计算,得到高比例新能源电力系统最优调度策略。
在所述步骤1中通过蒙特卡洛模拟依据有限的新能源历史数据,生成新能源出力的不确定场景集。
在所述步骤2中构建以高比例新能源电力系统日运行总成本最小为目标函数,包括日前能量-备用调度成本和实时能量调整成本,其目标函数表示为:
Figure BDA0003339091270000071
式中,T为模拟调度周期的时段数;
Figure BDA0003339091270000072
分别为t时段常规机组的运行成本、储能运行成本、新能源出力成本、备用成本和风光储的环境效益,下标0表示基准场景,下同;NG表示机组数量s表示可能出现的不确定场景;Ωs表示所有不确定性可能出现的场景集合;
Figure BDA0003339091270000081
分别表示机组、储能、风电、光伏的实时调整量;s代表不确定场景,下同。λi、λW、λPV分别表示常规机组和风光机组的成本系数;βESS、βW、βPV分别表示储能、风电、光伏的环境效益
常规机组的运行成本可以表示为:
Figure BDA0003339091270000082
Figure BDA0003339091270000083
Figure BDA0003339091270000084
式中,
Figure BDA0003339091270000085
表示机组t时段的出力所需煤耗;λcoal、λi
Figure BDA0003339091270000086
分别表示燃煤成本、机组i的固定成本、启动成本;布尔变量μ0,i,t表示机组i在t时段是否运行,0表示不运行,1表示运行;布尔变量
Figure BDA0003339091270000087
表示机组i在t时段是否启机,0表示不启机,1表示启机;
Figure BDA0003339091270000088
分别表示机组SO2和NOx的排放量;kS、kN分别表示单位煤燃烧产生的SO2和NOx;ηS、ηN分别表示机组脱除SO2和NOx的效率;JN、JS分别表示SO2和NOx污染当量数;λEN表示污染税额。
储能电站的运行成本可以表示为:
Figure BDA0003339091270000089
式中,λch、λdis分别表示储能充放电成本;
Figure BDA00033390912700000810
分别表示t时段储能的充放电功率。
系统备用成本可以表示为:
Figure BDA00033390912700000811
式中,
Figure BDA00033390912700000812
分别表示常规机组和储能的备用成本;
Figure BDA00033390912700000813
分别表示常规机组和储能提供的的备用容量,其中U表示上备用;D表示下备用。
风光出力成本可以表示为:
Figure BDA0003339091270000091
式中,
Figure BDA0003339091270000092
表示t时段风电机组j的出力;
Figure BDA0003339091270000093
表示t时段风电机组k的出力。
风光储环境效益可以表示为:
Figure BDA0003339091270000094
在步骤3中设立了高比例新能源电力系统的自适应鲁棒日前优化调度模型的约束条件,包括以下约束条件:
(1)常规机组约束条件:
Figure BDA0003339091270000095
Figure BDA0003339091270000096
Figure BDA0003339091270000097
Figure BDA0003339091270000098
Figure BDA0003339091270000099
Figure BDA00033390912700000910
Figure BDA00033390912700000911
Figure BDA00033390912700000912
Figure BDA00033390912700000913
Figure BDA00033390912700000914
Figure BDA00033390912700000915
式中,Pi G,max,Pi G,min分别表示常规机组i的最大技术出力和最小技术出力;μ0,i,t为布尔变量,表示常规机组i在t时刻的运行状态,0表示机组处于关机状态,1表示机组处于运行状态;Pi G,U,Pi G,D表示机组i的上爬坡率和下爬坡率;
Figure BDA00033390912700000916
为布尔变量,表示机组i在t时刻的启机状态,0表示未处于启机状态,1表示处于启机状态;
Figure BDA0003339091270000101
为布尔变量,表示机组i在t时刻的停机状态,0表示未处于停机状态,1表示处于停机状态;Ti on,Ti off分别表示机组i的最小开机时间和最小停机时间;
(2)电储能系统(ESS)约束条件:
Figure BDA0003339091270000102
Figure BDA0003339091270000103
Figure BDA0003339091270000104
Figure BDA0003339091270000105
Figure BDA0003339091270000106
Figure BDA0003339091270000107
Figure BDA0003339091270000108
Figure BDA0003339091270000109
Figure BDA00033390912700001010
式中,
Figure BDA00033390912700001011
表示t时段储能电站e的储电量;
Figure BDA00033390912700001012
表示储能电站的电量自损失系数;
Figure BDA00033390912700001013
表示储能充放电效率;
Figure BDA00033390912700001014
分别表示储能电站e的最大、最小存储容量;
Figure BDA00033390912700001015
Figure BDA00033390912700001016
表示储能电站e始末时刻的储电量;
(3)新能源出力约束条件:
Figure BDA00033390912700001017
Figure BDA00033390912700001018
Figure BDA00033390912700001019
Figure BDA00033390912700001020
式中,
Figure BDA0003339091270000111
表示第j台风电机组在t时刻的最大出力;
Figure BDA0003339091270000112
表示第k台光伏机组在t(1)时刻的最大出力;kw、kPV为弃风光率,旨在以合理的弃风比例提高系统的新能源消纳水平;
(4)系统功率平衡约束
Figure BDA0003339091270000113
(5)网络约束
Figure BDA0003339091270000114
Figure BDA0003339091270000115
-1≤θ0,m,t≤1 (36)
式中,n表示母线节点;
Figure BDA0003339091270000116
表示与母线节点m相连的常规机组集合;
Figure BDA0003339091270000117
表示与母线节点m相连的风电机组集合;
Figure BDA0003339091270000118
表示与节点m相连的光伏机组集合;Ωm表示与节点m相连的其它节点;θ0,m,t,θ0,n,t分别表示母线节点m,n的节点电压相角;xm,n表示节点m和节点n所连支路的阻抗值;
Figure BDA0003339091270000119
表示支路mn传输功率上限。
根据步骤3中的约束条件,在Gams中调用求解器进行求解,得到高比例新能源系统的最优化调度策略,即决策变量
Figure BDA00033390912700001110
Figure BDA00033390912700001111
本实施例以常规机组、风电机组、光伏机组、ESS构成系统电源侧,调度周期设置为1天,分为24个时段。
常规机组的具体参数见表1,电储能系统的具体参数见表2,其它相关参数见表3,算例30节点系统节构见图2。
表1机组参数
Figure BDA00033390912700001112
Figure BDA0003339091270000121
表2电储能系统参数
Figure BDA0003339091270000122
表3系统其它参数
Figure BDA0003339091270000123
图3给出了系统费用优化结果,图4给出了系统备用容量优化结果。
以上仿真结果验证了本发明的有效性和实用性。根据能源优化调度结果发现,该发明相比确定性方法能获得更高的经济收益。通过考虑新能源出力的不确定性进行系统能量调度,能够有效的促进可再生能源的消纳,提高常规能源厂商对可再生能源的认购;此外,通过储能来应对新能源的消纳问题,能够有效的提高系统消纳能力和经济性。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (5)

1.一种高比例新能源电力系统自适应鲁棒日前优化调度方法,其特征在于:该方法包括以下步骤:
步骤1,高比例新能源电力系统的优化调度需要考虑新能源不确定性的影响:通过蒙特卡洛模拟依据有限的新能源历史数据,生成新能源出力的不确定场景集;
步骤2,构建以高比例新能源电力系统日运行总成本最小为目标函数,将日前能量—备用调度作为第一阶段决策、实时功率平衡调整作为第二阶段决策,建立高比例新能源电力系统自适应鲁棒三层优化调度模型;
步骤3,构建模型约束条件所述约束条件包括:常规机组约束、ESS约束、系统功率平衡约束、网络约束、新能源出力约束;
步骤4,根据所述步骤3的约束条件,对所述步骤2中的高比例新能源电力系统自适应鲁棒模型进行计算,得到高比例新能源电力系统最优调度策略。
2.根据权利要求1所述的一种高比例新能源电力系统自适应鲁棒日前优化调度模型,其特征在于:
在所述步骤1中通过蒙特卡洛模拟依据有限的新能源历史数据,生成新能源出力的不确定场景集。
3.根据权利要求1所述的一种高比例新能源电力系统自适应鲁棒日前优化调度模型,其特征在于:
在所述步骤2中构建以高比例新能源电力系统日运行总成本最小为目标函数,包括日前能量-备用调度成本和实时能量调整成本,其目标函数表示为:
Figure FDA0003339091260000011
式中,T为模拟调度周期的时段数;
Figure FDA0003339091260000012
分别为t时段常规机组的运行成本、储能运行成本、新能源出力成本、备用成本和风光储的环境效益,下标0表示基准场景,下同;NG表示机组数量s表示可能出现的不确定场景;Ωs表示所有不确定性可能出现的场景集合;
Figure FDA0003339091260000021
分别表示机组、储能、风电、光伏的实时调整量;s代表不确定场景,下同。λi、λW、λPV分别表示常规机组和风光机组的成本系数;βESS、βW、βPV分别表示储能、风电、光伏的环境效益;
常规机组的运行成本可以表示为:
Figure FDA0003339091260000022
Figure FDA0003339091260000023
Figure FDA0003339091260000024
式中,
Figure FDA0003339091260000025
表示机组t时段的出力所需煤耗;λcoal、λi、λi su分别表示燃煤成本、机组i的固定成本、启动成本;布尔变量μ0,i,t表示机组i在t时段是否运行,0表示不运行,1表示运行;布尔变量
Figure FDA0003339091260000026
表示机组i在t时段是否启机,0表示不启机,1表示启机;
Figure FDA0003339091260000027
分别表示机组SO2和NOx的排放量;kS、kN分别表示单位煤燃烧产生的SO2和NOx;ηS、ηN分别表示机组脱除SO2和NOx的效率;JN、JS分别表示SO2和NOx污染当量数;λEN表示污染税额。
储能电站的运行成本可以表示为:
Figure FDA0003339091260000028
其中,λch、λdis分别表示储能充放电成本;
Figure FDA0003339091260000029
分别表示t时段储能的充放电功率。
系统备用成本可以表示为:
Figure FDA00033390912600000210
式中,
Figure FDA00033390912600000211
分别表示常规机组和储能的备用成本;
Figure FDA00033390912600000212
分别表示常规机组和储能提供的的备用容量,其中U表示上备用;D表示下备用。
风光出力成本可以表示为:
Figure FDA0003339091260000031
式中,
Figure FDA0003339091260000032
表示t时段风电机组j的出力;
Figure FDA0003339091260000033
表示t时段风电机组k的出力。
风光储环境效益可以表示为:
Figure FDA0003339091260000034
4.根据权利要求1所述的一种高比例新能源电力系统自适应鲁棒日前优化调度模型,其特征在于:
在步骤3中设立了高比例新能源电力系统的自适应鲁棒日前优化调度模型的约束条件,包括以下约束条件:
(1)常规机组约束条件:
Figure FDA0003339091260000035
Figure FDA0003339091260000036
Figure FDA0003339091260000037
Figure FDA0003339091260000038
Figure FDA0003339091260000039
Figure FDA00033390912600000310
Figure FDA00033390912600000311
Figure FDA00033390912600000312
Figure FDA00033390912600000313
Figure FDA00033390912600000314
Figure FDA00033390912600000315
式中,Pi G,max,Pi G,min分别表示常规机组i的最大技术出力和最小技术出力;μ0,i,t为布尔变量,表示常规机组i在t时刻的运行状态,0表示机组处于关机状态,1表示机组处于运行状态;Pi G,U,Pi G,D表示机组i的上爬坡率和下爬坡率;
Figure FDA0003339091260000041
为布尔变量,表示机组i在t时刻的启机状态,0表示未处于启机状态,1表示处于启机状态;
Figure FDA0003339091260000042
为布尔变量,表示机组i在t时刻的停机状态,0表示未处于停机状态,1表示处于停机状态;Ti on,Ti off分别表示机组i的最小开机时间和最小停机时间;
(2)电储能系统ESS约束条件:
Figure FDA0003339091260000043
Figure FDA0003339091260000044
Figure FDA0003339091260000045
Figure FDA0003339091260000046
Figure FDA0003339091260000047
Figure FDA0003339091260000048
Figure FDA0003339091260000049
Figure FDA00033390912600000410
Figure FDA00033390912600000411
式中,
Figure FDA00033390912600000412
表示t时段储能电站e的储电量;
Figure FDA00033390912600000413
表示储能电站的电量自损失系数;
Figure FDA00033390912600000414
表示储能充放电效率;
Figure FDA00033390912600000415
分别表示储能电站e的最大、最小存储容量;
Figure FDA00033390912600000416
Figure FDA00033390912600000417
表示储能电站e始末时刻的储电量;
(3)新能源出力约束条件:
Figure FDA00033390912600000418
Figure FDA00033390912600000419
Figure FDA0003339091260000051
Figure FDA0003339091260000052
式中,
Figure FDA0003339091260000053
表示第j台风电机组在t时刻的最大出力;
Figure FDA0003339091260000054
表示第k台光伏机组在t(1)时刻的最大出力;kw、kPV为弃风光率,旨在以合理的弃风比例提高系统的新能源消纳水平;
(4)系统功率平衡约束
Figure FDA0003339091260000055
(5)网络约束
Figure FDA0003339091260000056
Figure FDA0003339091260000057
-1≤θ0,m,t≤1 (36)
式中,n表示母线节点;
Figure FDA0003339091260000058
表示与母线节点m相连的常规机组集合;
Figure FDA0003339091260000059
表示与母线节点m相连的风电机组集合;
Figure FDA00033390912600000510
表示与节点m相连的光伏机组集合;Ωm表示与节点m相连的其它节点;θ0,m,t,θ0,n,t分别表示母线节点m,n的节点电压相角;xm,n表示节点m和节点n所连支路的阻抗值;
Figure FDA00033390912600000511
表示支路mn传输功率上限。
5.根据权利要求1所述的一种高比例新能源电力系统自适应鲁棒日前优化调度模型,其特征在于:
根据步骤3中的约束条件,在Gams中调用求解器进行求解,得到高比例新能源系统的最优化调度策略。
CN202111303134.7A 2021-11-05 2021-11-05 一种高比例新能源电力系统自适应鲁棒日前优化调度方法 Active CN114050609B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111303134.7A CN114050609B (zh) 2021-11-05 2021-11-05 一种高比例新能源电力系统自适应鲁棒日前优化调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111303134.7A CN114050609B (zh) 2021-11-05 2021-11-05 一种高比例新能源电力系统自适应鲁棒日前优化调度方法

Publications (2)

Publication Number Publication Date
CN114050609A true CN114050609A (zh) 2022-02-15
CN114050609B CN114050609B (zh) 2023-11-24

Family

ID=80207146

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111303134.7A Active CN114050609B (zh) 2021-11-05 2021-11-05 一种高比例新能源电力系统自适应鲁棒日前优化调度方法

Country Status (1)

Country Link
CN (1) CN114050609B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115940152A (zh) * 2023-02-22 2023-04-07 国网山东省电力公司东营市垦利区供电公司 一种新能源装机容量优化分配方法、系统、终端及介质
CN116526468A (zh) * 2023-05-09 2023-08-01 国网湖北省电力有限公司经济技术研究院 考虑多类型备用辅助服务的高比例可再生能源电力系统优化调度方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014110878A1 (zh) * 2013-01-16 2014-07-24 国电南瑞科技股份有限公司 风火协调调度模式下日前调度计划优化辅助分析方法
CN109948823A (zh) * 2018-10-29 2019-06-28 河海大学 一种光储充电塔自适应鲁棒日前优化调度方法
CN111711184A (zh) * 2020-05-25 2020-09-25 国网青海省电力公司 一种基于最坏场景辨识的电力系统鲁棒经济调度方法
CN112529249A (zh) * 2020-11-11 2021-03-19 国网江苏省电力有限公司盐城供电分公司 一种计及绿证交易的虚拟电厂优化调度及交易管理方法
CN113193547A (zh) * 2021-03-19 2021-07-30 国网江苏省电力有限公司 计及新能源及负荷区间不确定性的电力系统日前-日内协同调度方法与系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014110878A1 (zh) * 2013-01-16 2014-07-24 国电南瑞科技股份有限公司 风火协调调度模式下日前调度计划优化辅助分析方法
CN109948823A (zh) * 2018-10-29 2019-06-28 河海大学 一种光储充电塔自适应鲁棒日前优化调度方法
CN111711184A (zh) * 2020-05-25 2020-09-25 国网青海省电力公司 一种基于最坏场景辨识的电力系统鲁棒经济调度方法
CN112529249A (zh) * 2020-11-11 2021-03-19 国网江苏省电力有限公司盐城供电分公司 一种计及绿证交易的虚拟电厂优化调度及交易管理方法
CN113193547A (zh) * 2021-03-19 2021-07-30 国网江苏省电力有限公司 计及新能源及负荷区间不确定性的电力系统日前-日内协同调度方法与系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
罗波;张伟;廖湘凯;付发云;周守强;: "基于极限场景集的多类型能源鲁棒调度模型", 水电能源科学, no. 05 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115940152A (zh) * 2023-02-22 2023-04-07 国网山东省电力公司东营市垦利区供电公司 一种新能源装机容量优化分配方法、系统、终端及介质
CN115940152B (zh) * 2023-02-22 2023-08-18 国网山东省电力公司东营市垦利区供电公司 一种新能源装机容量优化分配方法、系统、终端及介质
CN116526468A (zh) * 2023-05-09 2023-08-01 国网湖北省电力有限公司经济技术研究院 考虑多类型备用辅助服务的高比例可再生能源电力系统优化调度方法
CN116526468B (zh) * 2023-05-09 2024-04-26 国网湖北省电力有限公司经济技术研究院 考虑多类型备用辅助服务的高比例可再生能源电力系统优化调度方法

Also Published As

Publication number Publication date
CN114050609B (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
Astero et al. Improving hosting capacity of rooftop PVs by quadratic control of an LV-central BSS
CN103840457B (zh) 考虑电动汽车充放电影响的配电网内dg优化配置方法
CN103544656B (zh) 一种面向最小碳排放的主动配电网运行控制方法
CN108233430B (zh) 一种计及系统能源波动性的交直流混合微网优化方法
CN108108846B (zh) 一种交直流混合微网鲁棒优化协调调度方法
CN107706933B (zh) 基于储能分时状态决策的主动配电网三层优化调度方法
CN114050609B (zh) 一种高比例新能源电力系统自适应鲁棒日前优化调度方法
CN110941799A (zh) 一种考虑系统综合不确定性因素的能量枢纽随机规划方法
CN107968430A (zh) 考虑风-储联合系统概率模型的储输协同随机规划方法
CN110543966A (zh) 一种电热气联供的微能源网的日前调度优化方法
Li et al. Coordinated control and energy management strategies for hundred megawatt-level battery energy storage stations based on multi-agent theory
CN114649814A (zh) 一种柔性互联配电系统两阶段鲁棒优化方法
CN114977180A (zh) 一种基于负荷侧灵活性资源的微电网低碳优化调度方法
CN115841187A (zh) 柔性配电网运行策略的优化方法、装置、设备及存储介质
CN111144633A (zh) 一种cchp微电网运行优化方法
Ghasemi-Marzbali et al. Energy management of an isolated microgrid: A practical case
CN111342501A (zh) 一种含分布式电源微电网的无功功率控制方法
CN116131318A (zh) 面向韧性提升主动配电网两阶段鲁棒优化控制方法及装置
CN115392565A (zh) 一种多能园区低碳运行优化方法及装置
CN114759616A (zh) 一种考虑电力电子器件特性的微电网鲁棒优化调度方法
CN112736948A (zh) 一种充电站中储能系统的功率调节方法及装置
om Bade et al. Battery Uses for Regulating Active Power in Utility-scale Wind-based Hybrid Power Plant
Ma et al. Strategy-driven dynamic optimal dispatch for microgrids under TOU tariffs
Sun et al. Optimal Allocation and Operation Strategies of Distributed Vanadium Redox Battery Energy Storage System
Zhao et al. ADMM Based Multi-Objective Distributed Optimization of AC/DC Distribution System

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant