CN114039903B - 一种基于请求域的软件定义星地融合网络域间路由方法 - Google Patents

一种基于请求域的软件定义星地融合网络域间路由方法 Download PDF

Info

Publication number
CN114039903B
CN114039903B CN202111586974.9A CN202111586974A CN114039903B CN 114039903 B CN114039903 B CN 114039903B CN 202111586974 A CN202111586974 A CN 202111586974A CN 114039903 B CN114039903 B CN 114039903B
Authority
CN
China
Prior art keywords
node
virtual
domain
satellite
virtual node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111586974.9A
Other languages
English (en)
Other versions
CN114039903A (zh
Inventor
徐双
李灯熬
赵菊敏
赵正鹏
房阳
王昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202111586974.9A priority Critical patent/CN114039903B/zh
Publication of CN114039903A publication Critical patent/CN114039903A/zh
Application granted granted Critical
Publication of CN114039903B publication Critical patent/CN114039903B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/04Interdomain routing, e.g. hierarchical routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Relay Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开一种基于请求域的软件定义星地融合网络域间路由方法,该方法利用基于地球固定足印与最大化虚拟链路数的逻辑区域划分方法将动态变化的软件定义星地融合网络数据平面静态化为不随卫星运动变化的固定虚拟拓扑;接着,根据对准时刻域控制器的覆盖范围将固定虚拟拓扑均匀划分为多个控制域,并标记出每个控制域内的虚拟边界节点;然后,构造最小矩形请求域,并综合考虑路径跳数以及边界节点发生拥塞的概率来选择相邻控制域的出口节点和入口节点,同时引入距离最短和随机选择原则构建控制域间转发路径。本发明可以克服低轨道卫星不停绕行和链路频繁中断引起的拓扑变化,降低数据传输延迟和丢包率,为用户体验质量的提升提供保障。

Description

一种基于请求域的软件定义星地融合网络域间路由方法
技术领域
本发明属于星地融合网络通信和路由领域,具体涉及一种基于请求域的软件定义星地融合网络域间路由方法。
背景技术
随着地面偏远地区、海上通信、空中通信业务需求的不断增长,通过卫星网络与地面网络的优势互补建设覆盖全球、全场景信息立体覆盖的星地融合网络是未来移动通信网络发展的必然方向。为促进卫星网络与地面网络的深度融合发展,国内外学者提出了基于“软件化”和“虚拟化”技术的软件定义星地融合网络架构,以降低网络运营成本,实现卫星网络与地面网络的无缝集成,促进新应用、新业务和新通信技术的融合。而大规模低轨道卫星网络能够降低网络传输延迟,为地面移动终端设备提供实时接入服务,成为星地融合网络提供快速、低廉、便捷通信服务的重要组成部分。但低轨道卫星数目的增多使星地融合网络规模不断扩大、拓扑结构更加复杂、链路切换和中断更加频繁。
星地融合网络规模的扩大和网络动态性的增强给软件定义星地融合网络的管理与控制带来了巨大的挑战,为此国内外学者提出了多种针对软件定义星地融合网络的分布式控制器部署的方案。根据控制器的覆盖范围可以将软件定义星地融合网络划分为多个独立的控制域,每个控制域独立向域用户提供服务,从而提高网络路由方案的可扩展性,减弱控制器的资源制约。而控制域间路由的作用则是互联软件定义星地融合网络的各控制域,实现全球用户间的业务传输。因此,研究高效、可克服网络拓扑动态变化、改善用户体验质量的域间路由,对实现全球用户跨地区互联以及促进星地网络一体化融合非常重要。
然而,由于星地融合网络具有高动态性,直接将地面网络的域间路由方法应用到星地融合网络会面临路由频繁更新等技术挑战。另外,将星地融合网络视为一个整体,利用卫星在轨运行的规律性和确定性预测网络节点的位置与链路状态,借助时隙划分方法静态化网络拓扑,再通过地面站进行业务转发路径的计算。该类方法需要较长的时间来完成整网的路由更新,而且过度依赖部署在全球范围内的地面站,极大程度上制约了星地融合网络的服务范围和服务能力。
发明内容
本发明的目的在于面向软件定义星地融合网络采用分布式控制器部署结构带来的控制域间路由问题,从克服星地融合网络拓扑动态变化、改善用户体验质量、提升网络性能的角度,本发明利用地球固定足印和最大化虚拟链路数的拓扑静态化方法,结合最小矩形请求域和随机选择原则,提出了一种可根据静态化虚拟拓扑在分布式控制域划分和最小矩形请求域构造基础上的域间路由方法。
为实现上述技术目的,达到上述技术效果,本发明公开了一种基于请求域的软件定义星地融合网络域间路由方法,该方法包括以下步骤:
步骤1:利用基于地球固定足印的虚拟节点策略,构建软件定义星地融合网络低轨道卫星所形成的逻辑区域,标识每个逻辑区域的固定虚拟节点的逻辑地址,并将虚拟节点逻辑地址与其距离最近的低轨道卫星相关联,
其中,步骤1所述的逻辑区域为每颗卫星的对地足印所等效成的球面六角形,记作Ri,j,i=1,2,…,NL,j=1,2,…,ML
所述的固定虚拟节点对应每个逻辑区域的中心,使用逻辑地址<i,j>标识,i为轨道面编号,j为虚拟节点编号,所述的逻辑区域不随卫星运动而变化,一旦低轨道卫星运动到新的逻辑区域,其足印将同步切换到新的逻辑区域,其逻辑地址更换为新逻辑区域的地址;
步骤2:以维持逻辑区域间持续连接为虚拟链路建立原则,构建同轨道面内以及相邻轨道面上相邻逻辑区域间的虚拟链路,并采用最大化虚拟链路数的逻辑区域划分方法将动态变化的软件定义星地融合网络数据平面静态化为固定虚拟拓扑;
步骤3:根据对准时刻域控制器覆盖的经度范围将固定虚拟拓扑均匀划分为多个控制域,并标记出每个控制域内的虚拟边界节点,每个控制域由相应的域控制器控制,整网由超控制器控制;
步骤4:源虚拟节点将接收到的新业务请求发送给相应的域控制器,域控制器收到请求后判断该业务请求的目的虚拟节点是否在其控制域内,若是,则该域控制器计算业务流的域内转发路径,并下发卫星交换机的流表配置消息,结束本流程;若不是,则域控制器将业务请求发送给超控制器处理,并执行步骤5;
步骤5:根据源虚拟节点和目的虚拟节点的逻辑地址<i,j>和<k,l>判断两节点是否位于同一半球,若是,则在固定虚拟拓扑上构造以虚拟节点<i,j>和<k,l>为对角线顶点的最小矩形请求域,并执行步骤6;若不是,则执行步骤7;
步骤6:根据两虚拟节点的节点编号j和l以及同一半球内两相邻域间存在轨间虚拟链路的虚拟边界节点的节点编号集合SM'进行以下判断:
(1)如果j=l且j,l∈SM′,则分别优先选择两个域内节点编号与j和l相同的虚拟边界节点作为出口和入口节点;
(2)如果j=l且j,
Figure BDA0003427910500000031
则选择虚拟节点编号在集合SM′范围内,且与j和l的差值最小的虚拟边界节点作为出口和入口节点;
(3)如果j≠l且j,l∈SM′,则随机选择最小矩形请求域内任意虚拟边界节点编号作为两个域的出口和入口节点的节点编号;
(4)如果j≠l且j,
Figure BDA0003427910500000032
则从SM′内随机选择一个虚拟边界节点编号作为两个域的出口和入口节点的节点编号;
步骤7:判断源虚拟节点和目的虚拟节点的轨道编号i和k是否均属于同一不同半球内轨道相同的相邻域间虚拟边界节点所在轨道编号集合DN′中,若是,则分别计算源虚拟节点和目的虚拟节点绕过南极或北极连通所间隔的距离,选择跨越距离较短的极点构造最小矩形请求域,并执行步骤8;若不是,则执行步骤9;
步骤8:根据源虚拟节点和目的虚拟节点所在轨道编号i和k进行以下判断:
(1)如果i=k,则分别选择两个域内轨道i和k上的虚拟边界点作为出口和入口节点;
(2)如果i≠k,则从最小矩形请求域所覆盖的轨道编号范围内随机选择一个轨道编号作为两个域内出口和入口节点的轨道编号;
步骤9:随机执行以下(1)或者(2),
(1)选出与源虚拟节点<i,j>在同一半球的相邻域内节点编号为j的虚拟边界节点作为出口节点,并将该出口节点与目的虚拟节点作为新的源和目的节点对继续执行步骤7;
(2)选择与源虚拟节点<i,j>在不同半球内轨道编号为i的相邻域内的虚拟边界节点作为出口节点,并将该出口节点与目的虚拟节点作为新的源和目的节点对继续执行步骤5;
步骤10:完成相邻域间的出口和入口节点选择后,按照直接转发的原则构造域间转发路径。
其中,所述的软件定义星地融合网络数据平面采用由NL×ML颗低轨道卫星组成的铱星星座,域控制器为NG颗静止轨道卫星,超控制器为地面网络控制中心;
所述铱星星座中除反向缝两侧轨道上的低轨道卫星外,每颗低轨道卫星均可以与相邻卫星间建立4条星间链路,反向缝两侧轨道上的低轨道卫星间不存在跨反向缝隙的星间链路,并且低轨道卫星通过极区时,关闭与左右相邻轨道上的星间链路;
所述的铱星星座系统周期为T,所述的极区纬度阈值为
Figure BDA0003427910500000033
优选的,步骤2所述的虚拟链路建立原则为:同轨道面内相邻逻辑区域间则存在持续连接的轨内虚拟链路,而仅当相邻轨道面上的两相邻逻辑区域均不受极区影响时,两相邻逻辑区域之间形成轨间虚拟链路。
进一步的,步骤2所采用的最大化虚拟链路数的逻辑区域划分方法,包括以下步骤:
步骤21:以铱星系统反向缝为边界,将卫星从北向南运动的半球划分东半球,从南向北运动的半球划分西半球;
步骤22:确定对准时刻为系统周期内东半球中紧邻反向缝右侧的轨道上首次出现卫星真近点角为0°的时刻;
步骤23:标记虚拟节点的轨道位置为对准时刻低轨道卫星轨道面的位置;
步骤24:从东半球上位于反向缝右侧的第一条虚拟节点轨道开始,依次将东半球内的虚拟节点轨道编号为1,2,…,NL
步骤25:将奇数虚拟节点轨道上距北极区的纬度范围为
Figure BDA0003427910500000041
经度范围为[λ2n-1-π/2NL,λ2n-1+π/2NL]的逻辑区域作为第一个逻辑区域,并以2π/ML的纬度间隔从东半球依次划分逻辑区域,并分别编号为1,2,…,ML;其中λ2n-1为编号为2n-1的虚拟节点轨道的经度值;
步骤26:将偶数虚拟节点轨道上距北极区的纬度范围为
Figure BDA0003427910500000042
经度范围为[λ2n-π/2NL,λ2n+π/2NL]的逻辑区域作为第一个逻辑区域,并以2π/ML的纬度间隔从东半球依次划分逻辑区域,并分别编号为1,2,…,ML;其中λ2n为编号为2n的虚拟节点轨道的经度值。
进一步,当NL、ML
Figure BDA0003427910500000044
为定值时,北极区与紧邻的逻辑区域之间的角距为0°时,固定虚拟拓扑中的轨间虚拟链路数目取得最大值,最大链路数的计算公式为:
Figure BDA0003427910500000043
其中,所述域控制器管控其覆盖范围内若干条轨道上的虚拟节点所构成的控制域,每个控制域内包含多个虚拟边界节点,相邻虚拟边界节点间通过单条虚拟链路相连。
优选的,所述的虚拟边界节点包括每个控制域内紧邻南北极的虚拟节点和每个控制域内与同一半球的相邻控制域间存在轨间虚拟链路的虚拟节点。
进一步的,所述步骤7中,当源虚拟节点和目的虚拟节点位于不同半球且轨道编号位于不同轨道编号集合时,则先选定同一半球内沿目的节点方向与源虚拟节点所在控制域相邻的控制域内节点编号为i的虚拟边界节点为中间虚拟节点,构造以源虚拟节点<i,j>和中间虚拟节点为对角线顶点的最小矩形请求域,然后构造不同半球内以中间虚拟节点和目的虚拟节点<k,l>为对角线顶点的最小矩形请求域。
进一步的,所述步骤7中,当源虚拟节点和目的虚拟节点位于不同半球且轨道编号位于不同轨道编号集合时,选定不同半球内跨极区且与源虚拟节点所在控制域相邻控制域内轨道编号为i的虚拟边界节点为中间虚拟节点,构造以源虚拟节点<i,j>和中间虚拟节点为对角线顶点的最小矩形请求域,然后构造同一半球内以中间虚拟节点和目的虚拟节点<k,l>为对角线顶点的最小矩形请求域。
本发明具有以下有益效果:
本发明利用基于地球固定足印和最大化虚拟链路数的逻辑区域划分方法将不断变化的星地融合网络数据平面抽象为一个相对地面静止且不随卫星运动变化的固定虚拟拓扑,克服了低轨道卫星不停绕行和链路频繁中断引起的拓扑变化。
本发明通过综合考虑了虚拟域内所选边界节点与源/目的节点间的路径跳数以及边界节点发生拥塞的可能性来选择相邻域的出口和入口节点,同时引入距离最短和随机选择原则构建控制域间路径,以降低数据传输的传输延迟和丢包率,为用户体验质量的提升提供保障。
附图说明
图1为本发明实施例1中卫星A和卫星B在极区外时二者间的星间链路示意图。
图2为本发明实施例1中卫星B进入极区时与卫星A之间的星间链路示意图。
图3为本发明实施例1中极区附近固定虚拟拓扑示例图。
图4为本发明实施例1中控制域与虚拟边界节点示例图。
图5为本发明实施例1中源虚拟节点和目的虚拟节点位于同一半球时生成的请求域示意图。
图6为本发明实施例1中源虚拟节点和目的虚拟节点位于不同半球但轨道编号范围相同时生成的请求域示意图。
图7为本发明实施例1中源虚拟节点和目的虚拟节点位于不同半球且轨道编号范围不同时生成的请求域示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。
实施例1
本发明所述的软件定义星地融合网络由4颗静止轨道卫星、6×11颗低轨道卫星组成的铱星星座、地面网络控制中心和地面用户终端组成。
静止轨道卫星之间通过同轨道星间链路互连,地面用户终端通过上下行用户数据链路直接与低轨道卫星通信,地面网络控制中心仅与可见的静止轨道卫星建立持续稳定的星地链路。除反向缝两侧轨道上的低轨道卫星外,每颗低轨道卫星与紧邻的4颗低轨道卫星建立星间链路,而反向缝两侧轨道上的低轨道卫星仅与同轨道内紧邻的2颗低轨道卫星建立星间链路,不建立跨反向缝隙的星间链路。
而且,当低轨道卫星通过极区时,关闭与左右相邻轨道上低轨道卫星间的星间链路。低轨道铱星星座的系统周期为T,极区纬度阈值为
Figure BDA0003427910500000061
静止轨道卫星仅与其覆盖范围内的低轨道卫星建立层间链路。
网络的域控制器部署在4颗静止轨道卫星上,超控制器部署在地面网络控制中心。本发明以上述所构建的星地融合网络为例,公开的一种基于请求域的软件定义星地融合网络域间路由方法实施步骤如下:
步骤1:利用基于地球固定足印的虚拟节点策略,构建软件定义星地融合网络低轨道卫星所形成的逻辑区域,标识每个逻辑区域的固定虚拟节点的逻辑地址,并将虚拟节点逻辑地址与其距离最近的低轨道卫星相关联,
其中,步骤1所述的逻辑区域为每颗卫星的对地足印所等效成的球面六角形,记作Ri,j,i=1,2,…,6,j=1,2,…,11,
固定虚拟节点对应每个逻辑区域的中心,使用逻辑地址<i,j>标识,i为轨道面编号,j为虚拟节点编号,逻辑区域不随卫星运动而变化,一旦低轨道卫星运动到新的逻辑区域,其足印将同步切换到新的逻辑区域,其逻辑地址更换为新逻辑区域的地址;
步骤2:以维持逻辑区域间持续连接为虚拟链路建立原则,构建同轨道面内以及相邻轨道面上相邻逻辑区域间的虚拟链路,并采用最大化虚拟链路数的逻辑区域划分方法将动态变化的软件定义星地融合网络数据平面静态化为固定虚拟拓扑;
所采用的最大化虚拟链路数的逻辑区域划分方法具体步骤如下:
步骤21:以铱星系统反向缝为边界,将卫星从北向南运动的半球划分东半球,从南向北运动的半球划分西半球;
步骤22:确定对准时刻为系统周期内东半球中紧邻反向缝右侧的轨道上首次出现卫星真近点角为0°的时刻;
步骤23:标记虚拟节点的轨道位置为对准时刻低轨道卫星轨道面的位置,轨道面内虚拟节点以2π/11为间隔均匀分布;
步骤24:从东半球上位于反向缝右侧的第一条虚拟节点轨道开始,依次将东半球内的虚拟节点轨道编号为1,2,…,6;
步骤25:将奇数虚拟节点轨道上距北极区的纬度范围为
Figure BDA0003427910500000071
经度范围为[λ2n-1-π/2×6,λ2n-1+π/2×6]的逻辑区域作为第一个逻辑区域,并以2π/11的纬度间隔从东半球依次划分逻辑区域,并分别编号为1,2,…,11;其中λ2n-1为编号为2n-1的虚拟节点轨道的经度值;
步骤26:将偶数虚拟节点轨道上距北极区的纬度范围为
Figure BDA0003427910500000072
经度范围为[λ2n-π/2×6L,λ2n+π/2×6]的逻辑区域作为第一个逻辑区域,并以2π/11的纬度间隔从东半球依次划分逻辑区域,并分别编号为1,2,…,11;其中λ2n为编号为2n的虚拟节点轨道的经度值。
如图1和图2所示,当卫星A和卫星B均在极区之外时,二者之间可以建立轨间星间链路;而当卫星B越过极区纬度阈值线时,卫星A和卫星B之间的轨间星间链路由连通状态变为关闭状态。即当逻辑区域Ri+1,j被极区纬度阈值线划分为两部分时,卫星B在逻辑区域Ri+1,j内绕行时会引起逻辑区域Ri,j和逻辑区域Ri+1,j之间的连通性发生变化。
因此,为保证虚拟拓扑固定不变,规定仅当相邻两逻辑区域均不受极区纬度阈值影响时,相邻逻辑区域之间才存在虚拟链路,极区附近的固定虚拟拓扑示例如图3所示。逻辑区域不随卫星运动而变化,形成叠加在物理拓扑上的地球固定虚拟拓扑。
步骤3:根据对准时刻域控制器覆盖的经度范围将虚拟拓扑均匀划分为4个域,并将相邻控制域间存在虚拟链路的虚拟节点标记为虚拟边界节点,每个控制域由相应的域控制器控制,整网由超控制器控制。
如图4所示,域控制器管控其所在半球内三条轨道上的虚拟节点所构成的控制域。每个控制域内紧邻南北极的虚拟节点被选作虚拟边界节点,其中包括紧邻反向缝的两条轨道中紧邻南北极的四个虚拟节点。
此外,每个控制域内与同一半球的相邻控制域间存在轨间虚拟链路的虚拟节点也均被选作虚拟边界节点。每个控制域内包含多个虚拟边界节点,相邻虚拟边界节点间通过单条虚拟链路相连。
步骤4:源虚拟节点将接收到的新业务请求发送给相应的域控制器,域控制器收到请求后判断该业务请求的目的虚拟节点是否在其控制域内,若是,则该域控制器计算业务流的域内转发路径,并下发卫星交换机的流表配置消息,结束本流程;若不是,则域控制器将业务请求发送给超控制器处理,并执行步骤5;
步骤5:根据源虚拟节点和目的虚拟节点的逻辑地址<i,j>和<k,l>判断两节点是否位于同一半球,若是,则在固定虚拟拓扑上构造以虚拟节点<i,j>和<k,l>为对角线顶点的最小矩形请求域,并执行步骤6;若不是,则执行步骤7;
当两个虚拟节点<i,j>和<k,l>域位于同一半球时,根据两虚拟节点的逻辑地址编号构成一个最小矩形请求域,如图5所示,
步骤6:根据两虚拟节点的节点编号j和l以及同一半球内两相邻域间存在轨间虚拟链路的虚拟边界节点的节点编号集合,SM′进行以下判断:
(1)如果j=l且j,l∈SM′,则分别优先选择两个域内节点编号与j和l相同的虚拟边界节点作为出口和入口节点;
(2)如果j=l且j,
Figure BDA0003427910500000081
则选择虚拟节点编号在集合SM′范围内,且与j和l的差值最小的虚拟边界节点作为出口和入口节点;
(3)如果j≠l且j,l∈SM′,则随机选择最小矩形请求域内任意虚拟边界节点编号作为两个域的出口和入口节点的节点编号;
(4)如果j≠l且j,
Figure BDA0003427910500000082
则从SM′内随机选择一个虚拟边界节点编号作为两个域的出口和入口节点的节点编号;
步骤7:判断源虚拟节点和目的虚拟节点的轨道编号i和k是否均属于同一不同半球内轨道相同的相邻域间虚拟边界节点所在轨道编号集合DN′中,若是,则分别计算源虚拟节点和目的虚拟节点绕过南极或北极连通所间隔的距离,即计算j和l之间间隔的节点编号个数,选择跨越距离较短的极点构造最小矩形请求域,并执行步骤8;若不是,则执行步骤9;
当两节点位于不同半球但轨道编号位于同一轨道编号集合范围内时,分别计算源虚拟节点和目的虚拟节点绕过南极或北极相连通所间隔的距离,即计算j和l之间间隔的节点编号个数,选择跨越距离较短的极点方向构造最小矩形请求域,如图6所示。
当两节点位于不同半球且轨道编号位于不同轨道编号集合时,则可以先选定同一半球内沿目的节点方向与源虚拟节点所在控制域相邻的控制域内节点编号为i的虚拟边界节点为中间虚拟节点,构造以源虚拟节点<i,j>和中间虚拟节点为对角线顶点的最小矩形请求域,然后构造不同半球内以中间虚拟节点和目的虚拟节点<k,l>为对角线顶点的最小矩形请求域;
或者,先选定不同半球内跨极区且与源虚拟节点所在控制域相邻控制域内轨道编号为i的虚拟边界节点为中间虚拟节点,构造内以源虚拟节点<i,j>和中间节点为对角线顶点的最小矩形请求域,然后构造同一半球内以中间虚拟节点和目的虚拟节点<k,l>为对角线顶点的最小矩形请求域;结果如图7所示。
步骤8:根据源虚拟节点和目的虚拟节点所在轨道编号i和k进行以下判断:
(1)如果i=k,则分别选择两个域内轨道i和k上的虚拟边界点作为出口和入口节点;
(2)如果i≠k,则从最小矩形请求域所覆盖的轨道编号范围内随机选择一个轨道编号作为两个域内出口和入口节点的轨道编号;
步骤9:随机执行以下(1)或者(2),
(1)选出与源虚拟节点<i,j>在同一半球的相邻域内节点编号为j的虚拟边界节点作为出口节点,并将该出口节点与目的虚拟节点作为新的源和目的节点对继续执行步骤7;
(2)选择与源虚拟节点<i,j>在不同半球内轨道编号为i的相邻域内的虚拟边界节点作为出口节点,并将该出口节点与目的虚拟节点作为新的源和目的节点对继续执行步骤5;
步骤10:完成相邻域间的出口和入口节点选择后,按照直接转发的原则构造域间转发路径。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (9)

1.一种基于请求域的软件定义星地融合网络域间路由方法,其特征在于,该方法包括以下步骤:
步骤1:利用基于地球固定足印的虚拟节点策略,构建软件定义星地融合网络低轨道卫星所形成的逻辑区域,标识每个逻辑区域的固定虚拟节点的逻辑地址,并将虚拟节点逻辑地址与其距离最近的低轨道卫星相关联,
其中,步骤1所述的逻辑区域为每颗卫星的对地足印所等效成的球面六角形,记作Ri,j,i=1,2,…,NL,j=1,2,…,ML
所述的固定虚拟节点对应每个逻辑区域的中心,使用的逻辑地址用轨道面编号和虚拟节点编号进行标识,所述的逻辑区域不随卫星运动而变化,一旦低轨道卫星运动到新的逻辑区域,其足印将同步切换到新的逻辑区域,其逻辑地址更换为新逻辑区域的地址;
步骤2:以维持逻辑区域间持续连接为虚拟链路建立原则,构建同轨道面内以及相邻轨道面上相邻逻辑区域间的虚拟链路,并采用最大化虚拟链路数的逻辑区域划分方法将动态变化的软件定义星地融合网络数据平面静态化为固定虚拟拓扑;
步骤3:根据对准时刻域控制器覆盖的经度范围将固定虚拟拓扑均匀划分为多个控制域,并标记出每个控制域内的虚拟边界节点,每个控制域由相应的域控制器控制,整网由超控制器控制;
步骤4:源虚拟节点将接收到的新业务请求发送给相应的域控制器,域控制器收到请求后判断该业务请求的目的虚拟节点是否在其控制域内,若是,则该域控制器计算业务流的域内转发路径,并下发卫星交换机的流表配置消息,结束本流程;若不是,则域控制器将业务请求发送给超控制器处理,并执行步骤5;
步骤5:根据源虚拟节点和目的虚拟节点的逻辑地址<i,j>和<k,l>,i和k为轨道面编号,j和l为虚拟节点编号,判断两节点是否位于同一半球,若是,则在固定虚拟拓扑上构造以虚拟节点<i,j>和<k,l>为对角线顶点的最小矩形请求域,并执行步骤6;若不是,则执行步骤7;
步骤6:根据两虚拟节点的节点编号j和l以及同一半球内两相邻域间存在轨间虚拟链路的虚拟边界节点的节点编号集合SM'进行以下判断:
(1)如果j=l且j,l∈SM',则分别优先选择两个域内节点编号与j和l相同的虚拟边界节点作为出口和入口节点;
(2)如果j=l且
Figure FDA0003974343950000021
则选择虚拟节点编号在集合SM'范围内,且与j和l的差值最小的虚拟边界节点作为出口和入口节点;
(3)如果j≠l且j,l∈SM',则随机选择最小矩形请求域内任意虚拟边界节点编号作为两个域的出口和入口节点的节点编号;
(4)如果j≠l且
Figure FDA0003974343950000022
则从SM'集合内随机选择一个虚拟边界节点编号作为两个域的出口和入口节点的节点编号;
步骤7:判断源虚拟节点和目的虚拟节点的轨道面编号i和k是否均属于同一不同半球内轨道相同的相邻域间虚拟边界节点所在轨道面编号集合DN'中,若是,则分别计算源虚拟节点和目的虚拟节点绕过南极或北极连通所间隔的距离,选择跨越距离较短的极点构造最小矩形请求域,并执行步骤8;若不是,则执行步骤9;
步骤8:根据源虚拟节点和目的虚拟节点所在轨道面编号i和k进行以下判断:
(1)如果i=k,则分别选择两个域内轨道i和k上的虚拟边界点作为出口和入口节点;
(2)如果i≠k,则从最小矩形请求域所覆盖的轨道面编号范围内随机选择一个轨道面编号作为两个域内出口和入口节点的轨道面编号;
步骤9:随机执行以下(1)或者(2),
(1)选出与源虚拟节点<i,j>在同一半球的相邻域内节点编号为j的虚拟边界节点作为出口节点,并将该出口节点与目的虚拟节点作为新的源和目的节点对继续执行步骤7;
(2)选择与源虚拟节点<i,j>在不同半球内轨道面编号为i的相邻域内的虚拟边界节点作为出口节点,并将该出口节点与目的虚拟节点作为新的源和目的节点对继续执行步骤5;
步骤10:完成相邻域间的出口和入口节点选择后,按照直接转发的原则构造域间转发路径。
2.根据权利要求1所述的一种基于请求域的软件定义星地融合网络域间路由方法,其特征在于,
所述的软件定义星地融合网络数据平面采用由NL×ML颗低轨道卫星组成的铱星星座,域控制器为NG颗静止轨道卫星,超控制器为地面网络控制中心;
所述铱星星座中除反向缝两侧轨道上的低轨道卫星外,每颗低轨道卫星均可以与相邻卫星间建立4条星间链路,反向缝两侧轨道上的低轨道卫星间不存在跨反向缝隙的星间链路,并且低轨道卫星通过极区时,关闭与左右相邻轨道上的星间链路;
所述的铱星星座系统周期为T,所述的极区纬度阈值为φ。
3.根据权利要求2所述的一种基于请求域的软件定义星地融合网络域间路由方法,其特征在于,步骤2所述的虚拟链路建立原则为:同轨道面内相邻逻辑区域间则存在持续连接的轨内虚拟链路,而仅当相邻轨道面上的两相邻逻辑区域均不受极区影响时,两相邻逻辑区域之间形成轨间虚拟链路。
4.根据权利要求3所述的一种基于请求域的软件定义星地融合网络域间路由方法,其特征在于,步骤2所采用的最大化虚拟链路数的逻辑区域划分方法,包括以下步骤:
步骤21:以铱星系统反向缝为边界,将卫星从北向南运动的半球划分东半球,从南向北运动的半球划分西半球;
步骤22:确定对准时刻为系统周期内东半球中紧邻反向缝右侧的轨道上首次出现卫星真近点角为0°的时刻;
步骤23:标记虚拟节点的轨道位置为对准时刻低轨道卫星轨道面的位置;
步骤24:从东半球上位于反向缝右侧的第一条虚拟节点轨道开始,依次将东半球内的虚拟节点轨道面编号为1,2,…,NL
步骤25:将奇数虚拟节点轨道上距北极区的纬度范围为[φ,φ-2π/ML],经度范围为[λ2n-1-π/2NL2n-1+π/2NL]的逻辑区域作为第一个逻辑区域,并以2π/ML的纬度间隔从东半球依次划分逻辑区域,并分别编号为1,2,…,ML;其中λ2n-1为编号为2n-1的虚拟节点轨道的经度值;
步骤26:将偶数虚拟节点轨道上距北极区的纬度范围为[φ-π/ML,φ-3π/ML],经度范围为[λ2n-π/2NL2n+π/2NL]的逻辑区域作为第一个逻辑区域,并以2π/ML的纬度间隔从东半球依次划分逻辑区域,并分别编号为1,2,…,ML;其中λ2n为编号为2n的虚拟节点轨道的经度值。
5.根据权利要求4所述的一种基于请求域的软件定义星地融合网络域间路由方法,其特征在于,当NL、ML和φ为定值时,北极区与紧邻的逻辑区域之间的角距为0°时,固定虚拟拓扑中的轨间虚拟链路数目取得最大值,最大链路数的计算公式为:
Figure FDA0003974343950000041
6.根据权利要求1所述的一种基于请求域的软件定义星地融合网络域间路由方法,其特征在于,所述域控制器管控其所在半球内三条轨道上的虚拟节点所构成的控制域,每个控制域内包含多个虚拟边界节点,相邻虚拟边界节点间通过单条虚拟链路相连。
7.根据权利要求6所述的一种基于请求域的软件定义星地融合网络域间路由方法,其特征在于,所述的虚拟边界节点包括每个控制域内紧邻南北极的虚拟节点和每个控制域内与同一半球的相邻控制域间存在轨间虚拟链路的虚拟节点。
8.根据权利要求7所述的一种基于请求域的软件定义星地融合网络域间路由方法,其特征在于,所述步骤7中,当源虚拟节点和目的虚拟节点位于不同半球且轨道面编号位于不同轨道面编号集合时,则先选定同一半球内沿目的节点方向与源虚拟节点所在控制域相邻的控制域内节点编号为i的虚拟边界节点为中间虚拟节点,构造以源虚拟节点<i,j>和中间虚拟节点为对角线顶点的最小矩形请求域,然后构造不同半球内以中间虚拟节点和目的虚拟节点<k,l>为对角线顶点的最小矩形请求域。
9.根据权利要求7所述的一种基于请求域的软件定义星地融合网络域间路由方法,其特征在于,所述步骤7中,当源虚拟节点和目的虚拟节点位于不同半球且轨道面编号位于不同轨道面编号集合时,选定不同半球内跨极区且与源虚拟节点所在控制域相邻控制域内轨道面编号为i的虚拟边界节点为中间虚拟节点,构造以源虚拟节点<i,j>和中间虚拟节点为对角线顶点的最小矩形请求域,然后构造同一半球内以中间虚拟节点和目的虚拟节点<k,l>为对角线顶点的最小矩形请求域。
CN202111586974.9A 2021-12-23 2021-12-23 一种基于请求域的软件定义星地融合网络域间路由方法 Active CN114039903B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111586974.9A CN114039903B (zh) 2021-12-23 2021-12-23 一种基于请求域的软件定义星地融合网络域间路由方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111586974.9A CN114039903B (zh) 2021-12-23 2021-12-23 一种基于请求域的软件定义星地融合网络域间路由方法

Publications (2)

Publication Number Publication Date
CN114039903A CN114039903A (zh) 2022-02-11
CN114039903B true CN114039903B (zh) 2023-02-14

Family

ID=80140977

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111586974.9A Active CN114039903B (zh) 2021-12-23 2021-12-23 一种基于请求域的软件定义星地融合网络域间路由方法

Country Status (1)

Country Link
CN (1) CN114039903B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116405102B (zh) * 2023-06-09 2023-09-08 中国人民解放军战略支援部队航天工程大学 Leo星座网络端到端跳数计算方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459946A (zh) * 2008-12-12 2009-06-17 南京邮电大学 基于虚拟节点的卫星网可靠路由方法
CN106792961A (zh) * 2016-11-18 2017-05-31 华东师范大学 一种基于卫星通信网络设计的双层拓扑路由方法
CN111953399A (zh) * 2020-07-10 2020-11-17 东南大学 一种低轨卫星通信网络中的星间路由方法
CN113765575A (zh) * 2021-08-17 2021-12-07 航天科工海鹰集团有限公司 基于星间链路的遥感星座路由算法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10666352B2 (en) * 2016-08-30 2020-05-26 Worldvu Satellites Limited Satellite system comprising satellites in LEO and other orbits

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459946A (zh) * 2008-12-12 2009-06-17 南京邮电大学 基于虚拟节点的卫星网可靠路由方法
CN106792961A (zh) * 2016-11-18 2017-05-31 华东师范大学 一种基于卫星通信网络设计的双层拓扑路由方法
CN111953399A (zh) * 2020-07-10 2020-11-17 东南大学 一种低轨卫星通信网络中的星间路由方法
CN113765575A (zh) * 2021-08-17 2021-12-07 航天科工海鹰集团有限公司 基于星间链路的遥感星座路由算法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
星地融合网络智能路由技术综述;曹素芝等;《天地一体化网络》;20210630;第2卷(第2期);11-17 *
软件定义的星地组网体系架构研究;魏琳慧等;《信息通信技术与政策》;20210930(第9期);47-53 *

Also Published As

Publication number Publication date
CN114039903A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
Chen et al. Analysis of inter-satellite link paths for LEO mega-constellation networks
Oubbati et al. Intelligent UAV-assisted routing protocol for urban VANETs
Chen et al. A distributed congestion avoidance routing algorithm in mega-constellation network with multi-gateway
de Azúa et al. Internet of satellites (IoSat): Analysis of network models and routing protocol requirements
CN106549703B (zh) 天地一体化网络中低轨卫星通信的方法及系统
CN110493130A (zh) 天地一体化网络动静态混合路由方法
Ekici et al. A distributed routing algorithm for datagram traffic in LEO satellite networks
Tsiachris et al. Junction-based geographic routing algorithm for vehicular ad hoc networks
CN111294108B (zh) 一种面向正交圆轨道构型卫星星座的高效路由方法
CN102238684B (zh) 一种基于带宽和时延双目标优化的路由方法
Uzunalioğlu et al. Footprint handover rerouting protocol for low earth orbit satellite networks
Liu et al. A load balancing routing strategy for LEO satellite network
CN110505153A (zh) 一种天地一体化的混合路由方法
CN104683016A (zh) 基于最小化时延的多层卫星网络最优业务分布路由方法
CN113347678B (zh) 一种5g星座路由分区控制方法
Zhang et al. A routing algorithm based on link state information for LEO satellite networks
CN114039903B (zh) 一种基于请求域的软件定义星地融合网络域间路由方法
Liu et al. A low-complexity probabilistic routing algorithm for polar orbits satellite constellation networks
Arianmehr et al. HybTGR: a hybrid routing protocol based on topological and geographical information in vehicular ad hoc networks
CN113141622A (zh) 一种面向超大规模低轨卫星星座的分布式路由管理方法
Ho et al. A connectionless approach to mobile ad hoc networks in street environments
CN110266366A (zh) 一种卫星导航系统数据传输跨层高效交换方法
Xiao et al. Addressing subnet division based on geographical information for satellite-ground integrated network
Zha et al. Satellite lifetime predicted greedy perimeter stateless routing protocol for LEO satellite network
Ji et al. A-star algorithm based on-demand routing protocol for hierarchical LEO/MEO satellite networks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant