CN114031341B - Method for preparing baking-free steaming-free cured brick by cooperating lepidolite ore dressing squeezed fine mud and lithium slag based on carbon curing - Google Patents

Method for preparing baking-free steaming-free cured brick by cooperating lepidolite ore dressing squeezed fine mud and lithium slag based on carbon curing Download PDF

Info

Publication number
CN114031341B
CN114031341B CN202111561220.8A CN202111561220A CN114031341B CN 114031341 B CN114031341 B CN 114031341B CN 202111561220 A CN202111561220 A CN 202111561220A CN 114031341 B CN114031341 B CN 114031341B
Authority
CN
China
Prior art keywords
free
curing
brick
lithium slag
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111561220.8A
Other languages
Chinese (zh)
Other versions
CN114031341A (en
Inventor
鲁亚
肖民
徐伟
刘松柏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Building Materials Research And Design Institute Co ltd
Original Assignee
Jiangxi Building Materials Research And Design Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Building Materials Research And Design Institute Co ltd filed Critical Jiangxi Building Materials Research And Design Institute Co ltd
Priority to CN202111561220.8A priority Critical patent/CN114031341B/en
Publication of CN114031341A publication Critical patent/CN114031341A/en
Application granted granted Critical
Publication of CN114031341B publication Critical patent/CN114031341B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/021Ash cements, e.g. fly ash cements ; Cements based on incineration residues, e.g. alkali-activated slags from waste incineration ; Kiln dust cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/0481Other specific industrial waste materials not provided for elsewhere in C04B18/00
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/12Waste materials; Refuse from quarries, mining or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • C04B40/0231Carbon dioxide hardening
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2023Resistance against alkali-aggregate reaction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

The invention discloses a method for preparing a baking-free steaming-free cured brick by cooperation of lepidolite ore dressing pressed fine mud and lithium slag based on carbon curing, which belongs to the technical field of solid waste treatment and resource utilization and comprises the following components in parts by weight: 50-90 parts of lithium slag, 0-50 parts of squeezed fine mud, 10-25 parts of curing agent and 10-14 parts of water. The invention utilizes the byproduct lithium slag and the squeezed fine mud of lithium carbonate prepared from lepidolite as main raw materials, can accelerate the dissolution of alkali and sulfur in the lithium slag by optimizing the particle composition of the raw materials and exciting the curing agent, further promotes the excitation effect, and can obtain the lithium carbonate with the volume weight of 2730kg/m through compression molding and carbon maintenance 3 The high-strength baking-free and steaming-free cured brick. The invention has wide application range, mature preparation technology and no need of curing the formed brick, improves the production efficiency of brick making, avoids the problems of easy efflorescence and the like on the surface of the cured brick, reduces the production cost, realizes the resource utilization of the lepidolite byproduct slag, reduces the problems of solid waste pollution and land occupation, and meets the environmental protection and application requirements of the market on building materials.

Description

Method for preparing baking-free steaming-free cured brick by cooperation of lepidolite ore dressing pressed fine mud and lithium slag based on carbon curing
Technical Field
The invention belongs to the technical field of solid waste treatment and resource utilization, and particularly relates to a method for preparing a baking-free steaming-free cured brick by cooperation of lepidolite ore dressing pressed fine mud and lithium slag based on carbon curing.
Background
The squeezed fine mud and the lithium slag which are byproducts in the lithium carbonate preparation from the lepidolite have the characteristics of large quantity, wide occupied area, high pollution, high alkalinity, high sulfate radical, high development difficulty and the like, and the massive stockpiling can seriously harm the life and property safety of people, destroy the ecological environment and limit the local economic development, so the development of resource recycling of the lepidolite byproduct slag has important significance.
With the deep promotion of the urbanization process and the further development of ecological civilized construction, the market puts forward higher requirements on the development of building materials, and the traditional clay building brick does not meet the market requirements any more due to the energy consumption and environmental problems, so that related scholars put forward the preparation of the building brick by pressing and molding the building garbage or tailings, but cannot be popularized and applied further due to the problems of insufficient mechanical strength, easy surface efflorescence and the like.
Disclosure of Invention
In order to solve the problems, the invention adopts the following technical scheme:
a baking-free and steaming-free cured brick prepared by cooperation of lepidolite ore dressing pressed fine mud and lithium slag based on carbon curing comprises the following components in parts by weight: 50-90 parts of lithium slag, 0-50 parts of squeezed fine mud, 10-25 parts of curing agent and 10-14 parts of water.
Furthermore, the proportion of particles with the particle size of the lepidolite byproduct lithium slag below 100 meshes is over 90 percent.
Further, the specific surface area of the pressed fine mud is 500-700m 2 /kg。
Furthermore, the mixing amount ratio of the lepidolite byproduct lithium slag to the pressed fine mud is 7: 3 to 2: 1.
Further, the curing agent is divided into powder and an excitant, the powder is one or more of cement and fly ash, and the excitant is one or more of water glass, sodium sulfate, gypsum and quick lime.
Further, activator and active Na in lithium slag 2 The total content of O is 1-4% of the solid waste raw material.
A method for preparing a baking-free steaming-free cured brick by cooperation of lepidolite ore dressing pressed fine mud and lithium slag based on carbon curing comprises the following steps:
s10, pre-stirring the dry materials with the designed proportion for 2-3min, adding water, stirring for 0.5-1min, doping the excitant and stirring for 1-3 min; the purpose is to ensure that the raw materials are uniformly mixed and fully reacted, and avoid the problem of agglomeration possibly occurring in the stirring process;
s20, weighing a proper amount of materials according to the designed volume weight, filling the materials into a die, loading the materials to 50-70MPa by a press at a loading speed of 2kN/S, and unloading and demoulding after the materials are loaded for 30-60S; aims to control the discreteness of relevant performances of the baking-free and steaming-free bricks and reduce internal pores;
s30, placing the demolded baking-free and steaming-free brick into a curing room with the carbon dioxide concentration of 5-20% and the humidity of 50-70%, curing for 1-3 days, and then moving the brick to an outdoor drying place for piling; the carbon curing can consume the redundant alkali on the surface layer of the baking-free and steaming-free brick, fill the internal pores, contribute to the strength improvement of the baking-free and steaming-free brick and solve the problem of efflorescence.
Has the advantages that:
(1) the baking-free and steaming-free cured brick prepared by the carbon-curing-based lepidolite ore dressing squeezed fine mud and the lithium slag in a synergistic manner can achieve higher strength without steam curing or firing under the combined action of various solid waste material collaborative optimization, curing agent activation, carbon curing and the like, can reduce the production cost, and solves the problem of stockpiling of part of lepidolite ore dressing solid waste.
(2) According to the invention, the early strength of the cured brick in 3 days can be improved by at least 50% by adjusting the grain composition through the synergistic effect of the pressed fine mud and the lithium slag.
(3) The strength of the lepidolite byproduct slag cured baking-free steaming-free cured brick provided by the invention can reach more than 15MPa in 7 days, the strength can be improved by at least 15% after carbon curing, and the problem of surface efflorescence is solved.
Detailed Description
Example 1:
s10, taking 75 parts of lithium slag (with fineness modulus of 1.64), 25 parts of curing agent and 12 parts of water according to parts by weight; the mass ratio of the cement to the fly ash to the exciting agent in the curing agent is 57:28:15 respectively; the activator only uses water glass (because the sulfate radical content of the lithium slag is higher).
S20, stirring the dry materials in a stirrer for 2min, adding water, stirring for 0.5min, adding an exciting agent, and stirring for 2.5min to obtain the brick making materials.
And S30, loading the materials into a 240 x 115 x 53mm mould at a loading speed of 2kN/S to 65MPa, keeping the load for 30S, demoulding, sealing and curing the baking-free and steaming-free brick, and moving the brick to a drying place for piling after three days.
S40, the compressive strengths of the lepidolite by-product slag solidified baking-free steaming-free brick prepared in the embodiment after 3 days, 7 days and 28 days are respectively 21.2MPa, 33.3MPa and 49.4 MPa.
Example 2:
s10, taking 50 parts by weight of lithium slag (fineness modulus of 1.64) and 25 parts by weight of pressed fine powder (specific surface area of 650 m) 2 Per kg), 25 parts of curing agent and 12 parts of water; the mass ratio of the cement to the fly ash to the exciting agent in the curing agent is 57:28:15 respectively; the activator only uses water glass (because the sulfate radical content of the lithium slag is higher).
S20, stirring the dry materials in a stirrer for 2min, adding water, stirring for 0.5min, adding an exciting agent, and stirring for 2.5min to obtain the brick making materials.
And S30, loading the materials into a 240 x 115 x 53mm mould at a loading speed of 2kN/S to 60MPa, keeping the load for 30S, demoulding, sealing and curing the baking-free and steaming-free brick, and moving the brick to a drying place for piling after three days.
S40, the compressive strengths of the lepidolite by-product slag cured baking-free steaming-free brick prepared in the embodiment for 3 days, 7 days and 28 days are 34.1MPa, 40.8MPa and 55.1MPa respectively.
MIP testing was performed on examples 1 and 2 to obtain data relating to internal porosity for the above examples, and the results are shown in table 1.
TABLE 1
Figure 188336DEST_PATH_IMAGE001
The invention can be obtained from the above table, the non-fired and non-steamed curing brick is prepared by the cooperation of the pressed fine mud and the lithium slag, the porosity of the curing brick can be reduced, the void ratio in the particle size range of 10-100nm is reduced, the mechanical strength of the non-fired and non-steamed curing brick is further improved, and the authenticity of the synergistic effect of the pressed fine mud and the lithium slag is proved.
Example 3:
s10, taking 45 parts of lithium slag (fineness modulus of 1.64) and 45 parts of pressed fine powder (specific surface area of 650 m) according to parts by weight 2 Per kg), 10 parts of curing agent and 14 parts of water; the mass ratio of the cement, the fly ash and the exciting agent in the curing agent is 31:10 respectively9, preparing a mixture; the activator only uses water glass (because the sulfate radical content of the lithium slag is higher).
S20, stirring the dry materials in a stirrer for 2min, adding water, stirring for 0.5min, adding an exciting agent, and stirring for 2.5min to obtain the brick making materials.
And S30, loading the materials into a 240 x 115 x 53mm mould at a loading speed of 2kN/S to 60MPa, carrying for 30S, demoulding, and sealing and curing the baking-free and steaming-free brick.
S40, the compressive strengths of the lepidolite by-product slag cured baking-free steaming-free brick prepared in the embodiment are 12.9MPa, 16.3MPa and 23.2MPa respectively after 3 days, 7 days and 28 days.
Example 4:
s10, taking 60 parts by weight of lithium slag (fineness modulus of 1.64) and 30 parts by weight of pressed fine powder (specific surface area of 650 m) 2 Per kg), 10 parts of curing agent and 14 parts of water; the mass ratio of the cement, the fly ash and the exciting agent in the curing agent is 31:10:9 respectively; the activator only uses water glass (because the sulfate radical content of the lithium slag is higher).
S20, stirring the dry materials in a stirrer for 2min, adding water, stirring for 0.5min, adding an exciting agent, and stirring for 2.5min to obtain the brick making materials.
And S30, loading the materials into a 240 x 115 x 53mm mould at a loading speed of 2kN/S to 60MPa, carrying for 30S, demoulding, and sealing and curing the baking-free and steaming-free brick.
S40, the compressive strengths of the lepidolite by-product slag cured baking-free steaming-free brick prepared in the embodiment after 3 days, 7 days and 28 days are respectively 16.2MPa, 19.6MPa and 28.7 MPa.
Example 5:
s10, taking 60 parts by weight of lithium slag (fineness modulus of 1.64) and 30 parts by weight of pressed fine powder (specific surface area of 650 m) 2 Per kg), 10 parts of curing agent and 14 parts of water; the mass ratio of the cement, the fly ash and the exciting agent in the curing agent is 31:10:9 respectively; the activator only uses water glass (because the sulfate radical content of the lithium slag is higher).
S20, stirring the dry materials in a stirrer for 2min, adding water, stirring for 0.5min, adding an exciting agent, and stirring for 2.5min to obtain the brick making materials.
And S30, loading the materials into a 240 × 115 × 53mm mould at a loading speed of 2kN/S to 60MPa, holding for 30S, demoulding, and curing the baking-free and steaming-free brick with carbon dioxide concentration of 10% and humidity of 60% for three days, and then transferring to a drying place for piling.
S40, the compressive strengths of the lepidolite by-product slag cured baking-free steaming-free brick prepared in the embodiment are 20.7MPa, 28.8MPa and 36.8MPa respectively after 3 days, 7 days and 28 days.
Example 6:
s10, taking 60 parts by weight of lithium slag (fineness modulus of 1.64) and 30 parts by weight of pressed fine powder (specific surface area of 650 m) 2 Per kg), 10 parts of curing agent and 14 parts of water; the mass ratio of the cement, the fly ash and the exciting agent in the curing agent is 31:10:9 respectively; the activator only uses water glass (because the sulfate radical content of the lithium slag is higher).
S20, stirring the dry materials in a stirrer for 2min, adding water, stirring for 0.5min, adding an exciting agent, and stirring for 2.5min to obtain the brick making materials.
And S30, loading the materials into a 240 x 115 x 53mm mould at a loading speed of 2kN/S to 60MPa, carrying for 30S, demolding, carrying out carbon curing on the baking-free and steaming-free brick, wherein the carbon dioxide concentration is 20% and the humidity is 60%, curing for three days, and then transferring to a drying place for piling.
S40, the detection shows that the compressive strengths of the lepidolite by-product slag cured baking-free steaming-free brick prepared in the embodiment are 24.6MPa, 26.4MPa and 37.4MPa respectively in 3 days, 7 days and 28 days.
The above description is only a preferred embodiment of the present invention, and is not intended to limit the technical scope of the present invention, so that any minor modifications, equivalent changes and modifications made to the above embodiment according to the technical spirit of the present invention are within the technical scope of the present invention.

Claims (5)

1. A baking-free and steaming-free cured brick prepared by cooperation of lepidolite ore dressing pressed fine mud and lithium slag based on carbon curing is characterized by comprising the following components in parts by weight: 50-90 parts of lithium slag, 0-50 parts of squeezed fine mud, 10-25 parts of curing agent and 10-14 parts of water; the mixing amount ratio of the lepidolite byproduct lithium slag to the pressed fine mud is 7: 3-2: 1, the curing agent is divided into powder and an activator, the powder is one or more of cement, fly ash, silica fume and steel slag, and the activator is water glass.
2. The carbon-curing-based lepidolite mineral separation pressed fine mud and lithium slag synergistic preparation baking-free steaming-free cured brick as claimed in claim 1, wherein the particle proportion of the lepidolite byproduct lithium slag particle size below 100 meshes is more than 90%.
3. The carbon curing-based lepidolite mineral separation pressed fine mud and lithium slag synergetic preparation baking-free steaming-free cured brick as claimed in claim 1, wherein the specific surface area of the pressed fine mud is 500-700m 2 /kg。
4. The carbon curing-based lepidolite beneficiation pressed fine mud and lithium slag synergetic prepared baking-free non-autoclaved curing brick according to claim 1, wherein the activator and active Na in the lithium slag 2 The total content of O is 1-4% of the total content of the lithium slag and the pressed fine mud.
5. The method for preparing the carbon curing-based lepidolite beneficiation pressed fine mud and lithium slag synergistic baking-free steaming-free cured brick is characterized by comprising the following steps of:
s10, pre-stirring the dry materials with the designed proportion for 2-3min, adding water, stirring for 0.5-1min, doping the excitant and stirring for 1-3 min;
s20, weighing a proper amount of materials according to the designed volume weight, filling the materials into a die, loading the materials to 50-70MPa by a press at a loading speed of 2kN/S, and unloading and demoulding after the materials are loaded for 30-60S;
s30, placing the demolded baking-free steaming-free brick into a curing room with the carbon dioxide concentration of 15-20% and the humidity of 50-70% for curing for 1-3 days, and then moving the brick to an outdoor drying place for piling.
CN202111561220.8A 2021-12-20 2021-12-20 Method for preparing baking-free steaming-free cured brick by cooperating lepidolite ore dressing squeezed fine mud and lithium slag based on carbon curing Active CN114031341B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111561220.8A CN114031341B (en) 2021-12-20 2021-12-20 Method for preparing baking-free steaming-free cured brick by cooperating lepidolite ore dressing squeezed fine mud and lithium slag based on carbon curing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111561220.8A CN114031341B (en) 2021-12-20 2021-12-20 Method for preparing baking-free steaming-free cured brick by cooperating lepidolite ore dressing squeezed fine mud and lithium slag based on carbon curing

Publications (2)

Publication Number Publication Date
CN114031341A CN114031341A (en) 2022-02-11
CN114031341B true CN114031341B (en) 2022-09-16

Family

ID=80147102

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111561220.8A Active CN114031341B (en) 2021-12-20 2021-12-20 Method for preparing baking-free steaming-free cured brick by cooperating lepidolite ore dressing squeezed fine mud and lithium slag based on carbon curing

Country Status (1)

Country Link
CN (1) CN114031341B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105439485A (en) * 2015-12-15 2016-03-30 华东交通大学 Lithionite slag admixture and its preparation method and use
CN105645904A (en) * 2016-03-15 2016-06-08 东南大学 Non-autoclaved aerated concrete prepared by utilizing lithium slag and nickel slag and preparation method of non-autoclaved aerated concrete
CN108609925A (en) * 2018-04-25 2018-10-02 东南大学 A kind of alkali-activated carbonatite lithium slag and nickel slag foam concrete
KR101921929B1 (en) * 2018-04-18 2018-11-27 (주)경룡 Functional cement mortar composition for repairing concrete structure and method for repairing concrete structure therewith
CN111606614A (en) * 2020-05-06 2020-09-01 江西理工大学 Filling material containing lithium mica slag and preparation method and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105439485A (en) * 2015-12-15 2016-03-30 华东交通大学 Lithionite slag admixture and its preparation method and use
CN105645904A (en) * 2016-03-15 2016-06-08 东南大学 Non-autoclaved aerated concrete prepared by utilizing lithium slag and nickel slag and preparation method of non-autoclaved aerated concrete
KR101921929B1 (en) * 2018-04-18 2018-11-27 (주)경룡 Functional cement mortar composition for repairing concrete structure and method for repairing concrete structure therewith
CN108609925A (en) * 2018-04-25 2018-10-02 东南大学 A kind of alkali-activated carbonatite lithium slag and nickel slag foam concrete
CN111606614A (en) * 2020-05-06 2020-09-01 江西理工大学 Filling material containing lithium mica slag and preparation method and application thereof

Also Published As

Publication number Publication date
CN114031341A (en) 2022-02-11

Similar Documents

Publication Publication Date Title
JP7080457B2 (en) C30 grade all solid waste concrete and its preparation method
CN110818345B (en) Clay stratum shield improved muck environment-friendly baking-free brick and preparation method thereof
CN104725001B (en) A kind of composition containing electrolytic manganese residues and the application on electrolytic manganese residues double exempt from the building materials such as brick is prepared
CN101608483B (en) Phosphogypsum composite autoclaved brick and preparation method thereof
CN102658596B (en) Method for preparing high-strength concrete material by using fly ash and iron tailings
CN103951327A (en) Waste sintered brick powder non-sintered ceramsite and preparation method
CN115215597B (en) Alkali-activated regenerated mortar for shield slag slurry, and preparation method and application thereof
CN114380518B (en) Bayer process red mud-phosphogypsum baking-free cementing material and preparation method thereof
CN113149586A (en) Multi-element solid waste recycled aggregate and preparation process thereof
CN102557533A (en) Baking-free and steaming-free tailing brick and preparation method thereof
CN114538850A (en) Solid waste base lightweight aggregate based on biochar internal carbonization and preparation method thereof
CN114525136A (en) Red mud-based soil curing agent and preparation method thereof
CN115321890A (en) Solid waste base binder for carbon dioxide sequestration, preparation method and carbon dioxide sequestration method thereof
CN111499329B (en) Autoclaved sand-lime brick containing steel slag tail mud and preparation method thereof
CN110372249A (en) The non-burning brick reinforcing agent and preparation method thereof of incineration ash of household rubbish
CN115057641A (en) Engineering waste soil-based regenerative functional aggregate and preparation method thereof
CN113149551B (en) Superfine sulfur-containing tailing concrete
CN113121132A (en) Alkali-activated tailing-based composite cementing material and preparation method thereof
CN114031341B (en) Method for preparing baking-free steaming-free cured brick by cooperating lepidolite ore dressing squeezed fine mud and lithium slag based on carbon curing
CN111410496A (en) Road base material and preparation method thereof
CN1673160A (en) Building refuse brick and its making process
CN114773003A (en) Lightweight aggregate concrete prepared from waste aerated concrete blocks and preparation method thereof
CN112358255A (en) Environment-friendly water permeable brick and preparation method thereof
CN111825356A (en) High-activity regeneration auxiliary cementing material based on physical ball milling and chemical modification synergistic reinforcement of brick-concrete powder and preparation method thereof
CN114735980B (en) Plastic concrete and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220902

Address after: No. 355, Hefang West Road, Qingyunpu District, Nanchang City, Jiangxi Province 330000

Applicant after: Jiangxi building materials research and Design Institute Co.,Ltd.

Address before: 330001 355 West Hefang Road, Qingyunpu District, Nanchang City, Jiangxi Province

Applicant before: JIANGXI BUILDING MATERIALS SCIENTIFIC RESEARCH & DESIGN INSTITUTE