CN114031646A - 一类环金属化铂配合物及其制备方法和应用 - Google Patents

一类环金属化铂配合物及其制备方法和应用 Download PDF

Info

Publication number
CN114031646A
CN114031646A CN202111427743.3A CN202111427743A CN114031646A CN 114031646 A CN114031646 A CN 114031646A CN 202111427743 A CN202111427743 A CN 202111427743A CN 114031646 A CN114031646 A CN 114031646A
Authority
CN
China
Prior art keywords
complex
platinum
platinum complex
fluorescence
cyclometalated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111427743.3A
Other languages
English (en)
Other versions
CN114031646B (zh
Inventor
杨靖
王文婷
王路涛
高传柱
廖霞俐
杨波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202111427743.3A priority Critical patent/CN114031646B/zh
Publication of CN114031646A publication Critical patent/CN114031646A/zh
Application granted granted Critical
Publication of CN114031646B publication Critical patent/CN114031646B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)

Abstract

本发明公开了一类环金属化铂配合物,其结构式如式Ⅰ所示:
Figure DDA0003376397990000011
本发明环金属化铂配合物不仅具有抗肿瘤活性,能应用在制备抗肿瘤药物中,且本发明合成的环金属化铂配合物受溶液环境中卤素离子的诱导,通过铂‑铂作用自组装形成纳米颗粒,受360‑450nm光源激发后在600‑780nm处发射红色荧光,并且肉眼可观察到此类物质在自然光条件下的红色发光;环金属化铂配合物可应用于荧光探针、细胞成像和荧光显色材料等领域,具有较高灵敏度、较低检测成本、操作方便、测定快速以及实时检测等特点。

Description

一类环金属化铂配合物及其制备方法和应用
技术领域
本发明涉及一类环金属化铂配合物,及其在生物成像方面的应用,属于生物医学检测和成像领域。
背景技术
过渡金属配合物由于具有较好的的光物理化学性质:较大的斯托克斯位移、较长的发光寿命、不易光漂白、配体的可调性和高效的细胞摄取能力等,被认为具有成为金属离子、阴离子和生物分子的磷光传感器的潜能。类方形平面环金属铂(Ⅱ)配合物光物理性质在过去几十年中被广泛研究,这是由于它们有趣的光谱和发光性质以及它们金属-金属相互作用所导致的。许多类方形平面铂(Ⅱ)配合物可以结晶成线性链堆,研究发现炔基铂(Ⅱ)三联吡啶配合物的聚集可由它们所处的微环境变化而引发,如溶剂、pH、温度的变化以及加入带负电荷的聚电解质等,诱导分子间铂-铂相互作用,其相关特征光谱同时发生明显变化。然而,水溶液中卤素离子诱导的方形平面铂(Ⅱ)配合物通过Pt-Pt相互作用形成的自组装纳米颗粒罕见报道。
卤素离子的浓度变化对生物细胞具有重要的意义,开发探测细胞内卤素离子浓度变化的荧光探针也面临很大挑战。目前大多数卤素离子荧光探针属于荧光猝灭型,包括目前市售的Cl-探针MQAE,由于细胞中的金属离子和生物大分子也能够淬灭探针荧光,从而影响了此类探针的检测特异性。金属配合物(Zn2+,Cd2+,Hg2+)荧光增强型的卤素离子探针也很罕见,它们只能在有机溶剂相中进行检测或构建分子结构中需要引入具有生物毒性重金属离子,也极大地限制了它们在生物系统中的应用。
发明内容
针对现有技术的不足,本发明提供了一类环金属化铂配合物,本发明环金属化铂配合物作为“开-关”磷光探针在水溶液中受到卤素离子诱导,分子间产生Pt-Pt作用诱导自组装形成具有红光发射的纳米颗粒,实现了对卤素离子特异性的荧光检测,也可作为活细胞中卤素离子的荧光诊疗探针。
本发明环金属化铂配合物的结构式如式Ⅰ所示:
Figure BDA0003376397970000011
其中,
Figure BDA0003376397970000021
选自
Figure BDA0003376397970000022
Figure BDA0003376397970000023
选自
Figure BDA0003376397970000024
Figure BDA0003376397970000025
Figure BDA0003376397970000026
时,
Figure BDA0003376397970000027
不选
Figure BDA0003376397970000028
本发明另一目的是提供上述环金属化铂配合物的制备方法,方法如下:
(1)在惰性气氛、溶剂存在条件下,将四氯铂酸钾与芳香环类化合物混合,80-85℃下回流搅拌反应48h,析出沉淀,沉淀洗涤干燥得到铂桥联前体;
所述四氯铂酸钾与芳香环类化合物的摩尔比为1:1-3;所述芳香环类化合物选自
Figure BDA0003376397970000029
Figure BDA00033763979700000210
溶剂为乙二醇乙醚和超纯水的混合溶剂(体积比为2:1);
(2)在惰性气氛、常温、溶剂存在条件下,将步骤(1)得到的铂桥联前体与银盐混合搅拌反应脱氯20-24h,过滤,滤液为中间产物;
所述铂桥联前体与银盐的摩尔比为1:1-3;溶剂为乙腈、二氯甲烷、甲醇、丙酮中的一种;
(3)在惰性气氛下,将步骤(2)得到的中间产物与联吡啶类化合物混合,60-70℃回流搅拌反应20-24h,析出沉淀,沉淀洗涤干燥制得环金属化铂配合物;铂桥联前体与联吡啶类化合物的摩尔比为1:1-3;
所述联吡啶类化合物选自
Figure BDA00033763979700000211
Figure BDA0003376397970000031
Figure BDA0003376397970000032
时,
Figure BDA0003376397970000033
Figure BDA0003376397970000034
时,环金属化铂配合物的结构式为
Figure BDA0003376397970000035
命名为配合物2a。
Figure BDA0003376397970000036
Figure BDA0003376397970000037
时,
Figure BDA0003376397970000038
Figure BDA0003376397970000039
时,环金属化铂配合物的结构式为
Figure BDA00033763979700000310
命名为配合物2b。
Figure BDA00033763979700000311
Figure BDA00033763979700000312
时,
Figure BDA00033763979700000313
Figure BDA00033763979700000314
时,环金属化铂配合物的结构式为
Figure BDA00033763979700000315
命名为1c。
Figure BDA00033763979700000316
Figure BDA00033763979700000317
时,
Figure BDA00033763979700000318
Figure BDA00033763979700000319
时,环金属化铂配合物的结构式为
Figure BDA00033763979700000320
命名为2c。
Figure BDA00033763979700000321
Figure BDA00033763979700000322
时,
Figure BDA00033763979700000323
Figure BDA00033763979700000324
时,环金属化铂配合物的结构式为
Figure BDA00033763979700000325
命名为1d。
Figure BDA0003376397970000041
Figure BDA0003376397970000042
时,
Figure BDA0003376397970000043
Figure BDA0003376397970000044
时,环金属化铂配合物的结构式为
Figure BDA0003376397970000045
命名为2d。
所述惰性气氛为N2
本发明另一目的是提供上述环金属化铂配合物的用途,其不仅具有抗肿瘤活性,能应用在制备抗肿瘤药物中,且本发明合成的环金属铂(Ⅱ)配合物受溶液环境中卤素离子的诱导,通过铂-铂作用自组装形成纳米颗粒,受360-450nm光源激发后在600-780nm处发射红色荧光,并且肉眼可观察到此类物质在自然光条件下的红色发光;该类配合物在细胞内受氯离子诱导发生聚集后发光,且红光自组装纳米颗粒与荧光染料共聚焦共定位成像表明其能在24h定位于活细胞的溶酶体中。我们发现这类配合物在水溶液中浓度达到一定程度时,具有聚集诱导发光(AIE)效应;因此该类环金属铂(Ⅱ)配合物可被应用于荧光探针、细胞成像和荧光显色材料等领域,它们体内外对水溶液中溴离子磷光“开-关”的检测具有较高灵敏度、较低检测成本、操作方便、测定快速以及实时检测等特点。
附图说明
图1是配合物2b的核磁共振氢谱(1H-NMR,d6-DMSO)图;
图2是配合物2d的核磁共振氢谱(1H-NMR,d6-DMSO)图;
图3是配合物2b的高分辨质谱图;
图4是配合物2d的高分辨质谱图;
图5是配合物2b(20μmol/L)在四种不同溶剂(PBS、H2O、CH3CN、CH2Cl2)中的紫外与荧光光谱图;A图为紫外光谱图,B图为荧光光谱图;C图为自然光和紫外光下的溶液颜色;
图6是配合物2d(20μmol/L)在四种不同溶剂(PBS、H2O、CH3CN、CH2Cl2)中的紫外与荧光图,其中A图为紫外光谱图,B图为荧光光谱图;C图为自然光和紫外光下的溶液颜色;
图7是配合物2b(20μmol/L)滴定不同阴离子的荧光图,其中左图为荧光强度光谱图,右图为荧光强度的柱状图;
图8是配合物2d(20μmol/L)滴定不同阴离子的荧光图,其中左图为荧光强度光谱图,右图为荧光强度的柱状图;
图9是同等浓度不同结构的配合物1a-d、2a-d对溶液中溴离子(5mmol/L)的荧光响应图,其中左图为2b、2d的对Br-荧光响应结果,右图为1a-d、2a-d的对Br-荧光响应结果;
图10是配合物1b、2b在浓度的二甲基亚砜水溶液中的聚集诱导发光荧光图,其中左上图为1b荧光光谱图,左下图为离心管显色结果,右上图为2b荧光光谱图,右下图为离心管显色结果;
图11是肿瘤细胞对配合物2b的摄取及亚细胞器染料共定位结果;
图12是肿瘤细胞对配合物2d的摄取及核仁染料共定位结果;
图13是配合物2b在Br-作用下组装成纳米离子的丁达尔效应图。
具体实施方式
下面通过实施例对本发明作进一步详细说明,但本发明保护范围不局限于所述内容,实施例中制备的化合物用核磁共振氢谱、质谱确定化合物的结构;实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用材料或设备未注明生产厂商者,均为可以通过购买获得的常规产品,使用的方法如无特殊说明均为常规方法;
实施例中以1a
Figure BDA0003376397970000051
1b
Figure BDA0003376397970000052
作为对照;
实施例1:配合物1c的合成
1、氮气气氛下,按摩尔比1:2的比例,将四氯铂酸钾与2-苯基吡啶混合后,在乙二醇乙醚和超纯水的混合溶剂(体积比为2:1)中溶解,80℃下回流搅拌配位反应48h,反应结束后,加入大量超纯水,冰浴至出现黄绿色絮状沉淀,过滤沉淀,得到的固体用超纯水和乙醚分别洗3次,50℃干燥,得到黄绿色铂前体[Pt(ppy)Cl];
2、在50mL圆底烧瓶中加入[Pt(ppy)Cl]2(60mg,0.078mmoL),再加入AgCF3SO3(40.05mg,0.156mmoL)、15-20mL乙腈,氮气气氛下,常温反应24h,过滤,除去AgCl沉淀;
3、向滤液中加入1,4,8,9-四氮杂-联苯(pyphen)(36.20mg,0.156mmoL),氮气气氛下60℃冷凝回流反应24h;反应结束后,旋蒸浓缩溶液至1-2mL,加入乙醚,析出沉淀,过滤,沉淀用水、乙醚清洗,60℃烘干,得到橙红色固体配合物1c;产率69.01%;
所述配合物1c的结构式为
Figure BDA0003376397970000053
核磁H谱和质谱数据如下:1HNMR(600MHz,DMSO-d6)δ9.71–9.64(m,1H),9.63–9.57(m,1H),9.53(d,J=8.0Hz,1H),9.49(s,1H),9.37(s,1H),9.23(d,J=14.6Hz,1H),8.87–8.79(m,1H),8.33–8.26(m,1H),8.21–8.14(m,1H),8.06(d,J=7.7Hz,1H),7.81–7.73(m,1H),7.42–7.37(m,1H),7.29(s,1H),7.21(d,J=7.2Hz,1H),7.07(d,J=6.6Hz,1H),7.00–6.92(m,1H).ESI-MS m/z:[M]+581.11.
实施例2:配合物1d的合成
1、氮气气氛下,按摩尔比1:2的比例,将四氯铂酸钾与2-苯基吡啶混合后,在乙二醇乙醚和超纯水的混合溶剂(体积比为2:1)中溶解,80℃下回流搅拌反应48h,反应结束后,加入大量超纯水,冰浴至出现黄绿色絮状沉淀,过滤沉淀,得到的固体用超纯水和乙醚分别洗3次,50℃干燥,得到黄绿色铂前体[Pt(ppy)Cl]2
2、在50mL圆底烧瓶中加入[Pt(ppy)Cl]2(60mg,0.078mmoL),再加入AgCF3SO3(40.05mg,0.156mmoL)、15-20mL乙腈,氮气气氛下,常温反应24h,过滤,除去AgCl沉淀;
3、向滤液中加入4,5,9,14-四氮杂-苯并[b]联苯(dppz)(44.01mg,0.156mmoL),氮气气氛下,60℃冷凝回流反应24h;反应结束后,旋蒸浓缩溶液至1-2mL,加入乙醚,析出沉淀,过滤,沉淀用水,乙醚清洗沉淀,60℃烘干,得到深红色固体配合物1d;产率63.11%;
所述配合物1d的结构式为
Figure BDA0003376397970000061
核磁H谱和质谱数据如下:1H NMR(600MHz,DMSO-d6)δ9.64(d,J=6.7Hz,2H),9.45–9.40(m,1H),9.16–9.13(m,1H),8.86(d,J=5.2Hz,1H),8.35(d,J=7.7Hz,1H),8.29(dd,J=16.2,6.3Hz,2H),8.14(dd,J=15.5,7.6Hz,2H),8.06–8.00(m,2H),7.91(dd,J=7.5,3.9Hz,1H),7.84(d,J=7.8Hz,1H),7.40–7.37(m,1H),7.25(d,J=7.5Hz,1H),7.14(t,J=7.2Hz,1H),7.01(t,J=7.3Hz,1H).ESI-MS m/z:[M]+629.13.
实施例3:配合物2a的合成
1、氮气气氛下,按摩尔比1:2的比例,将四氯铂酸钾与2-(2,4-二氟苯基)吡啶混合后,在乙二醇乙醚和超纯水的混合溶剂(体积比为2:1)中溶解,80℃下回流搅拌反应48h,反应结束后,加入大量超纯水,冰浴至出现黄绿色絮状沉淀,过滤沉淀,得到的固体用超纯水和乙醚分别洗3次,55℃干燥,得到黄绿色铂前体[Pt(dfppy)Cl]2
2、在50mL圆底烧瓶中加入[Pt(dfppy)Cl]2(60mg,0.071mmoL),再加入AgCF3SO3(36.48mg,0.142mmoL),15-20mL乙腈,氮气气氛下,常温反应24h,过滤,除去AgCl沉淀;
3、向步骤2滤液中加入2,2’-联吡啶(bpy)(22.18mg,0.142mmoL),氮气气氛下,60℃冷凝回流反应24h,反应结束后,旋蒸浓缩溶液至1-2mL,加入乙醚,析出沉淀,过滤,沉淀用水、乙醚清洗,55℃烘干,得到黄色固体配合物2a;产率:48.38%;
所述配合物2a的结构式为
Figure BDA0003376397970000071
核磁H谱和质谱数据如下:1H NMR(600MHz,DMSO-d6)δ9.36(d,J=5.4Hz,1H),9.08(d,J=5.2Hz,1H),8.93(d,J=5.7Hz,1H),8.76(d,J=8.0Hz,1H),8.71(d,J=8.0Hz,1H),8.53–8.45(m,2H),8.22(d,J=7.4Hz,2H),7.99–7.96(m,1H),7.89(t,J=6.4Hz,1H),7.83(d,J=7.5Hz,1H),7.52(t,J=7.2Hz,1H),7.35(d,J=7.6Hz,1H),7.28(t,J=7.0Hz,1H),7.24(t,J=7.3Hz,1H).ESI-MS m/z:[M]+505.10.
实施例4:配合物2b的合成
1、步骤1、2方法同实施例3步骤1、2;
2、向滤液中加入1,10-邻菲啰啉(phen)(25.59mg,0.142mmoL),氮气气氛下,65℃冷凝回流反应22h,反应结束后,旋蒸浓缩溶液至1-2mL,加入乙醚,析出沉淀,过滤,沉淀用水、乙醚清洗,60℃烘干,得到橙色固体配合物2b,产率:57.30%,配合物2b的核磁共振氢谱图见图1,高分辨质谱图见图3;
所述配合物2b的结构式为
Figure BDA0003376397970000072
核磁H谱和质谱数据如下:1HNMR(600MHz,DMSO-d6)δ9.60–9.54(m,1H),9.38–9.33(m,1H),9.15(d,J=3.7Hz,1H),8.99–8.92(m,2H),8.76(d,J=9.5Hz,1H),8.29(q,J=8.5,8.0Hz,1H),8.18(d,J=19.5Hz,1H),8.11–8.06(m,1H),8.01–7.95(m,1H),7.85–7.79(m,1H),7.37–7.32(m,1H),7.07–7.00(m,1H),6.98–6.92(m,1H).ESI-MS m/z:[M]+565.08.
实施例5:配合物2c的合成
1、步骤1、2方法同实施例3步骤1、2;
2、向滤液中加入1,4,8,9-四氮杂-联苯(pyphen)(32.95mg,0.142mmoL),氮气气氛下,70℃冷凝回流反应20h,反应结束后,旋蒸浓缩溶液至1-2mL,加入乙醚,析出沉淀,过滤,沉淀用水、乙醚清洗,60℃烘干,得到橙色固体配合物2c,产率:55.16%;
所述配合物2c的结构式为
Figure BDA0003376397970000081
核磁H谱和质谱数据如下:1HNMR(600MHz,DMSO-d6)δ9.49–9.44(m,2H),9.34(d,J=11.5Hz,2H),9.23(s,1H),9.17(dd,J=4.4,1.7Hz,1H),8.74(d,J=4.3Hz,1H),8.18(d,J=5.6Hz,1H),8.02–7.92(m,2H),7.46(d,J=8.2Hz,1H),7.25(t,J=6.2Hz,1H),6.75(t,J=10.3Hz,1H),6.69(d,J=7.7Hz,1H).ESI-MS m/z:[M]+617.09.
实施例6:配合物2d的合成
1、步骤1、2方法同实施例3步骤1、2;
2、向滤液中加入4,5,9,14-四氮杂-苯并[b]联苯(dppz)(40.25mg,0.142mmoL),氮气气氛下,60℃冷凝回流反应24h,反应结束后,旋蒸浓缩溶液至1-2mL,加入乙醚,析出沉淀,过滤,沉淀用水、乙醚清洗,50℃烘干,得到红色固体配合物2d,产率:72.06%;配合物2d的核磁共振氢谱见图2,高分辨质谱图见图4;
所述配合物2d的结构式为
Figure BDA0003376397970000082
核磁H谱和质谱数据如下:1H NMR(600MHz,DMSO-d6)δ9.54(d,J=7.5Hz,1H),9.51–9.47(m,1H),9.43(dd,J=19.3,6.7Hz,1H),9.34–9.31(m,1H),9.10–9.07(m,1H),8.85(d,J=4.7Hz,1H),8.28–8.15(m,2H),8.03(d,J=16.7Hz,4H),7.64(d,J=6.0Hz,1H),7.31(s,1H),6.88–6.79(m,2H).ESI-MS m/z:[M]+666.01.
实施例7:环金属化铂(II)配合物在不同溶剂下的紫外吸收和荧光发射
将实施例1-6中合成配合物分别称取0.5mg,加入二甲基亚砜配制成20mmol/L的母液,分别取3μL加入4个5mL的离心管中,加入27μL的二甲基亚砜,再分别用H2O、CH3CN、CH2Cl2、PBS缓冲液(pH7.0-7.4)配制成20μmol/L的溶液,分别测定紫外吸收,获得紫外吸收光谱;配合物2b在激发光为410nm,获得发射光为628nm下的荧光发射光谱,如图5所示,从图中可以看出只有在PBS缓冲液溶液中才有显著的紫外吸收(450nm-550nm)和红色荧光发射,其中在自然光条件下PBS中可以肉眼观测到配合物2b的红光。
配合物2d在激发光为410nm,获得发射光为687nm下的荧光发射光谱,如图6所示,配合物2d在PBS溶液中有紫外吸收和荧光发射,与配合物2b相比,配合物2d在PBS中紫外吸收以及相应的荧光强度较弱,说明芳环的增加会减弱分子间的Pt-Pt相互作用。
配合物1c、1d、2a、2c的检测结果也显示,均是在PBS溶液中(450-550nm)有紫外吸收和红色荧光发射(600-780nm),在H2O、CH2Cl2、CH3CN中没有此类现象。
实施例8:环金属化铂(II)配合物的选择性测试
将实施例1-6配合物分别称取0.5mg,加入二甲基亚砜配制成20mmol/L的母液,取3μL母液到5mL的离心管里,再加入27μL的二甲基亚砜,用水稀释到20μmol/L,分别加入F-、Cl-、Br-、I-、NO2 -、NO3 -、SO4 2-、HSO3 -、CO3 2-、HCO3 -、H2PO4 -、CH3COO-、ClO-、ClO4 -等离子,离子最终浓度为5mmol/L,上述溶液在410nm激发光下测定荧光获得荧光光谱图;
结果见图7和8,配体芳环少位阻小的配合物2b对Br-有显著的选择性,同时配体芳环多位阻大的配合物2d对所有离子的选择性较弱,说明增加双齿氮氮配体中芳环的数量会诱导分子间的铂-铂相互作用减弱,对离子的选择性能降低。其中配合物1c、1d、2a、2c结果也显示出随着配体芳环的增多,对离子的选择性降低。
实施例9:不同配合物对Br-的选择性测试
分别称取0.5mg配合物1a、2a、1b、2b、1c、2c、1d、2d,加入二甲基亚砜中配制成20mmol/L的母液,取3μL加入到离心管中,加入27μL的二甲基亚砜,再加水稀释到20μmol/L,再分别加入Br-离子,Br-最终浓度为5mmol/L,上述溶液在410nm激发光下测定荧光获得荧光光谱图,如图9所示,配合物1a、2a、1b、2b对Br-有较强的荧光响应性,说明增加双齿氮氮配体中芳环的数量大于等于4后,分子间铂-铂相互作用会减弱,导致对溶液中离子的荧光响应性降低;同时在配体芳环数量一致的情况下,含F的配合物2a与2b对Br-的荧光响应能力比1a和1b有所增强。
实施例10:配合物1b、2b的聚集诱导发光(AIE)测试
分别称取0.8mg的配合物1b、2b,加入DMSO,配制成100mmol/L的母液,取3μL的到离心管中,加入27μL的二甲基亚砜,再分别向离心管中加入H2O:DMSO体积比为0%、10%、20%、30%、40%、50%、60%、70%、80%、90%的溶剂(3mL)配制成100μmol/L的溶液,在410nm激发下、配合物1b在646nm荧光发射、2b配合物在628nm荧光发射作用下,获得荧光光谱图,结果见图10,配合物1b、2b具有AIE效应,生物成像方面具有广泛应用。
实施例11:配合物荧光量子产率的检测
荧光量子产率可用于表征物质荧光发光能力的大小,依据下列公式进行计算。
Figure BDA0003376397970000091
YU:待测物质的量子产率;YS:参比物质的量子产率;FU:待测物质的积分荧光强度;FS:参比物质的积分荧光强度;AU:待测物质的紫外吸光度;AS:参比物质的紫外吸光度。
选用[Ru(bpy)3](PF6)2为参比物质,称取1mg,加入相应体积的二甲基亚砜配制成20mmol/L,取3μL到4个5mL的离心管里,加入27μL的二甲基亚砜,再分别加入H2O、CH2Cl2、CH3CN、PBS缓冲液配制成20μmol/L的溶液,用紫外吸收光谱仪测定紫外,最终使得每一种溶剂下在在最大吸收波长处的吸光度为0.05。当溶液吸光度为0.05时,用最大吸收波长激发测定其荧光,并计算荧光积分强度。
分别称取8种配合物0.5mg加入二甲基亚砜中配制成20mmol/L,取3μL到5mL的离心管里,每管加入27μL的二甲基亚砜,再分别加入H2O、CH2Cl2、CH3CN、PBS缓冲液配制成20μmol/L的初始浓度溶液备用,利用备用液调节样品浓度使得配合物在每一种溶剂条件下最大吸收波长处的紫外的吸光度接近于0.05。当溶液吸光度接近0.05时,用最大吸收波长激发测定其荧光光谱,计算相应的荧光光谱积分大小。用上述计算公式计算出每一种配合物的荧光量子产率,数据如下表所示;结果显示本发明的8种配合物中1a、2a、1b、2b在PBS缓冲液中的荧光量子产率高于其他溶剂中,但随着双齿氮氮配体中芳环的数量的增加在PBS缓冲液中的荧光量子产率与其他溶剂相当,其中配合物2b在PBS中的荧光量子产率是在H2O中的4.47倍。
表1本发明制备得到的配合物在四种溶剂中的最大吸收与发射波长以及相应的荧光量子产率
Figure BDA0003376397970000111
Figure BDA0003376397970000121
实施例12:环金属化Pt(II)配合物的抗肿瘤活性测定
利用实施例1、2、3、4、5、6制备得到的环金属化Pt(II)配合物为实验组以及配合物1a、1b,以顺铂为对照组,分别测定其对HeLa(人宫颈癌细胞株)和HLF(人胚肺成纤维细胞)的细胞毒性,具体测定方法如下:
采用四唑盐(MTT)比色法测定,将受试肿瘤细胞分别用胰酶消化成单细胞悬液,采用血球计数板进行计数,调整细胞浓度为5×104/mL,接种于96孔板,每孔160μL,培养24h后,再加入不同浓度的药物,置于在5%CO2、37℃的培养箱中孵育48h,于孵育结束前4h加入MTT 20μL/孔;4h后弃上清液,加入DMSO 150μL/孔,振动5min后用酶标仪测定OD值,波长设置为492nm。
计算受试肿瘤细胞的存活率,同时作图并求出IC50值,评价配合物的抗肿瘤活性。
结果见表2,实结果说明随着配合物配体中芳环数量的增大,毒性增大,并且含F的配合物的细胞毒性较大,且此系列配合物对正常细胞HLF的也有较强的毒性。
表2本发明制备得到的环金属Pt(II)配合物的IC50
Figure BDA0003376397970000131
实施例13:红色荧光监测纳米颗粒在肿瘤细胞中的摄取与定位情况
将生长状态良好的HeLa(人宫颈癌细胞株)用胰酶消化下来,接种于共聚焦培养皿中,用含有5%CO2的培养箱37℃培养,当HeLa细胞的密度培养至70%时,分别加入配合物2b、2d,最终药物孵育细胞的浓度为20μmol/L,继续培养24h,加入相应浓度的亚细胞器荧光(溶酶体绿色荧光染料(ex=504nm,em=511nm),线粒体绿色荧光染料(ex=490nm,em=516nm),内质网蓝色染料(ex=374nm,em=430nm),细胞核仁红色染料Styo59(ex=622nm,em=645nm)染料进行染色,孵育10-15min后去除培养基,用PBS洗涤两次,立刻用激光共聚焦显微镜观察。结果见图11、12,结果显示与溶酶体绿色荧光染料或细胞核红色styo59的荧光染料良好的共定位数据表明,配合物2b的红色荧光自组装纳米体在24h时定位于细胞中的溶酶体中,配合物2d可于24h定位于活细胞的细胞核仁中。
实施例14:卤素离子诱导环金属化铂配合物自组装成纳米颗粒
分别称取0.5mg配合物1a、2a、1b、2b、1c、2c、1d、2d,加入二甲基亚砜中配制成20mmol/L的母液,取3μL加入到离心管中,加入27μL的二甲基亚砜,再加水稀释到20μmol/L,再分别加入Br-离子,Br-最终浓度为5mmol/L,用激光笔照射,结果见图13,可以发现有丁达尔效应,加入Br-离子可以成功使制备的环金属铂配合物自组装成纳米颗粒。

Claims (6)

1.一类环金属化铂配合物,其结构式如式Ⅰ所示:
式Ⅰ
Figure FDA0003376397960000011
其中,
Figure FDA0003376397960000012
选自
Figure FDA0003376397960000013
Figure FDA0003376397960000014
选自
Figure FDA0003376397960000015
Figure FDA0003376397960000016
Figure FDA0003376397960000017
时,
Figure FDA0003376397960000018
不选
Figure FDA0003376397960000019
2.权利要求1所述的环金属化铂配合物的制备方法,其特征在于,步骤如下:
(1)在惰性气氛、溶剂存在条件下,将四氯铂酸钾与芳香环类化合物混合,80-85℃下回流搅拌反应48h,析出沉淀,沉淀洗涤干燥得到铂桥联前体;
(2)在惰性气氛、常温、溶剂存在条件下,将步骤(1)得到的铂桥联前体与银盐混合搅拌反应脱氯20-24h,过滤,滤液为中间产物;
(3)在惰性气氛下,将步骤(2)得到的中间产物与联吡啶类化合物混合,60-70℃回流搅拌反应20-24h,析出沉淀,沉淀洗涤干燥制得环金属化铂配合物。
3.根据权利要求2所述的环金属化铂配合物的制备方法,其特征在于:四氯铂酸钾与芳香环类化合物的摩尔比为1:1-3,铂桥联前体与银盐的摩尔比为1:1-3,铂桥联前体与联吡啶类化合物的摩尔比为1:1-3。
4.权利要求1所述的环金属化铂配合物作为荧光探针在检测卤素离子中的应用。
5.权利要求1所述的环金属化铂配合物在制备细胞诊疗成像试剂中的应用。
6.权利要求1所述的环金属化铂配合物在制备抗肿瘤药物中的应用。
CN202111427743.3A 2021-11-26 2021-11-26 一类环金属化铂配合物及其制备方法和应用 Active CN114031646B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111427743.3A CN114031646B (zh) 2021-11-26 2021-11-26 一类环金属化铂配合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111427743.3A CN114031646B (zh) 2021-11-26 2021-11-26 一类环金属化铂配合物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114031646A true CN114031646A (zh) 2022-02-11
CN114031646B CN114031646B (zh) 2023-11-14

Family

ID=80145831

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111427743.3A Active CN114031646B (zh) 2021-11-26 2021-11-26 一类环金属化铂配合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114031646B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773396A (zh) * 2022-04-28 2022-07-22 深圳大学 一种三联吡啶铂(ⅱ)配合物及其制备方法与应用
CN114835706A (zh) * 2022-05-11 2022-08-02 昆明理工大学 一种n^n配体及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110818743A (zh) * 2019-12-04 2020-02-21 大连理工大学 一种具有聚集诱导发光性质的环金属铂配合物的制法及应用
CN111961085A (zh) * 2020-07-23 2020-11-20 大连理工大学 聚集诱导发光卤素修饰的铂配合物的制法及应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110818743A (zh) * 2019-12-04 2020-02-21 大连理工大学 一种具有聚集诱导发光性质的环金属铂配合物的制法及应用
CN111961085A (zh) * 2020-07-23 2020-11-20 大连理工大学 聚集诱导发光卤素修饰的铂配合物的制法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHI-MING CHE ET AL.: "Platinum(ii) Complexes of Dipyridophenazine as Metallointercalators for DNA and Potent Cytotoxic Agents against Carcinoma Cell Lines", 《CHEM. EUR. J. 》, vol. 5, no. 11, pages 3351 *
JING YANG ET AL.: "A halogen ion-selective phosphorescence turn-on probe based on induction of Pt–Pt interactions", 《CHEM. COMMUN.》, vol. 55, pages 1 *
K. P. BALASHEV ET AL.: "Spectroscopic and Electrochemical Properties of Mixed-Ligand Cycloplatinated Complexes Based on 2-(2-Thienyl)Pyridine and 2-Phenylpyridine with 1, 10-Phenantroline and Its 1, 4-Diazine Derivatives", 《RUSSIAN JOURNAL OF GENERAL CHEMISTRY 》, vol. 76, no. 5, pages 782 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773396A (zh) * 2022-04-28 2022-07-22 深圳大学 一种三联吡啶铂(ⅱ)配合物及其制备方法与应用
CN114773396B (zh) * 2022-04-28 2023-12-19 深圳大学 一种三联吡啶铂(ⅱ)配合物及其制备方法与应用
CN114835706A (zh) * 2022-05-11 2022-08-02 昆明理工大学 一种n^n配体及其应用
CN114835706B (zh) * 2022-05-11 2023-10-27 昆明理工大学 一种n^n配体及其应用

Also Published As

Publication number Publication date
CN114031646B (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
Guan et al. Bismuth-MOF based on tetraphenylethylene derivative as a luminescent sensor with turn-off/on for application of Fe3+ detection in serum and bioimaging, as well as emissive spectra analysis by TRES
Zhang et al. Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions)
Swavey et al. Dinuclear and polynuclear lanthanide coordination complexes containing polyazine ligands: Synthesis and luminescent properties
Jiang et al. Double-detecting fluorescent sensor for ATP based on Cu2+ and Zn2+ response of hydrazono-bis-tetraphenylethylene
Zhou et al. Simple, selective, and sensitive colorimetric and ratiometric fluorescence/phosphorescence probes for platinum (ii) based on Salen-type Schiff bases
Ameen et al. Visual monitoring of silver ions and cysteine using bi-ligand Eu-based metal organic framework as a reference signal: Color tonality
CN114031646B (zh) 一类环金属化铂配合物及其制备方法和应用
Kan et al. A fluorescent coordination polymer for selective sensing of hazardous nitrobenzene and dichromate anion
Sen et al. Entrapment of [Ru (bpy) 3] 2+ in the anionic metal–organic framework: Novel photoluminescence behavior exhibiting dual emission at room temperature
Song et al. A novel fluorescent sensor for Al3+ and Zn2+ based on a new europium complex with a 1, 10-phenanthroline ligand
Wei et al. Water-soluble and highly luminescent europium (III) complexes with favorable photostability and sensitive pH response behavior
Zhang et al. A visual logic alarm sensor for diabetic patients towards diabetic polyneuropathy based on a metal–organic framework functionalized by dual-cation exchange
Huo et al. Dual-ligand lanthanide metal–organic framework for ratiometric fluorescence detection of the anthrax biomarker dipicolinic acid
Ongun et al. Synthesis, characterization and oxygen sensitivity of cyclophosphazene equipped-iridium (III) complexes
Liu et al. Construction of two lanthanide Schiff base complexes: Chiral “triple-decker” structure and NIR luminescent response towards anions
Jornet-Molla et al. Zinc (II) picolinate-based coordination polymers as luminescent sensors of Fe3+ ions and nitroaromatic compounds
Downward et al. Photoinduced ligand release in a ruthenium (II)-cobalt (III) heterodinuclear system
Zhang et al. Two luminescent lanthanide coordination polymers incorporating free pyridyl sites as the multi-responsive sensors for hazardous ions
Souchon et al. Photophysics of cyclic multichromophoric systems based on β-cyclodextrin and calix [4] arene with appended pyridin-2′-yl-1, 2, 3-triazolegroups
Sun et al. Carboxylate engineering for manipulating the optical and assembly properties of copper clusters
Tosolini et al. Sterically Encumbered 4, 5‐Bis (diphenylphosphino) acenaphthene Ligand and Its Ni (II), Pd (II), Pt (II), and Cu (I) Complexes
Zhang et al. Synthesis, structures, and properties of three coordination compounds based on trinickel clusters extended by phenyldicarboxylate ligands
Chen et al. Metal cation sensing by a NIR luminescent high-nuclearity Zn–Yb schiff base nanocluster
Tsai et al. Structures, photophysical properties, and optical sensing of zinc–and copper–salicyaldimine complexes
Jing et al. Amino group decorated coordination polymers for enhanced detection of folic acid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant