CN1140463C - 金刚石涂层电极处理难降解废水的工艺 - Google Patents
金刚石涂层电极处理难降解废水的工艺 Download PDFInfo
- Publication number
- CN1140463C CN1140463C CNB01126814XA CN01126814A CN1140463C CN 1140463 C CN1140463 C CN 1140463C CN B01126814X A CNB01126814X A CN B01126814XA CN 01126814 A CN01126814 A CN 01126814A CN 1140463 C CN1140463 C CN 1140463C
- Authority
- CN
- China
- Prior art keywords
- diamond coating
- electrode
- coating electrode
- waste water
- boron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/725—Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46133—Electrodes characterised by the material
- C02F2001/46138—Electrodes comprising a substrate and a coating
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
一种金刚石涂层电极处理难降解废水的工艺,采用性能优越、电位窗口较宽的CVD掺硼金刚石涂层电极作为电解处理废水的阳极或阴极,电极相互平行并垂直置于电解槽中,电解槽中铺上固体催化剂及溶液中添加电解质,以提高电流效率和导电性。本发明选用以抛光硅片为衬底的普通掺硼金刚石涂层电极或以金属钨、碳化硅为衬底的纳米掺硼金刚石涂层电极,利用其优越的性能,满足电化学法处理废水的需求,具有能耗低、电极寿命长、应用范围广的优点。
Description
技术领域:
本发明涉及一种用金刚石涂层电极处理难降解废水的工艺,利用金刚石涂层电极材料的优越性能和宽的电位窗口等特点,采用金刚石涂层电极作为电解处理废水的阳极或阴极。属于环境技术和电化学领域。
背景技术:
电化学方法治理污水具有无须添加氧化剂、絮凝剂等化学药品,设备体积小,占地面积少,操作简便灵活等优点。但是电化学方法一直存在阳极损耗、析氧析氢等副反应的缺点,这大大限制了电解处理废水的实际应用范围。
众所周知,金刚石材料具有优异的物理、化学性能,故用金刚石涂布的电极抗中毒、抗污染的能力很强,可以在强腐蚀的介质中长期稳定的工作,同时金刚石表面特有的生物惰性,使其特别适合用于具有生物活性的生活污水的处理;金刚石涂层电极在水溶液中的电位窗口宽达3V以上,比玻碳(GC)电极、高取向石墨(HOPG)电极和金属电极具有更高的析氧过电位,在相同的电流密度下能高效率的产生·OH,从而使有机物快速地被具有强氧化性的自由基氧化,所以可以更好地用来处理一般电极难以处理含芳香基团等性能稳定的有毒污水;金刚石具有高硬度和高强度,可以忍受超声空化效应对电极表面的强波冲击。这种冲击压强可高达100大气压,因而,用金刚石涂覆的电极使用寿命长。在解决化学气相淀积法(CVD)掺硼工艺制成导电半导体涂层的基础上,国外已有将金刚石电极作为电分析化学(J.ElectroanalyticalChemistry,473(1999):179~185),A.Fujishima等使用高掺硼金刚石电极作阳极,在维生素C存在下测定多巴胺和NADH,取得良好效果。但金刚石电极用于难降解废水的研究尚未见报道。
发明内容:
本发明针对现有技术的不足,提供一种金刚石涂层电极处理难降解废水的新工艺,利用金刚石涂层电极材料的优越性能和特点,克服一般阳极电极的溶解性及析氢析氧副反应,从而提供一种长寿命、低能耗、应用范围广的工业废水治理的新电解方法。
本发明采用金刚石涂层电极作为电解处理废水的阳极或阴极,选用以抛光硅片为衬底的普通掺硼金刚石涂层电极和以金属钨(W)和碳化硅(SiC)为衬底的纳米掺硼金刚石涂层电极。电位窗口在3.54V~3.96V之间。
电解槽水平放置,CVD掺硼金刚石涂层电极与另一工作电极如铁电极、铂电极或CVD掺硼金刚石涂层电极等相互平行,两电极垂直置于电解槽中,也可采用多组电极以串联或并联方式布局,从而增加装置的处理能力。电解槽中铺上2-5cm厚的固体催化剂(如活性炭),使其在两工作电极间发生极化,形成群电极微电池,从而提高电流效率。为提高导电性,溶液中可添加1.0g/L电解质,如无水硫酸钠。电化学处理中采用外加直流电,电流密度控制在0.006~8A/cm2(电流密度过大或过小都会影响处理效果)。处理时间为2小时,分别在不同时间内取样分析,在可见光区最大吸收峰处测吸光度,求色度去除率平均值,并测定各反应时间段的色度去除率和CODCr变化。
本发明所用的金刚石涂层电极是一种新的性能优越的电极材料。此电极在高的电负荷下,对化学、机械和热具有耐久性,没有明显的腐蚀。和常规的碳电极相比,在0.006-8Acm2和通电1800小时后,电极的电活性仍然不变。另外金刚石涂层电极对水电解具有高的超电位,不象玻碳电极那样在较低电位下表面就开始发生氧化还原反应,电位窗口宽,可在较高的电位下直接将染料分子中的芳香基团或废水中的氰化物转化为CO2,或产生·OH使染料分子聚合为疏水大分子从水中析出。本发明利用了金刚石涂层电极的这些性质,满足了电化学法处理废水的需求。采用做成平面或圆筒等多种形状的金刚石涂层电极,可适合大工业废水的处理需要。
具体实施方式:
实施例1
普通金刚石涂层电极(衬底为硅片)用于活性艳兰(X-BR)模拟印染废水的处理1、普通金刚石涂层电极电位窗口的测定
阳极析氧电压(V):1.61;阴极析氢电压(V):1.99;电位窗口(V):3.602、普通金刚石涂层电极用于处理X-BR模拟印染废水
以普通金刚石涂层电极作为电化学处理的阳极,铁片为阴极,电极间距离为4cm。以100mg/L的活性艳兰(X-BR)作为模拟废水,同时加入1.0g/L无水硫酸钠,使模拟废水具有一定的导电性。在电解槽中加入3.0cm厚的颗粒状活性碳(使用前以模拟废水充分浸泡,使其达到吸附平衡)作催化剂。控制电流密度为0.6A/cm2,处理时间为2小时,分别在不同时间内取样分析,在可见光区最大吸收峰处测吸光度,求色度去除率平均值,并测定各反应时间段的CODCr变化。处理结果表明,用普通金刚石涂层电极处理活性艳兰模拟印染废水,2小时后,色度去除率可达99.52%,CODCr去除率为82.15%。处理效果较好。
在电解的过程中,阴极、阳极上均未有明显的气泡产生,说明普通金刚石薄膜电极的电位窗口较宽,使用1800h后,电极表面没有明显变化,能满足试验要求,节省能源。
实施例2
纳米金刚石涂层电极(衬底为W)用于直接桃红(12B)模拟印染废水。1、纳米金刚石涂层电极(衬底为金属w)电位窗口的测定
阳极析氧电压(V):2.24;阴极析氢电压(V):1.45;电位窗口(V):3.692、试验
将纳米金刚石涂层电极的衬底部分用石蜡涂封,作为电化学处理的阳极,铁片为阴极,电极间距离为4cm。以100mg/L的直接桃红(12B)作为模拟废水,同时加入1.0g/L无水硫酸钠,使模拟废水具有一定的导电性。在电解槽中加入3.0cm厚的颗粒状活性碳(使用前以模拟废水充分浸泡,使其达到吸附平衡)作催化剂。控制电流密度为1.0A/cm2,处理时间为2小时,分别在不同时间内取样分析,在可见光区最大吸收峰处测吸光度,求色度去除率平均值,并测定各反应时间段的CODCr变化。处理结果表明,用纳米金刚石涂层电极处理直接桃红(12B)模拟印染废水2小时后,色度去除率为94.94%、,CODCr去除率为80.30%,结果较满意。
在电解的过程中,阴极、阳极上均未有明显的气泡产生,说明这种纳米金刚石涂层电极的电位窗口较宽,能满足试验要求,节省能源。
实施例3
纳米金刚石涂层电极(衬底为SiC)处理某厂实际印染废水1、纳米金刚石涂层电极(衬底为SiC)电位窗口的测定
阳极析氧电压(V):2.16;阴极析氢电压(V):1.38;电位窗口(V):3.54
将纳米金刚石涂层电极的衬底部分用石蜡涂封,作为电化学处理的阳极,铁片为阴极,电极间距离为4cm。在电解槽中加入2.5cm厚的颗粒状活性碳(使用前以模拟废水充分浸泡,使其达到吸附平衡)作催化剂。控制电流密度为0.8A/cm2,其他处理步骤均同实施例1。2小时后,处理结果为,色度去除率可达60.45%,CODCr去除率为86.28%。处理效果较好,电极使用三个月后仍未见损耗,可见其稳定性好。
实施例4
普通金刚石涂层电极(衬底为硅片)处理造纸黑液
操作过程及条件如实施例1。废水采用经过电渗析与活性污泥处理后的出水(是难以生物降解的废水),经稀释后,CODcr为1360mg/L,色度300倍。经过2小时电解处理,COD降至142mg/L,色度为10倍,几近无色透明,说明该电极对难降解有机物的处理是有效果的。
Claims (2)
1、一种金刚石涂层电极处理难降解废水的工艺,其特征在于采用电位窗口在3.54V~3.96V之间、化学气相淀积法掺硼工艺制成的金刚石涂层电极作为电解处理废水的阳极或阴极,电解槽水平放置,金刚石涂层电极与另一工作电极相互平行,两电极垂直置于电解槽中,电解槽中铺上2-5cm厚的颗粒活性碳作催化剂,溶液中添加1.0g/L电解质,外加直流电的电流密度控制在0.006~8A/cm2,处理时间为2小时,化学气相淀积法掺硼工艺制成的金刚石涂层电极选用以抛光硅片为衬底的普通掺硼金刚石涂层电极或以金属钨、碳化硅为衬底的纳米掺硼金刚石涂层电极。
2、如权利要求1所说的金刚石涂层电极处理难降解废水的工艺,其特征在于所说的另一工作电极为铁电极、铂电极或化学气相淀积法掺硼工艺制成的金刚石涂层电极。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB01126814XA CN1140463C (zh) | 2001-09-20 | 2001-09-20 | 金刚石涂层电极处理难降解废水的工艺 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB01126814XA CN1140463C (zh) | 2001-09-20 | 2001-09-20 | 金刚石涂层电极处理难降解废水的工艺 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1336334A CN1336334A (zh) | 2002-02-20 |
CN1140463C true CN1140463C (zh) | 2004-03-03 |
Family
ID=4666819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB01126814XA Expired - Fee Related CN1140463C (zh) | 2001-09-20 | 2001-09-20 | 金刚石涂层电极处理难降解废水的工艺 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1140463C (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1303254C (zh) * | 2004-04-16 | 2007-03-07 | 清华大学 | 一种用于污水处理的电解槽 |
ITMI20041974A1 (it) * | 2004-10-18 | 2005-01-18 | De Nora Elettrodi Spa | Miglioramento del processo di abbattimento del cod per ossidazione elettrochimica |
CN100591630C (zh) * | 2008-04-09 | 2010-02-24 | 江阴顶立环保科技有限公司 | 单晶硅或炭基单晶硅电极电解氧化处理有机化工污水方法 |
CN101798160B (zh) * | 2010-04-07 | 2012-10-17 | 东南大学 | 干法腈纶生产废水的处理装置及预处理方法 |
GB201017346D0 (en) * | 2010-10-14 | 2010-11-24 | Advanced Oxidation Ltd | A bipolar cell for a reactor for treatment of waste water and effluent |
CN102520042B (zh) * | 2011-12-19 | 2014-01-08 | 天津理工大学 | 一种用于检测多巴胺的掺硼金刚石薄膜电极的制备方法 |
CN106006850A (zh) * | 2016-05-25 | 2016-10-12 | 安徽普氏生态环境工程有限公司 | 一种利用硼杂石墨烯电极电化学氧化降解污水cod的方法 |
CN108408848B (zh) * | 2018-05-10 | 2024-07-09 | 深圳先进技术研究院 | 掺硼金刚石/石墨复合电极及制备方法、双电池反应器 |
CN111485223B (zh) * | 2020-05-11 | 2022-05-24 | 南京岱蒙特科技有限公司 | 一种超高比表面积硼掺杂金刚石电极及其制备方法和应用 |
-
2001
- 2001-09-20 CN CNB01126814XA patent/CN1140463C/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1336334A (zh) | 2002-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cheng et al. | Increasing power generation for scaling up single-chamber air cathode microbial fuel cells | |
Hao et al. | Fabrication and characterization of PbO2 electrode modified with [Fe (CN) 6] 3− and its application on electrochemical degradation of alkali lignin | |
Yang et al. | Research on PEG modified Bi-doping lead dioxide electrode and mechanism | |
Sheng et al. | Electrogeneration of H2O2 on a composite acetylene black–PTFE cathode consisting of a sheet active core and a dampproof coating | |
Brillas et al. | A small-scale flow alkaline fuel cell for on-site production of hydrogen peroxide | |
Jiang et al. | Granular activated carbon single-chamber microbial fuel cells (GAC-SCMFCs): a design suitable for large-scale wastewater treatment processes | |
Wang et al. | Intensified degradation and mineralization of antibiotic metronidazole in photo-assisted microbial fuel cells with Mo-W catalytic cathodes under anaerobic or aerobic conditions in the presence of Fe (III) | |
You et al. | Increased sustainable electricity generation in up-flow air-cathode microbial fuel cells | |
Widner et al. | Electrolytic removal of lead using a flow-through cell with a reticulated vitreous carbon cathode | |
Hao et al. | Preparation and characterization of titanium-based PbO 2 electrodes modified by ethylene glycol | |
Lei et al. | Fabrication and characterization of a Cu-Pd-TNPs polymetallic nanoelectrode for electrochemically removing nitrate from groundwater | |
Santos et al. | Application of TiO 2-nanotubes/PbO 2 as an anode for the electrochemical elimination of Acid Red 1 dye | |
CN1140463C (zh) | 金刚石涂层电极处理难降解废水的工艺 | |
Munoz et al. | Combining phosphate species and stainless steel cathode to enhance hydrogen evolution in microbial electrolysis cell (MEC) | |
CN102849878B (zh) | 拟除虫菊酯生产废水的预处理方法 | |
You et al. | Improving phosphate buffer-free cathode performance of microbial fuel cell based on biological nitrification | |
Pillai et al. | Potentiostatic electrodeposition of a novel cost effective PbO2 electrode: degradation study with emphasis on current efficiency and energy consumption | |
Huang et al. | Long-term electricity generation and denitrification performance of MFCs with different exchange membranes and electrode materials | |
An et al. | Amplifying anti-flooding electrode to fabricate modular electro-fenton system for degradation of antiviral drug lamivudine in wastewater | |
Roessler et al. | Electrocatalytic hydrogenation of indigo: Process optimization and scale-up in a flow cell | |
Ye et al. | Tetramethyl ammonium hydroxide production using the microbial electrolysis desalination and chemical-production cell with long anode | |
Zou et al. | Crystal facet controlled stable PbO2 electrode for efficient degradation of tetracycline | |
Mei et al. | Electrochemical oxidation of triclosan using Ti/TiO 2 NTs/Al–PbO 2 electrode: reaction mechanism and toxicity evaluation | |
Tan et al. | Synergetic electrocatalytic degradation of isophorone by active oxygen species generated in the gas diffusion electrode and PbO2 anode | |
CN109516527B (zh) | 一种连续流电化学过滤系统及其在降解氨氮废水中的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |