CN114039633B - 用于线性轨迹的智能波束预测方法、装置、设备及介质 - Google Patents

用于线性轨迹的智能波束预测方法、装置、设备及介质 Download PDF

Info

Publication number
CN114039633B
CN114039633B CN202111303074.9A CN202111303074A CN114039633B CN 114039633 B CN114039633 B CN 114039633B CN 202111303074 A CN202111303074 A CN 202111303074A CN 114039633 B CN114039633 B CN 114039633B
Authority
CN
China
Prior art keywords
mobile terminal
projection position
speed
network
estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111303074.9A
Other languages
English (en)
Other versions
CN114039633A (zh
Inventor
孟帆
黄永明
尤肖虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Network Communication and Security Zijinshan Laboratory
Original Assignee
Network Communication and Security Zijinshan Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Network Communication and Security Zijinshan Laboratory filed Critical Network Communication and Security Zijinshan Laboratory
Priority to CN202111303074.9A priority Critical patent/CN114039633B/zh
Publication of CN114039633A publication Critical patent/CN114039633A/zh
Application granted granted Critical
Publication of CN114039633B publication Critical patent/CN114039633B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • H04B17/3913Predictive models, e.g. based on neural network models
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种用于线性轨迹的智能波束预测方法、装置、设备及介质,获取若干个观测时刻移动终端反馈的接收导频信号和测量信号,分别计算基于所述接收导频信号的移动终端投影位置估计值和速度估计值,以及基于所述测量信号的移动终端投影位置和速度估计值,并根据预先训练得到的数据融合神经网络模型,得到模型输出的移动终端投影位置和速度,进而计算预测时刻的移动终端投影位置;根据所述预测时刻的移动终端投影位置,计算预测时刻的基站发射端和移动终端接收端的模拟预编码,以及基站发射端数字预编码,从而实现波束预测。本发明极大地降低波束对齐和跟踪中的波束训练开销和指令下达时延,提升频谱效率。

Description

用于线性轨迹的智能波束预测方法、装置、设备及介质
技术领域
本发明涉及毫米波MIMO无线移动通信技术领域,尤其涉及一种用于线性轨迹的智能波束预测方法、装置、设备及介质。
背景技术
毫米波多用户多输入多输出(MIMO)无线通信使用大规模天线和波束赋形技术来解决高频段下的路径损耗问题,实现空分复用,提高频谱效率。但是,大规模天线下的移动场景尤其是高速铁路场景,波束对齐和跟踪具有大量的波束训练开销和显著的指令下达时延。因此,减少波束训练开销和指令下达时延这两个问题是目前高移动无线通信中的关键。现有的波束管理框架在上述问题解决方面仍有很大的提升空间,长时细时间颗粒度的波束预测技术能够极大地降低波束训练开销,并避免指令下达造成的时延。
无线通信中基于模型驱动的方法具有好的理论保证和可解释性,但是在面对包含不明确先验的线性复杂场景时,模型驱动方法不能有效解决,性能显著下降。
发明内容
技术目的:针对现有技术中的缺陷,本发明公开了一种用于线性轨迹的智能波束预测方法、装置、设备及介质,有助于极大地降低波束对齐和跟踪中的波束训练开销和指令下达时延,提升频谱效率。
技术方案:为实现上述技术目的,本发明采用以下技术方案,一种用于线性轨迹的智能波束预测方法,包括步骤:
获取若干个观测时刻移动终端反馈的接收导频信号和测量信号,所述移动终端的运动轨迹为线性轨迹;
分别计算基于所述接收导频信号的移动终端投影位置估计值和速度估计值,以及基于所述测量信号的移动终端投影位置估计值和速度估计值,并根据预先训练得到的数据融合神经网络模型,得到模型输出的移动终端投影位置和速度;
根据所述模型输出的移动终端投影位置和速度计算预测时刻的移动终端投影位置;
根据所述预测时刻的移动终端投影位置,实现波束预测。
进一步的,基于概率论的参数估计方法,分别计算基于所述接收导频信号的移动终端投影位置估计值和速度估计值,以及基于所述测量信号的移动终端投影位置估计值和速度估计值;
所述概率论的参数估计方法包括似然估计方法和/或贝叶斯估计方法。
进一步的,根据所述接收导频信号确定基于接收导频信号的关于移动终端投影位置和速度的概率函数,计算基于接收导频信号的移动终端的投影位置和速度的估计值;
根据所述测量信号确定基于测量信号的关于移动终端投影位置和速度的概率函数,计算基于测量信号的移动终端的投影位置和速度的估计值。
进一步的,所述数据融合神经网络模型包括位置网络和速度网络;所述位置网络用于输出两组估计值中投影位置估计值的权重及投影位置估计值的偏差;所述速度网络用于输出两组所述估计值中速度估计值的权重及速度估计值的偏差;
根据投影位置估计值的偏差,对移动终端的两个投影位置估计值进行纠正,再对纠正后的估计值分配投影位置估计值的权重,得到模型输出的移动终端投影位置;
根据速度估计值的偏差,对移动终端的两个速度估计值进行纠正,再对纠正后的估计值分配速度估计值的权重,得到模型输出的移动终端速度。
进一步的,所述位置网络和速度网络均包括权重子网络和偏置子网络,所述权重子网络和偏置子网络均为包括两个隐层的神经网络模型;
所述权重子网络用于输出权重,所述偏置子网络用于输出偏差。
进一步的,根据所述预测时刻的移动终端投影位置,实现波束预测,包括:
根据所述预测时刻的移动终端投影位置,得到移动终端接收端的信道LOS的出发角,进而得到基站发射端和移动终端接收端的模拟预编码;
根据所述预测时刻的移动终端投影位置和所述移动终端接收端的信道LOS的出发角,得到虚拟信道,根据所述虚拟信道得到基站发射端数字预编码;
所述基站发射端模拟预编码和所述基站发射端数字预编码均用于供基站发射数据信号,所述移动终端接收端的模拟预编码用于供移动终端接收基站发射的数据信号。
一种用于线性轨迹的智能波束预测装置,包括:
获取模块,用于获取若干个观测时刻移动终端反馈的接收导频信号和测量信号,所述移动终端的运动轨迹为线性轨迹;
位置和速度估计模块,用于分别计算基于所述接收导频信号的移动终端投影位置估计值和速度估计值,以及基于所述测量信号的移动终端投影位置和速度估计值,并根据预先训练得到的数据融合神经网络模型,得到模型输出的移动终端投影位置和速度;
位置预测模块,用于根据所述模型输出的移动终端投影位置和速度计算预测时刻的移动终端投影位置;
波束预测模块,用于根据所述预测时刻的移动终端投影位置,实现波束预测。
进一步的,所述数据融合神经网络模型包括位置网络和速度网络;所述位置网络用于输出两组估计值中投影位置估计值的权重及投影位置估计值的偏差;所述速度网络用于输出两组估计值中速度估计值的权重及速度估计值的偏差;
根据投影位置估计值的偏差,对移动终端的两个投影位置估计值进行纠正,再对纠正后的估计值分配投影位置估计值的权重,得到模型输出的移动终端投影位置估计值;
根据速度估计值的偏差,对移动终端的两个速度估计值进行纠正,再对纠正后的估计值分配速度估计值的权重,得到模型输出的移动终端速度估计值。
一种设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现前述的任意一项所述用于线性轨迹的智能波束预测方法。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行前述的任意一项所述用于线性轨迹的智能波束预测方法。
有益效果:本发明应用于移动终端做线性轨迹运动,通过获取若干个观测时刻移动终端反馈的接收导频信号和测量信号,分别计算基于所述接收导频信号的移动终端投影位置估计值和速度估计值,以及基于所述测量信号的移动终端投影位置和速度估计值,输入预先训练得到的数据融合神经网络模型,得到模型输出的移动终端投影位置和速度;进而计算预测时刻的移动终端投影位置;根据预测的投影位置得到基站和接收端的预编码,实现波束预测;本发明能够极大地降低波束对齐和跟踪中的波束训练开销和指令下达时延,提升频谱效率,性能显著提高。
附图说明
图1为本发明一个实施例中的方法流程图;
图2为本发明一个实施例中波束预测的流程示意图;
图3为本发明一个实施例中线性铁轨环境下通信场景示意图;
图4为本发明一个实施例中投影位置-投影位置估计MSE曲线图;
图5为本发明一个实施例中投影位置-速度估计MSE曲线图;
图6为本发明一个实施例中投影位置-SE曲线图;
图7为本发明一个实施例中波束预测装置结构示意图。
具体实施方式
以下结合附图和实施例对本发明的一种用于线性轨迹的智能波束预测方法、装置、设备及介质做进一步的说明和解释。
实施例1:
如图1所示,一种用于线性轨迹的智能波束预测方法,包括以下步骤:
步骤S1,获取若干个观测时刻移动终端反馈的接收导频信号和测量信号,所述移动终端的运动轨迹为线性轨迹;
具体的,在每个观测时刻,基站发射端向移动终端发射一组导频信号,所述导频信号以波束的形式由基站发射,基站发射端以等时间间隔发射导频信号;基站接收移动终端反馈的接收导频信号;
测量信号包括Doppler(多普勒)频率和相对通信时延,其中Doppler频率可以通过载波频率偏移估计(CFO)获得,相对通信时延即为基站和移动终端间直线距离除以光速,可以通过毫米波测距获得;所述移动终端以所述等时间间隔反馈测量信号。
步骤S2,分别计算基于所述接收导频信号的移动终端投影位置估计值和速度估计值,以及基于所述测量信号的移动终端投影位置和速度估计值,并根据预先训练得到的数据融合神经网络模型,得到模型输出的移动终端投影位置和速度;
所述概率论的参数估计方法包括似然估计方法和/或贝叶斯估计方法。但本发明不限于前述的参数估计方法。
根据所述接收导频信号确定基于接收导频信号的关于移动终端投影位置和速度的概率函数,计算基于接收导频信号的移动终端的投影位置和速度的估计值;
根据所述测量信号确定基于测量信号的关于移动终端投影位置和速度的概率函数,计算基于测量信号的移动终端的投影位置和速度的估计值。
所述数据融合神经网络模型包括位置网络和速度网络;所述位置网络用于输出两组估计值中投影位置估计值的权重及投影位置估计值的偏差;所述速度网络用于输出两组估计值中速度估计值的权重及速度估计值的偏差;
根据投影位置估计值的偏差,对移动终端的两个投影位置估计值进行纠正,再对纠正后的估计值分配投影位置估计值的权重,得到模型输出的移动终端投影位置;
根据速度估计值的偏差,对移动终端的两个速度估计值进行纠正,再对纠正后的估计值分配速度估计值的权重,得到模型输出的移动终端速度。
所述位置网络和速度网络均包括权重子网络和偏置子网络,所述权重子网络和偏置子网络均为包括两个隐层的神经网络模型;
所述权重子网络用于输出权重,所述偏置子网络用于输出偏差。
步骤S3,根据所述模型输出的移动终端投影位置和速度计算预测时刻的移动终端投影位置;
结合移动终端做线性运动,可以根据所述模型输出的移动终端投影位置和速度估计值计算预测时刻的移动终端投影位置。
步骤S4,根据所述预测时刻的移动终端投影位置,实现波束预测。
所述计算预测时刻的基站发射端和移动终端接收端的模拟预编码,以及基站发射端数字预编码,包括:
根据所述预测时刻的移动终端投影位置,得到移动终端接收端的信道LOS的出发角,进而得到基站发射端和移动终端接收端的模拟预编码;
根据所述预测时刻的移动终端投影位置和所述移动终端接收端的信道LOS的出发角,得到虚拟信道,根据所述虚拟信道得到基站发射端数字预编码。
本发明应用于移动终端做线性轨迹运动的场景,通过获取若干个观测时刻移动终端反馈的接收导频信号和测量信号,分别计算基于所述接收导频信号以及基于所述测量信号的移动终端投影位置和速度,输入预先训练得到的数据融合神经网络模型,得到最终的移动终端投影位置和速度估计值;进而计算预测时刻的移动终端投影位置;根据预测的投影位置得到基站和接收端的预编码,实现波束预测;本发明能够极大地降低波束对齐和跟踪中的波束训练开销和指令下达时延,提升频谱效率,性能显著提高。
实施例2:
如图1和图2所示:在本实施例中,提供一种用于线性轨迹的智能波束预测方法,应用在MU-MIMO毫米波通信系统,包括以下步骤:
步骤S1,获取若干个观测时刻移动终端反馈的接收导频信号和测量信号,所述移动终端的运动轨迹为线性轨迹;
如图3所示,基站(图3中的实心点Tx)发射端以等时间间隔向每个移动终端分别发射一组导频信号,每个移动终端做线性轨迹运动,移动终端接收端接收所述基站发射端发射的导频信号,移动终端向基站反馈接收导频信号和测量信号;
测量信号包括Doppler(多普勒)频率和相对通信时延,其中Doppler频率可以通过载波频率偏移估计(CFO)获得,相对通信时延即为基站和移动终端间直线距离除以光速,可以通过毫米波测距获得;所述移动终端以所述等时间间隔反馈测量信号。
步骤S2,基于概率论的参数估计方法,分别计算基于所述接收导频信号的移动终端投影位置估计值和速度估计值,以及基于所述测量信号的移动终端投影位置和速度估计值,并根据预先训练得到的数据融合神经网络模型,得到最终的移动终端投影位置和速度;
考虑一个链路级MU-MIMO毫米波通信系统,包括一个有Nt根天线和Nrf个射频单元的基站(Base Station,BS),以及Nrf个有Nr根天线和1个射频单元的移动终端(MobileTerminal,MT)。其中,基站发射端和移动终端接收端模拟预编码器均使用离散Fourier变换(Discrete Fourier Transform,DFT)码本,即
Figure BDA0003338868020000061
Figure BDA0003338868020000062
其中,At,n为基站发射端射频单元n的模拟预编码向量,
Figure BDA0003338868020000063
为基站发射端DFT矩阵第i个列向量,At,n
Figure BDA0003338868020000064
中的下标t表示Transmitter,即对应的是基站发送端的发射机,Ar为一个移动终端接收端的模拟预编码向量,
Figure BDA0003338868020000065
为移动终端接收端DFT矩阵第j个列向量,Ar
Figure BDA0003338868020000066
中的下标r表示Receiver,即对应的是移动终端接收端的接收机。第u个MT的天线域接收信号建模为:
yu=HuAtDs+nu (1)
其中,1≤u≤Nrf’Hu是基站到移动终端u的信道矩阵,At为基站发射端的模拟预编码向量,
Figure BDA0003338868020000067
Figure BDA0003338868020000068
是基站发射端数字预编码矩阵,s是基带信号,
Figure BDA0003338868020000069
是移动终端u的加性Gaussian噪声,下标u表示针对第u个移动终端。
Figure BDA00033388680200000610
表示噪声方差,
Figure BDA00033388680200000611
表示维度为Nr的单位阵;
对于任意移动终端,毫米波信道H由K个主径组成,因此离散时间窄带信道矩阵为:
Figure BDA0003338868020000071
其中,αk是路径k′的复增益,1≤k′≤K,
Figure BDA0003338868020000072
分别为接收端路径k′的水平到达角AOA和发射端路径k′的出发角AOD;
Figure BDA0003338868020000073
分别为接收端关于
Figure BDA0003338868020000074
的天线响应和发射端关于
Figure BDA0003338868020000075
的天线响应,其计算公式参考公式(3);上标H表示矩阵的共轭转置;φr和φt分别是水平到达角(Angle of Arrival,AOA)和出发角(Angle of Departure,AOD)。
对于AOA和AOD,当天线间距是载波波长一半时,基站发射端和移动终端接收端的天线响应分别为:
Figure BDA0003338868020000076
其中,
Figure BDA0003338868020000077
为移动终端接收端关于
Figure BDA0003338868020000078
的天线响应,
Figure BDA0003338868020000079
为基站发射端关于
Figure BDA00033388680200000710
的天线响应,
Figure BDA00033388680200000711
为角度,公式(3)中的j是虚数,公式(3)适用于AOA和AOD两种角度的计算。
本发明适用于线性轨迹,以高铁场景为例,高铁场景下的先验信息有助于简化波束预测,其中先验被归纳为:
①信道总是包含一条直达径(Line of Sight,LOS,即直达径)。
②信道LOS功率远高于非直达径(Non-LOS)。
③MT以某个速度v沿着铁轨匀速移动。
④LOS的出发角φt和其在x轴上的投影x是一个双射。
根据先验①和②,式(2)的信道可简化为
Figure BDA0003338868020000081
其中,α指代信道LOS的复增益,φ指代信道LOS的出发角φt,因此,信道可用参数集合{α,φ}描述。
根据基站接收的每个观测时刻的接收导频信号、测量信号,通过先验③构建的参数化线性轨迹运动模型来估计MT的投影位置和速度。观测次数为L,观测时间间隔为Δt。在每个观测时刻,BS发射所有水平导频波束。首先,记第l个观测时刻的投影位置为xl,移动终端关于波束i的接收导频信号为:
Figure BDA0003338868020000082
其中,yl,i为波束i在观测时刻l的接收导频信号,sp是基站发送的导频符号向量,
Figure BDA0003338868020000083
是基站发射端数字预编码矩阵,αl为第l个观测时刻的在信道LOS的复增益,ar(Φ(xl)-π)为移动终端接收端天线响应,通过公式(3)计算,其中,Φ(xl)为投影位置在xl处的反正切函数,计算公式参考公式(7);at(Φ(xl))为基站发射端天线响应,通过公式(3)计算,
Figure BDA0003338868020000084
Figure BDA0003338868020000085
为定义的等式,zi(xl)为观测时刻l关于投影位置xl和波束i的接收导频信号估计值,nl,i为波束i在观测时刻l的加性Gaussian噪声。
通过先验③构建的参数化线性轨迹运动模型为:如图3所示,当铁轨被建模为平行于x轴距离为d的线性函数时,根据匀速运动先验③,移动终端(图3中的实心点Rx)的投影位置为:
Figure BDA0003338868020000091
其中,xl为移动终端在第l个观测时刻时的投影位置,x为移动终端最后一个观测时刻(l=L)的投影位置,v为移动终端速度,L为观测总次数,Δt为观测时间间隔。
(1.3)记MT从左往右运动时v是正方向,反正切函数Φ被定义为:
Figure BDA0003338868020000092
其中,φl为在第l个观测时刻时信道LOS的出发角。
所述概率论的参数估计方法包括似然估计方法和/或贝叶斯估计方法。但本发明不限于前述的参数估计方法。
根据所述接收导频信号确定基于接收导频信号的关于移动终端位置和速度的概率函数,计算基于接收导频信号的移动终端的投影位置和速度的估计值;
根据所述测量信号确定基于测量信号的关于移动终端位置和速度的概率函数,计算基于测量信号的移动终端的投影位置和速度的估计值。
本实施例中采用似然估计方法,根据所述接收导频信号确定基于接收导频信号的关于移动终端投影位置和速度的似然函数,根据最大似然准则,计算基于接收导频信号的移动终端的投影位置和速度的估计值;
根据所述测量信号确定基于测量信号的关于移动终端投影位置和速度的似然函数,根据最大似然准则,计算基于测量信号的移动终端的投影位置和速度的估计值。
具体如下:
关于移动终端接收的第l个观测时刻第i个天线的接收导频信号yl,i的后验概率为:
Figure BDA0003338868020000093
其中,p(yl,i;Θp)为基于接收导频信号yl,i关于Θp的后验概率,xp,l是移动终端在观测时刻l基于接收导频信号的投影位置,σn为加性噪声标准差,αl为观测时刻l的信道LOS复增益,zi(·)函数已在公式(5)中定义,
Figure BDA0003338868020000101
为基于接收导频信号的因变量集合,
Figure BDA0003338868020000102
为L次观测的信道LOS复增益集合,xp,vp分别为基于接收导频信号的移动终端投影位置和速度估计值。
因此,关于接收导频信号(包括所有观测时刻和整个基站天线域)总的后验概率(即似然函数)为:
Figure BDA0003338868020000103
其中,公式(9)也是关于所述移动终端投影位置xp和速度vp的似然函数。
依据ML准则(最大似然准则)来估计基于接收导频信号的因变量集合Θp,用坐标下降法来交替迭代优化Θp中的参数,即可得到:最终的基于所述接收导频信号的移动终端投影位置和速度估计值;
其中,因变量集合中的参数初始化为:
Figure BDA0003338868020000104
Figure BDA0003338868020000105
Figure BDA0003338868020000106
其中,
Figure BDA0003338868020000107
分别为移动终端在第l个观测时刻的投影位置初值、信道LOS复增益初值和速度初值;
Figure BDA0003338868020000118
为取关于变量xl的最大值函数,
Figure BDA0003338868020000111
为yl,i的共轭转置,
Figure BDA0003338868020000112
Figure BDA0003338868020000113
的共轭转置,maxv为取关于变量移动终端速度v的最大值函数,αl有闭合表达式,并且关于xp和vp的似然函数是非凸的,因此用一维搜索来参数寻优。第k次迭代的表达式为:
Figure BDA0003338868020000114
Figure BDA0003338868020000115
Figure BDA0003338868020000116
以式(11)迭代更新参数,直至满足收敛条件。
详细的基于接收导频信号的移动终端投影位置和速度值的估计算法如下所示:
Figure BDA0003338868020000117
Figure BDA0003338868020000121
上述{xp,vp}对应于最后一个观测时刻的基于接收导频信号的投影位置和速度估计值。
移动终端向基站反馈与导频信号对应的测量信号,测量信号包括相对通信时延和Doppler频率;基站获取测量信号中的相对通信时延τm和Doppler频率fd,m。在第l个观测时刻,观测值为:
Figure BDA0003338868020000122
其中,nτ,l为第l个观测时刻观测相对通信时延的加性Gaussian噪声(即第l个观测时刻相对通信时延的测量误差噪声),
Figure BDA0003338868020000123
为第l个观测时刻观测Doppler频率的加性Gaussian噪声(即第l个观测时刻Doppler频率的测量误差噪声),τm,l为第l个观测时刻测量信号中的相对通信时延,是观测值,是已知量,τl为第l个观测时刻的相对通信时延(即为基站和移动终端间直线距离除以光速),为真实值,fd,m,l为观测时刻l测量信号中的Doppler频率,为观测值,是已知量,fd,l为观测时刻l的Doppler频率,为真实值,下标m代表测量,
Figure BDA0003338868020000124
是相对通信时延的测量误差噪声,其方差为
Figure BDA0003338868020000131
Figure BDA0003338868020000132
是Doppler频率的测量误差噪声,其方差为
Figure BDA0003338868020000133
测量误差的方差建模为:
Figure BDA0003338868020000134
其中,c是光速,B是带宽,fc是载波频率,Tc是累计时间,
Figure BDA0003338868020000135
是残留载频比率。
因此,投影位置和速度估计值问题为:给定接收导频信号
Figure BDA0003338868020000136
估计MT在观测时刻L的基于接收导频信号的投影位置和速度的参数集合{xp,vp};给定测量信号包括相对通信时延
Figure BDA0003338868020000137
和Doppler频率
Figure BDA0003338868020000138
估计MT在观测时刻L的基于测量信号的投影位置和速度的参数集合{xm,vm}。
根据BS和MT间的几何关系,关于移动终端在第l个观测时刻的投影位置xl的变量集合{τl,fd,l}为:
Figure BDA0003338868020000139
将根据公式(6)得到的xl代入公式(14)得到:τl和fd,l
关于第l次观测时刻的相对通信时延和Doppler频率测量值的后验概率分别为:
Figure BDA0003338868020000141
其中,p(τm,l;Θm)为基于τm,l的后验概率,p(fd,m,l;Θm)为基于fd,m,l的后验概率,Θm={xm,vm}为基于测量信号的因变量集合。
关于一组测量信号的总后验概率(即似然函数)为:
Figure BDA0003338868020000142
其中,公式(16)也是关于所述移动终端投影位置xm和速度vm的似然函数。
基于测量信号的因变量集合Θm中初始化参数为:
Figure BDA0003338868020000143
Figure BDA0003338868020000144
其中,sign(·)是符号函数。第k次迭代的表达式为:
Figure BDA0003338868020000145
Figure BDA0003338868020000146
以式(18)迭代更新参数,直至满足收敛条件。
详细的基于测量信号的移动终端投影位置和速度的估计算法如下所示:
Figure BDA0003338868020000147
Figure BDA0003338868020000151
上述{xm,vm}对应于最后一个观测时刻的基于测量信号的投影位置和速度估计值。
进一步的,所述数据融合神经网络模型包括位置网络和速度网络;所述位置网络用于输出两组估计值中投影位置估计值的权重及投影位置估计值的偏差;所述速度网络用于输出两组估计值中速度估计值的权重及速度估计值的偏差;
根据投影位置估计值的偏差,对移动终端的两个投影位置估计值进行纠正,再对纠正后的估计值分配投影位置估计值的权重,得到模型输出的移动终端投影位置;
根据速度估计值的偏差,对移动终端的两个速度估计值进行纠正,再对纠正后的估计值分配速度估计值的权重,得到模型输出的移动终端速度。
所述位置网络和速度网络具有相同的拓扑结构,均包括权重子网络和偏置子网络,所述权重子网络和偏置子网络均为包括两个隐层的神经网络模型;
所述权重子网络用于输出权重,所述偏置子网络用于输出偏差。
具体的:
根据接收导频信号估计的参数集{xp,vp}和测量信号估计的参数集{xm,vm},作为数据融合神经网络(Neural Network,NN)模型h(·;Θh)的输入,其中Θh={Θx,Θv}为数据融合神经网络模型参数,包括了位置网络hx的模型参数Θx和速度网络hv的参数Θy。位置网络hx和速度网络hv具有相同的拓扑,且每个网络由一个权重子网络和一个偏置子网络组成,权重子网络包含输入层、两个隐层和输出层,偏置子网络包含输入层、两个隐层和输出层。权重子网络和偏置子网络的拓扑如表1所示,
Figure BDA0003338868020000161
其中‘ReLU’为修正线性单元(Rectified Linear Unit,ReLU),‘BN’为批归一化(Batch Normalization,BN),‘sigmoid’为sigmoid函数,‘linear’为线性函数。数字则为该层计算单元数。位置网络和速度网络的表达式为:
{wx,bx,m,bx,p}=hx({xp,vp},{xm,vm};Θx), (19)
{wv,bv,m,bv,p}=hv({xp,vp},{xm,vm};Θv).
其中,wx为位置网络输出的移动终端的投影位置估计值的权重,wv为速度网络输出的移动终端的速度估计值的权重,bx,p为位置网络输出的基于接收导频信号的移动终端的投影位置估计值的偏差,bx,m为位置网络输出的基于测量信号的移动终端的投影位置估计值的偏差,bv,p为速度网络输出的基于接收导频信号的移动终端的速度估计值的偏差,bv,m为速度网络输出的基于测量信号的移动终端的速度估计值的偏差;Θx、Θv分别为位置网络hx的可训练参数和速度网络hv的可训练参数。
根据所述位置网络hx和速度网络hv输出的权重集合
Figure BDA0003338868020000171
和偏差集合
Figure BDA0003338868020000172
数据融合神经网络模型的输出的移动终端投影位置和速度为:
Figure BDA0003338868020000173
相比于一般的NN(神经网络),本发明中的数据融合神经网络模型是轻量的,能有效对抗过拟合,且具有很好的可解释性。
数据融合神经网络模型的训练方式:数据融合神经网络模型h(·;Θh)的训练以监督学习的方式进行,训练的输入样本为基于接收导频信号估计的参数集为{xp,vp}、基于测量信号估计的参数集为{xm,vm},输出样本为移动终端投影位置和速度标签,损失函数被定义为:
Figure BDA0003338868020000174
其中,下标(·)tar表示标签数据,xtar表示投影位置标签,vtar表示速度标签。参数集Θh以小批量梯度下降法迭代更新直至收敛。
步骤S3,根据所述模型输出的移动终端投影位置和速度计算预测时刻的移动终端投影位置;
结合移动终端做线性运动,可以根据所述模型输出的移动终端投影位置和速度计算预测时刻的移动终端投影位置。
具体的:
考虑线性平行铁轨时,根据模型输出的投影位置和速度,得到第u个MT在第q个预测时刻的预测投影位置:
xq,u=xu+vu(q-1)Δtp (22)
其中,xu为上文计算得到的最终的移动终端u的投影位置,vu为上文计算得到的最终的移动终端u的速度,Δtp为预测时间间隔。
步骤S4,根据所述预测时刻的移动终端投影位置,实现波束预测。
根据所述预测时刻的移动终端投影位置,实现波束预测,包括:
根据所述预测时刻的移动终端投影位置,得到移动终端接收端的信道LOS的出发角,进而得到基站发射端和移动终端接收端的模拟预编码;
根据所述预测时刻的移动终端投影位置和所述移动终端接收端的信道LOS的出发角,得到虚拟信道,根据所述虚拟信道得到基站发射端数字预编码;
所述基站发射端模拟预编码和所述基站发射端数字预编码均用于供基站发射数据信号,所述移动终端接收端的模拟预编码用于供移动终端接收基站发射的数据信号,实现在波束预测下的数据信号传输。
所述计算预测时刻的基站发射端和移动终端接收端的模拟预编码,以及基站发射端数字预编码,包括:
根据所述预测时刻的移动终端投影位置,得到移动终端接收端的信道LOS的出发角,进而得到基站发射端和移动终端接收端的模拟预编码;
具体的:
根据式(7),令xq,u=xl,得到φq,u=φl,φq,u为第q个预测时刻、第u个MT接收端的信道LOS的出发角AOD。
因此,第u个MT接收端和基站发射端的模拟预编码向量分别为:
Figure BDA0003338868020000191
Figure BDA0003338868020000192
基站发射端的模拟预编码矩阵为
Figure BDA0003338868020000193
所有MT的接收端模拟预编码为
Figure BDA0003338868020000194
根据所述预测时刻的移动终端投影位置和所述移动终端接收端的信道LOS的出发角,得到虚拟信道,根据所述虚拟信道得到基站发射端数字预编码;
具体的:
在第q个预测时刻,基站发射端数字预编码矩阵Dq由Nrf个预编码向量组成,即
Figure BDA0003338868020000195
其中Vq,u为移动终端u在第q个预测时刻的数字预编码向量。其中,数字预编码向量集合由下述优化问题得到:
Figure BDA0003338868020000196
Figure BDA0003338868020000197
其中,
Figure BDA0003338868020000198
为向量2-范数的平方,Pt,max是BS最大发射功率,等效低维信道
Figure BDA0003338868020000199
ar,q,u为移动终端u的接收端在第q个预测时刻的天线响应,Hq,u为移动终端u的接收端在第q个预测时刻的信道矩阵,At,q是基站发射端在第q个预测时刻的模拟预编码矩阵。在长时预测中,瞬时信道状态信息(Instantaneous CSI,I-CSI)甚至统计信道状态信息(Statistical CSI,I-CSI)难以获得。因此,本发明用虚拟信道来表征实际信道:
Figure BDA0003338868020000201
其中,Γ是关于投影位置的幅度公式,即该投影位置的虚拟信道幅度,可通过3GPPTR 38.901中路径损耗公式得到一个估计表达式。虚拟低维等效信道即为
Figure BDA0003338868020000202
根据最小均方误差(Minimal Mean Square Error,MMSE)预编码器,基站发射端数字预编码矩阵为:
Figure BDA0003338868020000203
其中,
Figure BDA0003338868020000204
Figure BDA0003338868020000205
为维度为的Nrf单位阵,
Figure BDA0003338868020000206
表示噪声方差。
本实施例中,在预测时刻q,根据基站发射端模拟预编码At,q和基站数字预编码Dq,基站以混合预编码(模拟预编码和数字预编码结合)来发射信号。同时,所述移动终端接收端根据所述接收端模拟预编码Ar,q来接收信号。
根据所述基站发射端模拟预编码和所述基站发射端数字预编码,基站以混合预编码来发射数据信号,其中,基站射频单元实现数字预编码,基站天线的移相器实现模拟预编码,射频单元和移相器全连接;同时,移动终端根据所述移动终端接收端模拟预编码来接收数据信号。
目前的单用户波束对齐和跟踪方案中,高速铁路波束驻留周期是10ms,基站和移动终端均扫描3个水平波束,那么1s内需要扫描900个波束。而本发明中一个波束预测周期为1.25s,每个周期内基站发射3次导频信号,每次导频信号以8次波束发出,那么在1.25s内只扫描24个波束。多用户场景下,波束开销随用户数线性增长。首先,本发明有助于极大地降低波束训练开销,尤其是在多移动用户的场景下。其次,现有技术的波束对齐和跟踪方案需要将测量值反馈给基站侧,这会引入约25ms左右的指令下达时延,而本发明通过波束预测,避免了指令下达过程,因此时延为零。综上,在多用户移动场景下,本发明具有更小的波束开销和零时延,因此能极大地提升频谱效率。
实施例3:
如附图7所示,一种用于线性轨迹的智能波束预测装置,包括:
获取模块,用于获取若干个观测时刻移动终端反馈的接收导频信号和测量信号,所述移动终端的运动轨迹为线性轨迹;
位置和速度估计模块,用于分别计算基于所述接收导频信号的移动终端投影位置估计值和速度估计值,以及基于所述测量信号的移动终端投影位置和速度估计值,并根据预先训练得到的数据融合神经网络模型,得到模型输出的移动终端投影位置和速度;
位置预测模块,用于根据所述模型输出的移动终端投影位置和速度计算预测时刻的移动终端投影位置;
波束预测模块,用于根据所述预测时刻的移动终端投影位置,实现波束预测。
进一步的,基于概率论的参数估计方法,分别计算基于所述接收导频信号的移动终端投影位置估计值和速度估计值,以及基于所述测量信号的移动终端投影位置估计值和速度估计值;
所述概率论的参数估计方法包括似然估计方法和/或贝叶斯估计方法。
进一步的,根据所述接收导频信号确定基于接收导频信号的关于移动终端投影位置和速度的概率函数,计算基于接收导频信号的移动终端的投影位置和速度的估计值;
根据所述测量信号确定基于测量信号的关于移动终端投影位置和速度的概率函数,计算基于测量信号的移动终端的投影位置和速度的估计值。
进一步的,所述数据融合神经网络模型包括位置网络和速度网络;所述位置网络用于输出两组估计值中投影位置估计值的权重及投影位置估计值的偏差;所述速度网络用于输出所述估计值中速度估计值的权重及速度估计值的偏差;
根据投影位置估计值的偏差,对移动终端的两个投影位置估计值进行纠正,再对纠正后的估计值分配投影位置估计值的权重,得到模型输出的移动终端投影位置;
根据速度估计的偏差,对移动终端的两个速度估计值进行纠正,再对纠正后的估计值分配速度估计值的权重,得到模型输出的移动终端速度。
进一步的,所述位置网络和速度网络均包括权重子网络和偏置子网络,所述权重子网络和偏置子网络均为包括两个隐层的神经网络模型;
所述权重子网络用于输出权重,所述偏置子网络用于输出偏差。
进一步的,根据所述预测时刻的移动终端投影位置,实现波束预测,包括:
根据所述预测时刻的移动终端投影位置,得到移动终端接收端的信道LOS的出发角,进而得到基站发射端和移动终端接收端的模拟预编码;
根据所述预测时刻的移动终端投影位置和所述移动终端接收端的信道LOS的出发角,得到虚拟信道,根据所述虚拟信道得到基站发射端数字预编码;
所述基站发射端模拟预编码和所述基站发射端数字预编码均用于供基站发射数据信号,所述移动终端接收端的模拟预编码用于供移动终端接收基站发射的数据信号。
本发明能够极大地降低波束对齐和跟踪中的波束训练开销和指令下达时延,提升频谱效率,性能显著提高。
实施例4:
一种设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现以上任一所述的一种用于线性轨迹的智能波束预测方法。存储器可为各种类型的存储器,可为随机存储器、只读存储器、闪存等。处理器可为各种类型的处理器,例如,中央处理器、微处理器、数字信号处理器或图像处理器等。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行以上任一所述的一种用于线性轨迹的智能波束预测方法。存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
实施例5:
为了验证本发明波束预测方法的性能优势,以下给出一个实验过程。
毫米波信道模型为3GPP TR 38.901 UMa LOS。基站载频fc=30GHz,带宽B=80MHz,基站最大发射功率Pt,max=30dBm,水平天线数为8,射频单元数为4,基站间距离200m。噪声功率谱密度为-174dBm/Hz。移动终端有4个,每个移动终端有4根水平天线和1个射频单元。终端速度服从Laplacian分布,均值256(km/h)2,方差18(km/h)2。BS和MT最小距离为11m。预测时间颗粒度为Δtp=1.25ms,观测周期为1.25s,观测间隔Δt=100ms,观测次数L=3。累计时间Tc=12.5ms,残留载波比例1ppm。
本实施例中,如图4所示,当MT远离BS时,测量的定位估计精度较高,而MT位于BS附近时,其精度较低。这一现象是由于,相对通信延迟包含BS与MT间的距离信息,但不能推断MT位于BS右侧或左侧。此外,但是,当Doppler频率被噪声严重污染或速度分量很小时,估计性能无法得到改善。因此,如图4和图5所示,导频信号表示基于接收导频信号的方法,即只使用导频信号来得到移动终端投影位置和速度估计值,并以所述投影位置和速度估计值做波束预测;测量信号表示基于测量信号的方法,即只使用测量信号来得到移动终端投影位置和速度估计值,并以所述投影位置和速度估计值做波束预测。在MT远离BS时基于测量信号的投影位置和速度估计都不准确。同时,当BS和MT距离变小时,基于接收导频信号的估计更加准确。这是因为路径损耗变小,SNR提高。此外,MT的AOD也容易在这个范围内被区分。当MT远离BS时,估计的准确度急剧下降。
一般地,当MT远离BS时,基于测量信号的估计准确度高于基于接收导频信号的估计,当MT在BS附近时,基于接收导频信号的估计准确度高于基于测量信号的估计。本发明的估计方法在投影位置和速度估计上具有最高的准确度。仿真结果验证了所述方法的有效性。
本实施例中,如图6所示,频谱效率(Spectral Efficiency,SE)与投影位置的关系如图6所示。其中,作为基准对比方案,已知I-CSI和S-CSI的方法具有不可达SE性能上界。本发明方法在SE性能上优于仅基于测量信号或导频信号的方法。其中,基于测量信号的方法只使用测量信号来得到移动终端投影位置和速度估计值,并以所述投影位置和速度估计值做波束预测;基于接收导频信号的方法只使用导频信号来得到移动终端投影位置和速度估计值,并以所述投影位置和速度估计值做波束预测。此外,Nrf个MT的平均和速率在表2(不同方法的平均和速率性能(bps/Hz))中列出。
Figure BDA0003338868020000231
本实施例中,考虑MT特定的导频信号,现有技术中波束对齐/跟踪(beamalignment/tracking,BA/T)和本发明中波束预测的波束训练开销均随着MT数量线性增长。将开销成本比定义为开销占时频资源的比例。如表3所示,与BA/T算法相比,所述波束预测训练开销接近于零,当MT数大于4时,所述波束预测的有效和速率高于BA/T。此外,BA/T的指令下达延迟约为20ms,而所述波束预测延迟为0。仿真结果验证了所述波束预测方法的有效性,如表3(不同方法的开销比例和平均有效和速率)所示:
Figure BDA0003338868020000241
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.一种用于线性轨迹的智能波束预测方法,其特征在于:包括步骤:
获取若干个观测时刻移动终端反馈的接收导频信号和测量信号,所述移动终端的运动轨迹为线性轨迹;
分别计算基于所述接收导频信号的移动终端投影位置估计值和速度估计值,以及基于所述测量信号的移动终端投影位置估计值和速度估计值,并根据预先训练得到的数据融合神经网络模型,得到模型输出的移动终端投影位置和速度;
所述数据融合神经网络模型包括位置网络和速度网络;所述位置网络用于输出两组估计值中投影位置估计值的权重及投影位置估计值的偏差;所述速度网络用于输出两组估计值中速度估计值的权重及速度估计值的偏差;
根据投影位置估计值的偏差,对移动终端的两个投影位置估计值进行纠正,再对纠正后的估计值分配投影位置估计值的权重,得到模型输出的移动终端投影位置;
根据速度估计值的偏差,对移动终端的两个速度估计值进行纠正,再对纠正后的估计值分配速度估计值的权重,得到模型输出的移动终端速度;
根据所述模型输出的移动终端投影位置和速度计算预测时刻的移动终端投影位置;
根据所述预测时刻的移动终端投影位置,实现波束预测。
2.根据权利要求1所述的一种用于线性轨迹的智能波束预测方法,其特征在于:
基于概率论的参数估计方法,分别计算基于所述接收导频信号的移动终端投影位置估计值和速度估计值,以及基于所述测量信号的移动终端投影位置估计值和速度估计值;
所述概率论的参数估计方法包括似然估计方法和/或贝叶斯估计方法。
3.根据权利要求1或2所述的一种用于线性轨迹的智能波束预测方法,其特征在于:
根据所述接收导频信号确定基于接收导频信号的关于移动终端投影位置和速度的概率函数,计算基于接收导频信号的移动终端的投影位置和速度的估计值;
根据所述测量信号确定基于测量信号的关于移动终端投影位置和速度的概率函数,计算基于测量信号的移动终端的投影位置和速度的估计值。
4.根据权利要求1所述的一种用于线性轨迹的智能波束预测方法,其特征在于:
所述位置网络和速度网络均包括权重子网络和偏置子网络,所述权重子网络和偏置子网络均为包括两个隐层的神经网络模型;
所述权重子网络用于输出权重,所述偏置子网络用于输出偏差。
5.根据权利要求1所述的一种用于线性轨迹的智能波束预测方法,其特征在于:
根据所述预测时刻的移动终端投影位置,实现波束预测,包括:
根据所述预测时刻的移动终端投影位置,得到移动终端接收端的信道LOS的出发角,进而得到基站发射端和移动终端接收端的模拟预编码;
根据所述预测时刻的移动终端投影位置和所述移动终端接收端的信道LOS的出发角,得到虚拟信道,根据所述虚拟信道得到基站发射端数字预编码;
所述基站发射端模拟预编码和所述基站发射端数字预编码均用于供基站发射数据信号,所述移动终端接收端的模拟预编码用于供移动终端接收基站发射的数据信号。
6.一种用于线性轨迹的智能波束预测装置,其特征在于:包括:
获取模块,用于获取若干个观测时刻移动终端反馈的接收导频信号和测量信号,所述移动终端的运动轨迹为线性轨迹;
位置和速度估计模块,用于分别计算基于所述接收导频信号的移动终端投影位置估计值和速度估计值,以及基于所述测量信号的移动终端投影位置和速度估计值,并根据预先训练得到的数据融合神经网络模型,得到模型输出的移动终端投影位置和速度;
所述数据融合神经网络模型包括位置网络和速度网络;所述位置网络用于输出两组估计值中投影位置估计值的权重及投影位置估计值的偏差;所述速度网络用于输出两组估计值中速度估计值的权重及速度估计值的偏差;
根据投影位置估计值的偏差,对移动终端的两个投影位置估计值进行纠正,再对纠正后的估计值分配投影位置估计值的权重,得到模型输出的移动终端投影位置;
根据速度估计值的偏差,对移动终端的两个速度估计值进行纠正,再对纠正后的估计值分配速度估计值的权重,得到模型输出的移动终端速度;
位置预测模块,用于根据所述模型输出的移动终端投影位置和速度计算预测时刻的移动终端投影位置;
波束预测模块,用于根据所述预测时刻的移动终端投影位置,实现波束预测。
7.一种用于线性轨迹的智能波束预测设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现权利要求1~5中任意一项所述用于线性轨迹的智能波束预测方法。
8.一种计算机可读存储介质,其特征在于,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1~5中任意一项所述用于线性轨迹的智能波束预测方法。
CN202111303074.9A 2021-11-04 2021-11-04 用于线性轨迹的智能波束预测方法、装置、设备及介质 Active CN114039633B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111303074.9A CN114039633B (zh) 2021-11-04 2021-11-04 用于线性轨迹的智能波束预测方法、装置、设备及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111303074.9A CN114039633B (zh) 2021-11-04 2021-11-04 用于线性轨迹的智能波束预测方法、装置、设备及介质

Publications (2)

Publication Number Publication Date
CN114039633A CN114039633A (zh) 2022-02-11
CN114039633B true CN114039633B (zh) 2022-10-14

Family

ID=80136423

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111303074.9A Active CN114039633B (zh) 2021-11-04 2021-11-04 用于线性轨迹的智能波束预测方法、装置、设备及介质

Country Status (1)

Country Link
CN (1) CN114039633B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109743268A (zh) * 2018-12-06 2019-05-10 东南大学 基于深度神经网络的毫米波信道估计和压缩方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2017004460A (es) * 2017-04-05 2018-11-09 Centro De Investigacion Y De Estudios Avanzados Del Instituto Politecnico Nac Sistema de comunicaciones mimo (multiple-input multiple-output) para canales doblemente selectivos con recepción de trayectorias virtuales.
US11816901B2 (en) * 2020-03-04 2023-11-14 Nec Corporation Multi-agent trajectory prediction
CN111630787B (zh) * 2020-04-07 2022-12-20 东莞理工学院 基于深度学习的mimo多天线信号传输与检测技术

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109743268A (zh) * 2018-12-06 2019-05-10 东南大学 基于深度神经网络的毫米波信道估计和压缩方法

Also Published As

Publication number Publication date
CN114039633A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
Arnold et al. Enabling FDD massive MIMO through deep learning-based channel prediction
CN114024586B (zh) 用于非线性轨迹的智能波束预测方法、装置、设备及介质
KR102154481B1 (ko) 딥러닝을 이용한 대규모 mimo 시스템의 빔포밍 장치 및 방법
Lim et al. Efficient beam training and sparse channel estimation for millimeter wave communications under mobility
Ke et al. Position prediction based fast beam tracking scheme for multi-user UAV-mmWave communications
CN115021843B (zh) 一种毫米波通信多用户系统合作感知方法
Han et al. THz ISAC: A physical-layer perspective of terahertz integrated sensing and communication
CN111446999A (zh) 基于多臂强盗的位置辅助波束对准方法及其系统
Jia et al. Motion feature and millimeter wave multi-path AoA-ToA based 3D indoor positioning
Göttsch et al. Deep learning-based beamforming and blockage prediction for sub-6GHz/mm wave mobile networks
CN114567358B (zh) 大规模mimo鲁棒wmmse预编码器及其深度学习设计方法
Liu et al. Predictive beamforming for integrated sensing and communication in vehicular networks: A deep learning approach
Hellings et al. Evaluation of neural-network-based channel estimators using measurement data
Du et al. Towards ISAC-empowered vehicular networks: Framework, advances, and opportunities
Chen et al. Joint initial access and localization in millimeter wave vehicular networks: a hybrid model/data driven approach
CN102651661B (zh) Td-lte系统中的干扰对齐方法
CN114039633B (zh) 用于线性轨迹的智能波束预测方法、装置、设备及介质
Kwon et al. Integrated localization and communication for efficient millimeter wave networks
CN112887233A (zh) 一种基于2维簇结构的稀疏贝叶斯学习信道估计方法
CN115549745B (zh) Ris相移设计方法、装置、计算机设备及存储介质
CN115714612A (zh) 基于感知的通信波束跟踪方法
CN113258965B (zh) 基于无迹卡尔曼滤波的毫米波分布式mimo系统aoa跟踪方法
Chu et al. Integrated sensing and communication in user-centric cell-free massive MIMO systems with OFDM modulation
Tang et al. Learn to beamform in reconfigurable intelligent surface aided MISO communications with channel aging
Hussain et al. Adaptive beam alignment in Mm-wave networks: A deep variational autoencoder architecture

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant