CN114035529A - ATL-BMA-based low-cost modeling method for nonlinear industrial process - Google Patents
ATL-BMA-based low-cost modeling method for nonlinear industrial process Download PDFInfo
- Publication number
- CN114035529A CN114035529A CN202111411517.6A CN202111411517A CN114035529A CN 114035529 A CN114035529 A CN 114035529A CN 202111411517 A CN202111411517 A CN 202111411517A CN 114035529 A CN114035529 A CN 114035529A
- Authority
- CN
- China
- Prior art keywords
- industrial process
- data
- old
- new
- modeling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/41885—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by modeling, simulation of the manufacturing system
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/32—Operator till task planning
- G05B2219/32339—Object oriented modeling, design, analysis, implementation, simulation language
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Feedback Control In General (AREA)
Abstract
本发明提供了一种基于ATL‑BMA的非线性工业过程低成本建模方法,选取N组相似旧过程建模数据;收集新过程建模初始数据集;将新旧过程数据分别划分为两部分,并分别进行归一化处理;将N组旧过程数据转换成带有新过程信息的N组旧过程数据,并与相应旧过程数据混合后得到N组混合数据集,然后训练支持向量机模型,得到N个带有新过程信息的旧过程基础模型;将新过程训练集输入变量映射至相似旧过程输入变量运行区间内,并得到这N个预测模型的融合输出;将旧过程SVM模型融合输出和新过程输入数据作为多模型迁移策略的输入数据,训练得到新过程模型。该方法能有效解决复杂工业过程建模成本高、获取的建模数据有限、建模周期长的问题。
The invention provides a low-cost modeling method for nonlinear industrial process based on ATL-BMA, which selects N groups of similar old process modeling data; collects an initial data set for new process modeling; divides the new and old process data into two parts respectively, And normalize them respectively; convert N groups of old process data into N groups of old process data with new process information, and mix them with the corresponding old process data to obtain N groups of mixed data sets, and then train the support vector machine model, Obtain N old process basic models with new process information; map the input variables of the new process training set to the running range of similar old process input variables, and obtain the fusion output of these N prediction models; fuse the old process SVM model to output And the new process input data is used as the input data of the multi-model migration strategy, and the new process model is obtained by training. This method can effectively solve the problems of high modeling cost of complex industrial process, limited modeling data and long modeling period.
Description
技术领域technical field
本发明属于工业过程构建性能预测模型技术领域,具体涉及一种基于ATL-BMA的非线性工业过程低成本建模方法。The invention belongs to the technical field of industrial process construction performance prediction models, and in particular relates to a low-cost modeling method for nonlinear industrial processes based on ATL-BMA.
背景技术Background technique
现代工业过程为了适应市场对产品提出的多规格、多品种、高质量的需求,正朝着大型化、高效化和集成化方向迈步。一方面随着生产规模的逐步扩大,在实际生产过程中会不断的有新工业生产过程加入以满足不同的产品需求,这也就导致实际工业生产过程复杂程度越来越高。另一方面,运行环境的变化和运行时间的增长都会使得实际工业过程的特性发生变化。这两个方面都会导致过程数据多变的特性。在这种情况下利用数据驱动方法对工业过程进行建模时需要解决一个棘手的问题:由于成本等多方面因素,从新工业过程中获取的建模数据严重不足,在少量建模数据的支持下无法利用数据驱动建模方法建立准确的过程预测模型,同时所得模型泛化能力低。面对这种情况,希望已有运行时间较长的工业生产过程数据或知识能够辅助指导建立新工业过程的预测模型。虽然新旧工业过程运行数据特性存在一定程度上的差异,但是其过程内部所遵循的物理化学机理是不变或非常相似的,所以新工业过程数据与旧工业过程数据具有相同或相似的特征空间与标签空间(两者输入输出数据维度一致)。如图1所示,可以将新工业过程和旧工业过程分别看成目标域和源域,然后通过迁移学习方法使用旧工业过程数据辅助建立新工业过程预测模型。但是当源域数据远多于目标域数据时,传统迁移学习结构下使用源域数据对目标域数据进行补充学习时容易出现“负迁移”现象。In order to meet the needs of the market for products with multiple specifications, varieties and high quality, modern industrial processes are moving towards large-scale, high-efficiency and integration. On the one hand, with the gradual expansion of the production scale, new industrial production processes will continue to be added in the actual production process to meet the needs of different products, which also leads to higher and higher complexity of the actual industrial production process. On the other hand, changes in the operating environment and increases in operating time can lead to changes in the characteristics of actual industrial processes. Both of these aspects contribute to the variable nature of process data. A thorny problem needs to be solved when modeling industrial processes with data-driven methods in this case: due to various factors such as cost, the modeling data obtained from new industrial processes is seriously insufficient, and with the support of a small amount of modeling data Data-driven modeling methods cannot be used to establish accurate process prediction models, and the generalization ability of the resulting models is low. Faced with this situation, it is hoped that the existing industrial production process data or knowledge with a long running time can help guide the establishment of predictive models for new industrial processes. Although there are some differences in the characteristics of the old and new industrial process operation data, the physical and chemical mechanisms followed within the process are unchanged or very similar, so the new industrial process data and the old industrial process data have the same or similar feature space and Label space (both input and output data dimensions are the same). As shown in Figure 1, the new industrial process and the old industrial process can be regarded as the target domain and the source domain, respectively, and then the old industrial process data is used to assist in establishing the new industrial process prediction model through the transfer learning method. However, when the source domain data is far more than the target domain data, the phenomenon of "negative transfer" is prone to occur when the source domain data is used to supplement the target domain data under the traditional transfer learning structure.
发明内容SUMMARY OF THE INVENTION
针对上述现有技术存在的问题,本发明提供一种基于ATL-BMA的非线性工业过程低成本建模方法,该方法能有效解决复杂工业过程建模成本高、获取的建模数据有限、建模周期长的问题,同时能解决迁移学习中旧过程数据远多于新过程数据时可能出现的“负迁移”现象,其能充分利用已有相似旧工业过程模型的信息辅助指导建立新工业过程的预测模型,可有效降低建模成本,并可加快模速度、提高建模精度。Aiming at the problems existing in the above-mentioned prior art, the present invention provides a low-cost modeling method for nonlinear industrial processes based on ATL-BMA, which can effectively solve the problems of high modeling cost of complex industrial processes, limited acquired modeling data, and construction problems. At the same time, it can solve the "negative transfer" phenomenon that may occur when the old process data is much more than the new process data in transfer learning, and it can make full use of the information of existing similar old industrial process models to assist in guiding the establishment of new industrial processes. It can effectively reduce the modeling cost, speed up the modeling speed and improve the modeling accuracy.
为了实现上述目的,本发明提供一种基于ATL-BMA的非线性工业过程低成本建模方法,包括以下步骤:In order to achieve the above object, the present invention provides a low-cost modeling method for nonlinear industrial processes based on ATL-BMA, comprising the following steps:
步骤1:选取N组相似旧工业过程建模数据,并根据实际待建模过程的信息,确定输入变量的稳定运行范围;同时,选择拉丁超立方法进行采样和收集目标非线性工业过程建模初始数据集;其具体步骤如下:Step 1: Select N groups of similar old industrial process modeling data, and determine the stable operating range of the input variables according to the information of the actual process to be modeled; at the same time, select the Latin hypercube method to sample and collect the target nonlinear industrial process modeling The initial data set; its specific steps are as follows:
步骤1.1:选取N组相似旧工业过程建模数据,记为根据公式(1)对于第i个旧工业过程进行建模;Step 1.1: Select N groups of similar old industrial process modeling data, denoted as Model the i-th old industrial process according to formula (1);
式中,X和x是旧工业过程输入数据,y是旧工业过程输出数据,ki表示第i个旧工业过程建模数据量,而n是第i个旧工业过程的输入变量维度,由于新旧工业过程存在一定相似性,因而对于所有工业过程的输入变量维度一致,都为n;In the formula, X and x are the input data of the old industrial process, y is the output data of the old industrial process, ki represents the amount of modeling data of the ith old industrial process, and n is the input variable dimension of the ith old industrial process. There is a certain similarity in the process, so the input variable dimensions for all industrial processes are the same, and they are all n;
步骤1.2:根据实际待建模过程的信息,确定输入变量的稳定运行范围,并选择离散稀疏的数据分布点进行采样和收集新工业过程建模数据,根据公式(2)获得采集的新工业过程数据Dnew;Step 1.2: According to the information of the actual process to be modeled, determine the stable operating range of the input variables, and select discrete and sparse data distribution points to sample and collect new industrial process modeling data, and obtain the collected new industrial process according to formula (2). data D new ;
式中,l表示新工业过程建模数据量;In the formula, l represents the amount of new industrial process modeling data;
步骤2:将新工业过程数据和旧工业过程数据分别划分为两部分,分别为新旧建模过程中的训练数据集和测试数据集,并将新工业过程初始数据集和旧工业过程建模数据分别进行归一化处理;其中,对于新工业过程数据,将其分为新工业过程训练数据集和新工业过程测试数据集并利用公式(3)将数据映射到[0,1]区间;Step 2: Divide the new industrial process data and the old industrial process data into two parts, which are the training data set and the test data set in the new and old modeling process, respectively, and divide the new industrial process initial data set and the old industrial process modeling data into two parts. Normalization processing is performed separately; among them, for the new industrial process data, it is divided into a new industrial process training data set and new industrial process test datasets And use formula (3) to map the data to the [0,1] interval;
式中,zi表示工业过程输入或输出数据归一化之后的结果,xi是归一化之前的数据,xmax是数据归一化之前的最大值,xmin是最小值;In the formula, zi represents the result of the normalization of the input or output data of the industrial process, xi is the data before normalization, x max is the maximum value before the data normalization, and x min is the minimum value;
步骤3:运用基于Cycle GANs的新旧工业过程数据迁移算法,将N组旧工业过程数据转换成带有新工业过程信息的N组旧工业过程数据;其中,旧工业过程训练数据集为其具体步骤如下:Step 3: Use the old and new industrial process data migration algorithm based on Cycle GANs to convert N groups of old industrial process data into N groups of old industrial process data with new industrial process information; among them, the old industrial process training data set is The specific steps are as follows:
步骤3.1:初始化参数:G参数θG,Do参数ωo,F参数θF,Dn参数ωn,ncritic=5,α=0.00005、β1=0、β2=0.7,m=5,λ=0.5,Epoch=20000;Step 3.1: Initialization parameters: G parameter θ G , D o parameter ω o , F parameter θ F , D n parameter ω n , n critic =5, α = 0.00005, β 1 =0, β 2 =0.7, m = 5 , λ=0.5, Epoch=20000;
其中:G表示旧工业过程到新工业过程数据的生成器函数,Do表示旧工业过程对应的判别器,F表示新工业过程到旧工业过程的生成器函数,Dn表示新工业过程对应的判别器,ncritic表示训练一次生成器后训练判别模型次数,α、β1和β2为Adam优化器的参数,m为采样数量,Epoch为模型循环训练次数;Among them: G represents the generator function from the old industrial process to the new industrial process data, D o represents the discriminator corresponding to the old industrial process, F represents the generator function from the new industrial process to the old industrial process, D n represents the corresponding Discriminator, n critic represents the number of times of training the discriminant model after training the generator once, α, β 1 and β 2 are the parameters of Adam optimizer, m is the number of samples, and Epoch is the number of training cycles of the model;
步骤3.2:通过生成器G将从第i个旧工业过程数据中采集的m个样本转化成m个新工业过程数据,记为Xo→n=F(Xo);通过生成器F将从新工业过程数据中采集的m个样本转化成m个旧工业过程数据,记为Xn→o=F(Xn);Step 3.2: From the i-th old industrial process data by generator G m samples collected in Convert into m new industrial process data, denoted as X o→n =F(X o ); through the generator F from the new industrial process data m samples collected in Convert into m old industrial process data, denoted as X n→o =F(X n );
步骤3.3:按照公式(4)和公式(5)得到判别器损失和两个前向循环一致损失;Step 3.3: According to formula (4) and formula (5), the discriminator loss and the two forward loop consistency losses are obtained;
步骤3.4:通过公式(6)和公式(7)更新判别器Do参数ωo和Dn参数ωn;Step 3.4: update the discriminator D o parameter ω o and D n parameter ω n by formula (6) and formula (7);
步骤3.5:重复步骤3.2~步骤3.4ncritic次;Step 3.5: Repeat steps 3.2 to 3.4n critic times;
步骤3.6:重复步骤3.2;Step 3.6: Repeat step 3.2;
步骤3.7:通过公式(8)和公式(9)计算两个前向循环一致损失;Step 3.7: Calculate the consistent loss of the two forward loops by formula (8) and formula (9);
步骤3.8:通过公式(10)和公式(11)计算两个生成器损失;Step 3.8: Calculate the two generator losses by Equation (10) and Equation (11);
步骤3.9:通过公式(12)和公式(13)更新生成器G参数θG和F参数θF;Step 3.9: Update the generator G parameter θ G and F parameter θ F by formula (12) and formula (13);
步骤3.10:重复步骤3.6~步骤3.9Epoch次数,使用训练好的F将新工业过程数据转换成第j个旧工业过程数据,记为 Step 3.10: Repeat steps 3.6 to 3.9 Epoch times, and use the trained F to convert the new industrial process data into the jth old industrial process data, denoted as
步骤3.11:使用每一组旧工业过程数据重复步骤3.1~步骤3.9,将新工业过程数据迁移到旧工业过程域内,由新工业过程数据通过对抗迁移学习得到N组带有新工业过程信息的旧工业过程数据,记为 Step 3.11: Repeat steps 3.1 to 3.9 with each set of old industrial process data, migrate the new industrial process data into the old industrial process domain, and obtain N groups of old industrial process data with new industrial process information through adversarial transfer learning from the new industrial process data. Industrial process data, denoted as
步骤4:将步骤3中带有新工业过程信息的旧工业过程数据与相应旧工业过程数据混合后得到N组混合数据集;Step 4: After mixing the old industrial process data with the new industrial process information in
步骤5:将混合数据集分为混合训练集和混合测试数据集同时,结合N个旧工业过程训练数据集和新工业过程预测模型y=f(x),利用N组混合数据集分别训练支持向量机SVM模型,得到N个带有新工业过程信息的旧工业过程基础模型,记为f1(·)-fN(·);其中,ktrain是训练数据集大小,ktest是测试数据集大小,任意第i个旧工业过程,ni是第i个旧工业过程训练集大小;其具体步骤如下:Step 5: Divide the mixed dataset into a mixed training set and a mixed test dataset At the same time, combine N old industrial process training datasets and the new industrial process prediction model y=f(x), use N groups of mixed data sets to train the support vector machine SVM model respectively, and obtain N old industrial process basic models with new industrial process information, denoted as f 1 ( ) -f N ( ); where, k train is the training dataset size, k test is the test dataset size, any ith old industrial process, n i is the training set size of the ith old industrial process; its specific steps are as follows:
步骤5.1:初始化参数;Step 5.1: Initialize parameters;
步骤5.2:通过基于Cycle GANs的新旧工业过程数据迁移算法将新工业过程数据转换成N组携带新工业过程信息的旧工业过程数据根据公式(14)混合Dn→o和Do得到N组基础模型训练数据DBasic;Step 5.2: Convert the new industrial process data into N groups of old industrial process data carrying the new industrial process information through the new and old industrial process data migration algorithm based on Cycle GANs According to formula (14), D n→o and D o are mixed to obtain N groups of basic model training data D Basic ;
步骤5.3:利用DBasic训练N个SVM,得到N个带有新工业过程信息的旧工业过程基础模型,记为f1(·)-fN(·);Step 5.3: Use D Basic to train N SVMs to obtain N old industrial process basic models with new industrial process information, denoted as f 1 ( )-f N ( );
步骤6:通过模型融合公式(15)将新工业过程训练集输入变量映射至相似旧工业过程输入变量运行区间内,转化后的新工业过程训练集输入数据记为通过贝叶斯模型平均算法得到这N个预测模型的融合输出 Step 6: Use the model fusion formula (15) to map the input variables of the new industrial process training set to the operating range of the similar old industrial process input variables, and the transformed input data of the new industrial process training set is recorded as The fusion output of these N prediction models is obtained through the Bayesian model averaging algorithm
步骤7:将旧工业过程SVM模型融合输出和新工业过程输入数据作为多模型迁移策略的输入数据,利用最小二乘支持向量机算法训练新工业过程模型,获得新工业过程模型输出完成新工业过程建模;Step 7: Fusion output from the old industrial process SVM model and new industrial process input data As the input data of the multi-model migration strategy, use the least squares support vector machine algorithm to train the new industrial process model, and obtain the output of the new industrial process model Complete new industrial process modeling;
步骤8:模型验证,分别根据公式(16)和公式(17)利用均方根误差和确定系数来评估SVM模型的有效性,若步骤7所得模型在测试数据集上的预测精度满足实验设定阈值,则建模过程完成;否则,重复步骤3至步骤7,将新的N组含有新工业过程信息的旧工业过程数据样本加入到混合样本中,继续训练新工业过程模型,直至满足实验停止条件;Step 8: Model verification, using the root mean square error and the coefficient of determination to evaluate the validity of the SVM model according to formula (16) and formula (17) respectively, if the prediction accuracy of the model obtained in
式中,N是测试数据的数量,yi是预测模型的输出,是预测输出的均值,Yi是新工业过程的真实输出。where N is the number of test data, yi is the output of the prediction model, is the mean of the predicted output and Yi is the true output of the new industrial process.
本方法先利用拉丁超立方方法采集非线性工业过程建模的小样本数据集,结合多个相似旧过程数据,通过对抗性迁移算法学习新工业过程数据与旧工业过程数据之间的转换映射函数,从而将少量的新过程数据转换为多种类型的带有新工业过程信息的旧工业过程数据;然后通过支持向量机回归算法得到多个“带有新过程信息的旧过程模型”,为后续新工业过程的建模建立了基础;最后使用多模型迁移策略和贝叶斯模型平均理论,迁移几个经过训练的“带有新工业过程信息的旧工业过程预测模型”,并结合少量的新工业过程数据,得到最终的新工业过程性能预测模型。本发明迁移多个已有相似旧工业过程的有用信息帮助建立新工业过程性能预测模型,降低新工业过程建模成本;同时,为了有效解决旧过程数据远多于新过程数据时可能出现的“负迁移”的问题,采用了基于对抗迁移学习的新旧过程数据迁移方法,提高了迁移建模效果。该方法有效解决了复杂工业过程建模成本高、建模周期长的问题,充分利用了已有相似旧工业过程模型的有用信息,同时解决了迁移学习中旧过程数据远多于新过程数据时可能出现的“负迁移”现象,完成了对新工业过程的建模,降低了建模成本,加快了建模速度,提高了建模精度。This method first uses the Latin hypercube method to collect a small sample data set for nonlinear industrial process modeling, combines multiple similar old process data, and learns the conversion mapping function between the new industrial process data and the old industrial process data through an adversarial transfer algorithm. , so as to convert a small amount of new process data into various types of old industrial process data with new industrial process information; The modeling of the new industrial process establishes the foundation; finally, using a multi-model transfer strategy and the Bayesian model averaging theory, several trained "old industrial process prediction models with new industrial process information" are transferred, combined with a small amount of new Industrial process data, resulting in the final new industrial process performance prediction model. The present invention migrates useful information of a plurality of existing similar old industrial processes to help establish a new industrial process performance prediction model and reduce the cost of new industrial process modeling; Negative transfer" problem, using the old and new process data transfer method based on adversarial transfer learning to improve the effect of transfer modeling. This method effectively solves the problems of high cost and long modeling period of complex industrial process modeling, makes full use of the useful information of existing similar old industrial process models, and solves the problem when the old process data is much more than the new process data in transfer learning. The possible phenomenon of "negative transfer" completes the modeling of new industrial processes, reduces modeling costs, speeds up modeling, and improves modeling accuracy.
附图说明Description of drawings
图1是迁移建模的流程图;Figure 1 is a flow chart of migration modeling;
图2是基于对抗迁移学习和贝叶斯模型平均理论的非线性工业过程低成本建模方法的流程图;Figure 2 is a flowchart of a low-cost modeling method for nonlinear industrial processes based on adversarial transfer learning and Bayesian model averaging theory;
图3是ATL-BMA模型、BMA模型和SVM模型在压缩机A测试集上预测值的曲线图;Fig. 3 is the graph of the predicted value of ATL-BMA model, BMA model and SVM model on the compressor A test set;
图4是ATL-BMA模型、BMA模型和SVM模型预测值与真实值的RMSE柱状图;Fig. 4 is the RMSE histogram of ATL-BMA model, BMA model and SVM model predicted value and true value;
图5是ATL-BMA模型、BMA模型和SVM模型预测值与真实值的R2柱状图。Figure 5 is a histogram of R2 for the predicted and true values of the ATL-BMA model, the BMA model and the SVM model.
具体实施方式Detailed ways
下面结合实施例和附图对本发明作进一步说明。The present invention will be further described below with reference to the embodiments and accompanying drawings.
如图1至图5所示,本发明提供了一种基于ATL-BMA(对抗迁移学习(AdversarialTransform Learning,ATL)和贝叶斯模型平均(Bayesian Model Averaging,BMA))的非线性工业过程低成本建模方法,包括以下步骤:As shown in FIGS. 1 to 5 , the present invention provides a low-cost nonlinear industrial process based on ATL-BMA (Adversarial Transform Learning (ATL) and Bayesian Model Averaging (BMA)). Modeling method, including the following steps:
步骤1:选取N组相似旧工业过程建模数据,并根据实际待建模过程的信息,确定输入变量的稳定运行范围;同时,选择拉丁超立(Latin Hypercube Design,LHD)方法进行采样和收集目标非线性工业过程(新工业过程)建模初始数据集;其中,实际待建模过程的信息包括参数额定值和性能曲线等;其具体步骤如下:Step 1: Select N groups of similar old industrial process modeling data, and determine the stable operating range of the input variables according to the information of the actual process to be modeled; at the same time, select the Latin Hypercube Design (LHD) method for sampling and collection The initial data set for modeling the target nonlinear industrial process (new industrial process); the information of the actual process to be modeled includes parameter ratings and performance curves, etc. The specific steps are as follows:
步骤1.1:选取N组相似旧工业过程建模数据,记为根据公式(1)对于第i个旧工业过程进行建模;Step 1.1: Select N groups of similar old industrial process modeling data, denoted as Model the i-th old industrial process according to formula (1);
式中,X是旧工业过程输入数据集,x是旧工业过程输入数据,y是旧工业过程输出数据,ki表示第i个旧工业过程建模数据量,而n是第i个旧工业过程的输入变量维度,由于新旧工业过程存在一定相似性,因而对于所有工业过程的输入变量维度一致,都为n;where X is the input data set of the old industrial process, x is the input data of the old industrial process, y is the output data of the old industrial process, ki represents the amount of modeling data of the ith old industrial process, and n is the data of the ith old industrial process. Input variable dimension, because there is a certain similarity between the old and new industrial processes, the input variable dimension for all industrial processes is the same, and it is n;
步骤1.2:根据实际待建模过程的信息,确定输入变量的稳定运行范围,并选择离散稀疏的数据分布点进行采样和收集新工业过程建模数据,根据公式(2)获得采集的新工业过程数据Dnew;Step 1.2: According to the information of the actual process to be modeled, determine the stable operating range of the input variables, and select discrete and sparse data distribution points to sample and collect new industrial process modeling data, and obtain the collected new industrial process according to formula (2). data D new ;
式中,l表示新工业过程建模数据量;In the formula, l represents the amount of new industrial process modeling data;
步骤2:将新工业过程数据和旧工业过程数据分别划分为两部分,分别为新旧建模过程中的训练数据集和测试数据集;为了后续训练过程的稳定性,同时避免因数据量纲差异造成的不良影响,必须确保数据是归一化的,将新工业过程初始数据集和旧工业过程建模数据分别进行归一化处理;其中,对于新工业过程数据,将其分为新工业过程训练数据集和新工业过程测试数据集并根据公式(3)利用最大值最小值数据归一化方法将数据映射到[0,1]区间;Step 2: Divide the new industrial process data and the old industrial process data into two parts, which are the training data set and the test data set in the new and old modeling process; for the stability of the subsequent training process, and to avoid the difference in data dimensions The adverse effects caused, it is necessary to ensure that the data is normalized, and the initial data set of the new industrial process and the old industrial process modeling data are normalized separately; among them, for the new industrial process data, it is divided into new industrial processes. training dataset and new industrial process test datasets And according to formula (3), the data is mapped to the [0,1] interval by using the maximum and minimum data normalization method;
式中,zi表示工业过程输入或输出数据归一化之后的结果,xi是归一化之前的数据,xmax是数据归一化之前的最大值,xmin是最小值;In the formula, zi represents the result of the normalization of the input or output data of the industrial process, xi is the data before normalization, x max is the maximum value before the data normalization, and x min is the minimum value;
步骤3:运用基于Cycle GANs的新旧工业过程数据迁移算法,将N组旧工业过程数据转换成带有新工业过程信息的N组旧工业过程数据;其中,旧工业过程训练数据集为其具体步骤如下:Step 3: Use the old and new industrial process data migration algorithm based on Cycle GANs to convert N groups of old industrial process data into N groups of old industrial process data with new industrial process information; among them, the old industrial process training data set is The specific steps are as follows:
步骤3.1:初始化参数:G参数θG,Do参数ωo,F参数θF,Dn参数ωn,ncritic=5,α=0.00005、β1=0、β2=0.7,m=5,λ=0.5,Epoch=20000;Step 3.1: Initialization parameters: G parameter θ G , D o parameter ω o , F parameter θ F , D n parameter ω n , n critic =5, α = 0.00005, β 1 =0, β 2 =0.7, m = 5 , λ=0.5, Epoch=20000;
其中:G表示旧工业过程到新工业过程数据的生成器函数,Do表示旧工业过程对应的判别器,F表示新工业过程到旧工业过程的生成器函数,Dn表示新工业过程对应的判别器,ncritic表示训练一次生成器后训练判别模型次数,α、β1和β2为Adam优化器的参数,m为采样数量,Epoch为模型循环训练次数;Among them: G represents the generator function from the old industrial process to the new industrial process data, D o represents the discriminator corresponding to the old industrial process, F represents the generator function from the new industrial process to the old industrial process, D n represents the corresponding Discriminator, n critic represents the number of times of training the discriminant model after training the generator once, α, β 1 and β 2 are the parameters of Adam optimizer, m is the number of samples, and Epoch is the number of training cycles of the model;
步骤3.2:通过生成器G将从第i个旧工业过程数据中采集的m个样本转化成m个新工业过程数据,记为Xo→n=F(Xo);通过生成器F将从新工业过程数据中采集的m个样本转化成m个旧工业过程数据,记为Xn→o=F(Xn);Step 3.2: From the i-th old industrial process data by generator G m samples collected in Convert into m new industrial process data, denoted as X o→n =F(X o ); through the generator F from the new industrial process data m samples collected in Convert into m old industrial process data, denoted as X n→o =F(X n );
步骤3.3:按照公式(4)和公式(5)得到判别器损失和两个前向循环一致损失;Step 3.3: According to formula (4) and formula (5), the discriminator loss and the two forward loop consistency losses are obtained;
步骤3.4:通过公式(6)和公式(7)更新判别器Do参数ωo和Dn参数ωn;Step 3.4: update the discriminator D o parameter ω o and D n parameter ω n by formula (6) and formula (7);
步骤3.5:重复步骤3.2~步骤3.4ncritic次;Step 3.5: Repeat steps 3.2 to 3.4n critic times;
步骤3.6:重复步骤3.2;Step 3.6: Repeat step 3.2;
步骤3.7:通过公式(8)和公式(9)计算两个前向循环一致损失;Step 3.7: Calculate the consistent loss of the two forward loops by formula (8) and formula (9);
步骤3.8:通过公式(10)和公式(11)计算两个生成器损失;Step 3.8: Calculate the two generator losses by Equation (10) and Equation (11);
步骤3.9:通过公式(12)和公式(13)更新生成器G参数θG和F参数θF;Step 3.9: Update the generator G parameter θ G and F parameter θ F by formula (12) and formula (13);
步骤3.10:重复步骤3.6~步骤3.9Epoch次数,使用训练好的F将新工业过程数据转换成第j个旧工业过程数据,记为 Step 3.10: Repeat steps 3.6 to 3.9 Epoch times, and use the trained F to convert the new industrial process data into the jth old industrial process data, denoted as
步骤3.11:使用每一组旧工业过程数据重复步骤3.1~步骤3.9,将新工业过程数据迁移到旧工业过程域内,由新工业过程数据通过对抗迁移学习得到N组带有新工业过程信息的旧工业过程数据,记为 Step 3.11: Repeat steps 3.1 to 3.9 with each group of old industrial process data, migrate the new industrial process data to the old industrial process domain, and obtain N groups of old industrial process data with new industrial process information through adversarial transfer learning from the new industrial process data. Industrial process data, denoted as
步骤4:将步骤3中带有新工业过程信息的旧工业过程数据与相应旧工业过程数据混合后得到N组混合数据集;Step 4: After mixing the old industrial process data with the new industrial process information in
步骤5:将混合数据集分为混合训练集和混合测试数据集同时,结合N个旧工业过程训练数据集和新工业过程预测模型y=f(x),利用N组混合数据集分别训练支持向量机SVM(Support Vector Machine)模型,得到N个带有新工业过程信息的旧工业过程基础模型,记为f1(·)-fN(·);其中,Step 5: Divide the mixed dataset into a mixed training set and a mixed test dataset At the same time, combine N old industrial process training datasets and the new industrial process prediction model y=f(x), use N groups of mixed data sets to train the SVM (Support Vector Machine) model respectively, and obtain N old industrial process basic models with new industrial process information, denoted as f 1 (·)-f N (·); where,
ktrain是训练数据集大小,ktest是测试数据集大小,任意第i个旧工业过程,ni是第i个旧工业过程训练集大小;其具体步骤如下: k train is the training dataset size, k test is the test dataset size, any ith old industrial process, n i is the training set size of the ith old industrial process; its specific steps are as follows:
步骤5.1:初始化参数;Step 5.1: Initialize parameters;
步骤5.2:通过基于Cycle GANs的新旧工业过程数据迁移算法将新工业过程数据转换成N组携带新工业过程信息的旧工业过程数据根据公式(14)混合Dn→o和Do得到N组基础模型训练数据DBasic;Step 5.2: Convert the new industrial process data into N groups of old industrial process data carrying the new industrial process information through the new and old industrial process data migration algorithm based on Cycle GANs According to formula (14), D n→o and D o are mixed to obtain N groups of basic model training data D Basic ;
步骤5.3:利用DBasic训练N个SVM,得到N个带有新工业过程信息的旧工业过程基础模型,记为f1(·)-fN(·);Step 5.3: Use D Basic to train N SVMs to obtain N old industrial process basic models with new industrial process information, denoted as f 1 ( )-f N ( );
步骤6:通过模型融合公式(15)将新工业过程训练集输入变量映射至相似旧工业过程输入变量运行区间内,转化后的新工业过程训练集输入数据记为通过贝叶斯模型平均算法得到这N个预测模型的融合输出 Step 6: Use the model fusion formula (15) to map the input variables of the new industrial process training set to the operating range of the similar old industrial process input variables, and the transformed input data of the new industrial process training set is recorded as The fusion output of these N prediction models is obtained through the Bayesian model averaging algorithm
步骤7:将旧工业过程SVM模型融合输出和新工业过程输入数据作为多模型迁移策略的输入数据,利用最小二乘支持向量机(Least Squares Support VectorMachine,LSSVM)算法训练新工业过程模型,获得新工业过程模型输出完成新工业过程建模;Step 7: Fusion output from the old industrial process SVM model and new industrial process input data As the input data of the multi-model migration strategy, the Least Squares Support Vector Machine (LSSVM) algorithm is used to train the new industrial process model, and the output of the new industrial process model is obtained. Complete new industrial process modeling;
步骤8:模型验证,分别根据公式(16)和公式(17)利用均方根误差(Root MeanSquare Error,RMSE)和确定系数(R-Square,R2)来评估SVM模型的有效性,若步骤7所得模型在测试数据集上的预测精度满足实验设定阈值,则建模过程完成;否则,重复步骤3至步骤7,将新的N组含有新工业过程信息的旧工业过程数据样本加入到混合样本中,继续训练新工业过程模型,直至满足实验停止条件;Step 8: Model verification, using the root mean square error (Root MeanSquare Error, RMSE) and the coefficient of determination (R-Square, R 2 ) to evaluate the validity of the SVM model according to formula (16) and formula (17) respectively, if the
式中,N是测试数据的数量,yi是预测模型的输出,是预测输出的均值,Yi是新工业过程的真实输出。where N is the number of test data, yi is the output of the prediction model, is the mean of the predicted output and Yi is the true output of the new industrial process.
本方法先利用拉丁超立方方法采集非线性工业过程建模的小样本数据集,结合多个相似旧过程数据,通过对抗性迁移算法学习新工业过程数据与旧工业过程数据之间的转换映射函数,从而将少量的新过程数据转换为多种类型的带有新工业过程信息的旧工业过程数据;然后通过支持向量机回归算法得到多个“带有新过程信息的旧过程模型”,为后续新工业过程的建模建立了基础;最后使用多模型迁移策略和贝叶斯模型平均理论,迁移几个经过训练的“带有新工业过程信息的旧工业过程预测模型”,并结合少量的新工业过程数据,得到最终的新工业过程性能预测模型。本发明迁移多个已有相似旧工业过程的有用信息帮助建立新工业过程性能预测模型,降低新工业过程建模成本;同时,为了有效解决旧过程数据远多于新过程数据时可能出现的“负迁移”的问题,采用了基于对抗迁移学习的新旧过程数据迁移方法,提高了迁移建模效果。该方法有效解决了复杂工业过程建模成本高、建模周期长的问题,充分利用了已有相似旧工业过程模型的有用信息,同时解决了迁移学习中旧过程数据远多于新过程数据时可能出现的“负迁移”现象,完成了对新工业过程的建模,降低了建模成本,加快了建模速度,提高了建模精度。This method first uses the Latin hypercube method to collect a small sample data set for nonlinear industrial process modeling, combines multiple similar old process data, and learns the conversion mapping function between the new industrial process data and the old industrial process data through an adversarial transfer algorithm. , so as to convert a small amount of new process data into various types of old industrial process data with new industrial process information; The modeling of the new industrial process establishes the foundation; finally, using a multi-model transfer strategy and the Bayesian model averaging theory, several trained "old industrial process prediction models with new industrial process information" are transferred, combined with a small amount of new Industrial process data, resulting in the final new industrial process performance prediction model. The present invention migrates useful information of a plurality of existing similar old industrial processes to help establish a new industrial process performance prediction model and reduce the cost of new industrial process modeling; Negative transfer" problem, using the old and new process data transfer method based on adversarial transfer learning to improve the effect of transfer modeling. This method effectively solves the problems of high cost and long modeling period of complex industrial process modeling, makes full use of the useful information of existing similar old industrial process models, and solves the problem when the old process data is much more than the new process data in transfer learning. The possible phenomenon of "negative transfer" completes the modeling of new industrial processes, reduces modeling costs, speeds up modeling, and improves modeling accuracy.
为了验证该方法的效果,使用实验室离心压缩机机理模型产生实验数据,建立离心压缩机的性能预测模型以验证所提建模方法的有效性。通过修改压缩机机理模型的关键几何参数模拟产生A、B、C、D四台不同但相似的压缩机模型用于仿真实验。对于A、B、C和D四台离心压缩机,其中压缩机A作为待建模的新压缩机,产生少量新工业过程建模数据,而B、C和D离心压缩机则作为运行时间长的旧压缩机,产生大量旧工业过程建模数据辅助新工业过程预测模型的建立。新旧压缩机稳定运动区间如表1所示。In order to verify the effect of the method, experimental data were generated using the laboratory centrifugal compressor mechanism model, and the performance prediction model of the centrifugal compressor was established to verify the validity of the proposed modeling method. By modifying the key geometric parameters of the compressor mechanism model, four different but similar compressor models A, B, C and D are generated for simulation experiments. For the four centrifugal compressors A, B, C, and D, where compressor A is the new compressor to be modeled, generating a small amount of new industrial process modeling data, while the centrifugal compressors B, C, and D are used as the long-running compressor The old compressors generate a large amount of old industrial process modeling data to assist the establishment of new industrial process prediction models. The stable motion range of the old and new compressors is shown in Table 1.
表1离心压缩机A、B、C、D稳定运行区间及对应One-Hot编码Table 1 Centrifugal compressor A, B, C, D stable operation interval and corresponding One-Hot code
将所建模型的预测效果与两组对比实验模型预测效果进行对比,进一步展示所提方法的优越性。三组对比方法具体如下:The prediction effect of the established model is compared with the prediction effect of the two sets of comparative experimental models to further demonstrate the superiority of the proposed method. The three comparison methods are as follows:
方法1:通过对抗迁移学习将少量新工业过程数据转换成旧工业过程数据,与每组旧工业过程数据混合后训练得到多个SVM模型,然后通过多模型迁移策略建立新压缩机预测模型,最后利用新压缩机测试数据测试模型精度。在实验结果分析中记为ATL-BMA方法。Method 1: Convert a small amount of new industrial process data into old industrial process data through adversarial transfer learning, and train multiple SVM models after mixing with each group of old industrial process data, and then establish a new compressor prediction model through a multi-model migration strategy, and finally Test model accuracy with new compressor test data. In the analysis of the experimental results, it was recorded as the ATL-BMA method.
方法2:使用多组旧压缩机数据训练多个旧压缩机SVM模型,然后通过多模型迁移策略结合少量新压缩机训练数据建立新压缩机预测模型,最后利用新压缩机测试数据测试模型精度。在实验结果分析中记为BMA方法。Method 2: Use multiple sets of old compressor data to train multiple old compressor SVM models, then use the multi-model migration strategy to combine a small amount of new compressor training data to build a new compressor prediction model, and finally use the new compressor test data to test the model accuracy. In the analysis of the experimental results, it is recorded as the BMA method.
方法3:只用少量新压缩机训练数据建立新压缩机SVM模型,以此作为新压缩机预测模型,最后利用新压缩机测试数据测试模型精度。在实验结果分析中记为SVM方法。Method 3: Only use a small amount of new compressor training data to build a new compressor SVM model as a new compressor prediction model, and finally use the new compressor test data to test the model accuracy. In the analysis of the experimental results, it is recorded as the SVM method.
图3展示的是三种方法所建模型在压缩机A测试集上的预测值。从图中可以看出ATL-BMA方法所建模型的预测值与测试集吻合程度最高,这说明ATL-BMA方法可以有效地利用相似旧工业过程的有用信息帮助新工业过程模型的建立,同时也说明ATL-BMA方法比单纯的多模型迁移方法更能有效地利用新旧工业过程之间的信息。Figure 3 shows the predicted values of the models built by the three methods on the compressor A test set. It can be seen from the figure that the predicted value of the model built by the ATL-BMA method has the highest degree of agreement with the test set, which shows that the ATL-BMA method can effectively use the useful information of similar old industrial processes to help the establishment of new industrial process models, and also It is shown that the ATL-BMA method can utilize the information between the old and new industrial processes more effectively than the pure multi-model transfer method.
为了进一步对比三个模型的精度,图4和图5展示了三个模型预测值与真实值的RMSE和R2,从图中可以看出,本章所提的方法可以充分利用已有大量旧工业过程数据和少量新工业过程数据,有效地提高模型的预测精度,降低建立模型的成本。In order to further compare the accuracy of the three models, Figures 4 and 5 show the RMSE and R 2 of the predicted and true values of the three models. It can be seen from the figures that the method proposed in this chapter can make full use of a large number of old industrial Process data and a small amount of new industrial process data can effectively improve the prediction accuracy of the model and reduce the cost of building the model.
由上诉分析可知,本发明通过采用了一种对抗迁移学习方法和贝叶斯模型平均理论为新工业过程建立性能预测模型,充分利用了工业中现有的相似旧工业过程的性能预测模型,对新旧工业过程数据进行迁移,运用支持向量机建立多个含有新工业过程信息的旧工业过程预测模型,最后利用贝叶斯模型平均理论对旧工业过程模型进行训练,从而加速了新工业过程的建模速度,降低了建模成本,同时解决了新旧工业过程迁移建模时旧工业过程数据多于新工业过程数据所带来的“负迁移”作用,获得符合精度要求的预测模型。同时也说明该方法比单纯的多模型迁移方法更能有效地利用新旧工业过程之间的信息。更接近实际输出,为工业过程建模降低了大量成本。It can be seen from the analysis of the appeal that the present invention establishes a performance prediction model for a new industrial process by adopting an adversarial transfer learning method and the Bayesian model averaging theory, and makes full use of the existing performance prediction models of similar old industrial processes in the industry. The new and old industrial process data are migrated, and the support vector machine is used to establish multiple old industrial process prediction models containing new industrial process information. Finally, the Bayesian model average theory is used to train the old industrial process model, thereby accelerating the construction of the new industrial process. The model speed is reduced, the modeling cost is reduced, and the "negative migration" effect caused by the old industrial process data is more than the new industrial process data when the new and old industrial process migration modeling is solved, and the prediction model that meets the accuracy requirements is obtained. It also shows that this method can utilize the information between old and new industrial processes more effectively than the pure multi-model transfer method. Get closer to the actual output, reducing substantial costs for modeling industrial processes.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111411517.6A CN114035529B (en) | 2021-11-25 | 2021-11-25 | Low-cost modeling method for nonlinear industrial processes based on ATL-BMA |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111411517.6A CN114035529B (en) | 2021-11-25 | 2021-11-25 | Low-cost modeling method for nonlinear industrial processes based on ATL-BMA |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114035529A true CN114035529A (en) | 2022-02-11 |
CN114035529B CN114035529B (en) | 2023-09-08 |
Family
ID=80138766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111411517.6A Active CN114035529B (en) | 2021-11-25 | 2021-11-25 | Low-cost modeling method for nonlinear industrial processes based on ATL-BMA |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114035529B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103500281A (en) * | 2013-10-08 | 2014-01-08 | 广西大学 | Nonlinear system modeling method of process of sugar boiling crystallization |
CN106156434A (en) * | 2016-07-11 | 2016-11-23 | 江南大学 | Sliding window time difference Gaussian process regression modeling method based on the low and deep structure of local time |
CN109902378A (en) * | 2019-02-25 | 2019-06-18 | 中国矿业大学 | A low-cost modeling method for complex industrial processes based on multi-model transfer and BMA theory |
CN112750277A (en) * | 2021-01-05 | 2021-05-04 | 武汉大学 | Indoor falling detection system and method fusing track data and sensor posture |
-
2021
- 2021-11-25 CN CN202111411517.6A patent/CN114035529B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103500281A (en) * | 2013-10-08 | 2014-01-08 | 广西大学 | Nonlinear system modeling method of process of sugar boiling crystallization |
CN106156434A (en) * | 2016-07-11 | 2016-11-23 | 江南大学 | Sliding window time difference Gaussian process regression modeling method based on the low and deep structure of local time |
CN109902378A (en) * | 2019-02-25 | 2019-06-18 | 中国矿业大学 | A low-cost modeling method for complex industrial processes based on multi-model transfer and BMA theory |
CN112750277A (en) * | 2021-01-05 | 2021-05-04 | 武汉大学 | Indoor falling detection system and method fusing track data and sensor posture |
Non-Patent Citations (1)
Title |
---|
FEI CHU: "A Minimum-Cost Modeling Method for Nonlinear Industrial Process Based on Multimodel Migration and Bayesian Model Averaging Method", 《IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 》, vol. 17, no. 2, XP011782784, DOI: 10.1109/TASE.2019.2952376 * |
Also Published As
Publication number | Publication date |
---|---|
CN114035529B (en) | 2023-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106677763B (en) | Dynamic integrated modeling-based oil well working fluid level prediction method | |
CN110640982A (en) | A multi-objective optimization method of injection molding process parameters for thin-walled injection molded parts | |
CN109146162B (en) | A kind of probability wind speed forecasting method based on integrated Recognition with Recurrent Neural Network | |
JP6784780B2 (en) | How to build a probabilistic model for large-scale renewable energy data | |
CN114065662B (en) | Method suitable for rapidly predicting airfoil flow field with variable grid topology | |
CN110400231B (en) | A Weighted Nonlinear Bayesian Method for Predicting the Failure Rate of Electric Energy Metering Equipment | |
CN112084727A (en) | A Transition Prediction Method Based on Neural Network | |
CN104750973B (en) | Unit load (standard) steady state condition clustering algorithm based on data smoothness function | |
CN112784140B (en) | A Search Method for Energy Efficient Neural Network Architectures | |
CN114512191A (en) | Penicillin concentration prediction method based on migration component analysis | |
CN116975645A (en) | Industrial process soft measurement modeling method based on VAE-MRCNN | |
CN116628854A (en) | Wing section aerodynamic characteristic prediction method, system, electronic equipment and storage medium | |
CN103885867B (en) | Online evaluation method of performance of analog circuit | |
CN112966429B (en) | WGANs data enhancement-based nonlinear industrial process modeling method | |
CN114880806A (en) | New energy automobile sales prediction model parameter optimization method based on particle swarm optimization | |
CN113255225A (en) | Train motion state estimation method for few-sample-element lifting learning | |
CN117194765A (en) | Dual-channel graph contrast learning session recommendation method for interest perception | |
CN116306226A (en) | Fuel cell performance degradation prediction method | |
Liu et al. | Evolutionary large-scale multiobjective optimization via autoencoder-based problem transformation | |
CN114035529A (en) | ATL-BMA-based low-cost modeling method for nonlinear industrial process | |
CN104102837A (en) | Incremental learning integrated algorithm for soft measurement modeling | |
CN117764770A (en) | Theoretical line loss rate prediction method based on federal learning and integration technology | |
CN115808952A (en) | Energy system maximum power tracking control method based on improved particle swarm optimization | |
CN116821695A (en) | Semi-supervised neural network soft measurement modeling method | |
CN109902378B (en) | Complex industrial process low-cost modeling method based on multi-model migration and BMA theory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |