CN114023885A - 基于铁电体体光伏效应的自驱动偏振光探测器及制备方法 - Google Patents

基于铁电体体光伏效应的自驱动偏振光探测器及制备方法 Download PDF

Info

Publication number
CN114023885A
CN114023885A CN202111304368.3A CN202111304368A CN114023885A CN 114023885 A CN114023885 A CN 114023885A CN 202111304368 A CN202111304368 A CN 202111304368A CN 114023885 A CN114023885 A CN 114023885A
Authority
CN
China
Prior art keywords
single crystal
self
ferroelectric
inorganic hybrid
hybrid perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111304368.3A
Other languages
English (en)
Inventor
刘希涛
邬发发
李霄琪
罗军华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Institute of Research on the Structure of Matter of CAS
Original Assignee
Fujian Institute of Research on the Structure of Matter of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Institute of Research on the Structure of Matter of CAS filed Critical Fujian Institute of Research on the Structure of Matter of CAS
Priority to CN202111304368.3A priority Critical patent/CN114023885A/zh
Publication of CN114023885A publication Critical patent/CN114023885A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明涉及基于铁电体体光伏效应的自驱动偏振光探测器及其制备方法,本发明的探测器包括玻璃基底层、粘附于所述玻璃基底层上的二维有机无机杂化钙钛矿铁电体单晶层及镀制在二维有机无机杂化钙钛矿铁电体单晶层自由面的一组金属电极组。本发明构造的器件基于高质量的二维有机无机杂化钙钛矿铁电体单晶,具有易于制备、成本低等优点,同时稳定性好。

Description

基于铁电体体光伏效应的自驱动偏振光探测器及制备方法
技术领域
本发明属于偏振光探测领域,具体涉及基于铁电体体光伏效应的自驱动偏振光探测器及制备方法。
背景技术
偏振光光电探测器是指将偏振光的光能转换为电能的器件,在遥感成像、军事设备等领域有着重要的应用。当前,具有各向异性结构的二维材料如黑磷等,在偏振光探测方面得到了广泛关注。但受材料本身性能的限制,偏振光探测器具有响应慢、各向异性不强、偏振比不高等问题,严重限制了二维材料在偏振光探测方面的应用。
铁电体是指具有自发极化且自发极化能在外电场下发生翻转的一类材料。在连续均匀光照条件下,在其电极化方向上可以观察到稳定的短路电流和开路电压,这被称为体光伏效应(BPVE)。由此产生的光电流与光的偏振角度相关。许多无机氧化物铁电体如BiFeO3,LiNbO3和BaTiO3已有相关报道,证明了铁电体在偏振光探测方面具有广阔的应用前景。
但是,市场上没有一款利用二维有机无机杂化钙钛矿铁电体制备的偏振光探测器。
发明内容
本发明提供基于铁电体体光伏效应的自驱动偏振光探测器及制备方法。本发明的基于铁电体体光伏效应的自驱动偏振光探测器不需要外加电场,便能在零偏压下测得光电流随光偏振角度的变化。因此它能实现自驱动偏振光探测,而且结构简单、成本低。
本发明通过如下技术方案实现:
基于铁电体体光伏效应的自驱动偏振光探测器,包括玻璃基底层、粘附于所述玻璃基底层上的二维有机无机杂化钙钛矿铁电体单晶层及镀制在二维有机无机杂化钙钛矿铁电体单晶层自由面的一组金属电极组。
进一步地,所述的二维有机无机杂化钙钛矿铁电体单晶层的单晶为具有A1 2A2 n- 1BnX3n+1钙钛矿结构的单晶体,其中A1为乙胺、丙胺、正丁胺或异丁胺;A2为甲胺、乙胺、甲脒、胍、二甲胺或铯;B为Pb、Ge或Sn;X为Cl、Br或I。
进一步地,所述的金属电极组包括距离为100μm-1cm的且由铜制成的源电极和漏电极。
一种基于铁电体体光伏效应的自驱动偏振光探测器的制备方法,包括以下步骤:
一、将玻璃基底用无水乙醇清洗后并置于真空干燥箱中干燥;
二、去除二维有机无机杂化钙钛矿铁电体单晶表面残留的溶剂或杂质并在真空干燥箱中干燥;
三、将经步骤二的二维有机无机杂化钙钛矿铁电体单晶粘附至步骤经一的玻璃基底;
四、然后在将经步骤三的二维有机无机杂化钙钛矿铁电体单晶的自由面上镀制金属电极,即得。
进一步地,步骤二中去除二维有机无机杂化钙钛矿铁电体单晶表面残留的溶剂或杂质时采用气体吹洗或有机溶剂冲洗除去表面残留溶剂或杂质。
进一步地,步骤二中在真空干燥箱中干燥温度为30-80℃,干燥时间为10-12h。
原理如下:本发明采用的二维有机无机杂化钙钛矿铁电体具有体光伏效应,基于此实现了器件的自驱动偏振光探测。测试时,光通过偏振片和半波片后照射在探测器表面的二维有机无机杂化钙钛矿铁电体单晶上,单晶吸收光产生光电流,通过转动半波片,改变偏振光的方向,检测不同偏振光照射下探测器的光电流。
较之前的现有技术,本发明具有以下有益效果:本发明构造的器件基于高质量的二维有机无机杂化钙钛矿铁电体单晶,具有易于制备、成本低等优点,同时稳定性好。
附图说明
图1为本发明探测器的结构示意图;
图2为采用本发明探测器进行偏振光探测测试的示意图;
图3为本发明探测器进行偏振光探测测试时不同角度偏振光下的光电流极化图。
以上附图中,附图标记含义如下:
1-玻璃基底层;2-二维有机无机杂化钙钛矿铁电体单晶层;3-金属电极;4-半波片;5-起偏器。
具体实施方式
下面结合附图对本发明的具体实施方式作详细说明。以下所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属于本发明的涵盖范围。
一)具体实施方式
基于铁电体体光伏效应的自驱动偏振光探测器,包括玻璃基底层1、粘附于所述玻璃基底层1上的二维有机无机杂化钙钛矿铁电体单晶层2及镀制在二维有机无机杂化钙钛矿铁电体单晶层2自由面的一组金属电极组3。如图1所示。
进一步地,所述的二维有机无机杂化钙钛矿铁电体单晶层2的单晶为具有A1 2A2 n- 1BnX3n+1钙钛矿结构的单晶体,其中A1为乙胺、丙胺、正丁胺或异丁胺;A2为甲胺、乙胺、甲脒、胍、二甲胺或铯;B为Pb、Ge或Sn;X为Cl、Br或I。
进一步地,所述的金属电极组3包括距离为100μm-1cm的且由铜制成的源电极和漏电极。
一种基于铁电体体光伏效应的自驱动偏振光探测器的制备方法,包括以下步骤:
一、将玻璃基底用无水乙醇清洗后并置于真空干燥箱中干燥;
二、去除二维有机无机杂化钙钛矿铁电体单晶表面残留的溶剂或杂质并在真空干燥箱中干燥;
三、将经步骤二的二维有机无机杂化钙钛矿铁电体单晶粘附至步骤经一的玻璃基底;
四、然后在将经步骤三的二维有机无机杂化钙钛矿铁电体单晶的自由面上镀制金属电极,即得。
步骤二中去除二维有机无机杂化钙钛矿铁电体单晶表面残留的溶剂或杂质时采用气体吹洗或有机溶剂冲洗除去表面残留溶剂或杂质。
步骤二中在真空干燥箱中干燥温度为30-80℃,干燥时间为10-12h。干燥10-12小时皆可。
实施例1
本实施例的二维有机无机杂化钙钛矿铁电体单晶为(正丁胺)2(乙胺)Pb3Br10,BA为正丁胺,EA为乙胺:
对制备好的器件进行自驱动偏振光探测测试(如图2所示)。采用405nm激光,保持激光强度不变和探测器件静止,激光依次经过起偏器和半波片,照射在器件单晶表面,旋转半波片(10°/s),在零偏压下记录光电流随光偏振角度的变化,如图3所示。
实施例2
本实施例的二维有机无机杂化钙钛矿铁电体单晶为(乙胺)2(甲胺)2Pb3Br10,对制备好的器件进行自驱动偏振光探测测试(如图2所示)。采用405nm激光,保持激光强度不变和探测器件静止,激光依次经过起偏器和半波片,照射在器件单晶表面,旋转半波片(5°/s),能在零偏压下测得光电流随光偏振角度的变化。
实施例3
本实施例的二维有机无机杂化钙钛矿铁电体单晶为(正丁胺)2CsPb2Br7,对制备好的器件进行自驱动偏振光探测测试(如图2所示)。采用405nm激光,保持激光强度不变和探测器件静止,激光依次经过起偏器和半波片,照射在器件单晶表面,旋转半波片(5°/s),能在零偏压下记录光电流随光偏振角度的变化。
实施例4
本实施例的二维有机无机杂化钙钛矿铁电体单晶为(正丁胺)2甲胺)2Sn3Br10,对制备好的器件进行自驱动偏振光探测测试(如图2所示)。采用405nm激光,保持激光强度不变和探测器件静止,激光依次经过起偏器和半波片,照射在器件单晶表面,旋转半波片(5°/s),能在零偏压下测得光电流随光偏振角度的变化。
实施例5
本实施例的二维有机无机杂化钙钛矿铁电体单晶为(正丙胺)2(甲脒)Pb2Br7,对制备好的器件进行自驱动偏振光探测测试(如图2所示)。采用405nm激光,保持激光强度不变和探测器件静止,激光依次经过起偏器和半波片,照射在器件单晶表面,旋转半波片(5°/s),能在零偏压下测得光电流随光偏振角度的变化。
实施例6
本实施例的二维有机无机杂化钙钛矿铁电体单晶为(异丁胺)2PbCl4,对制备好的器件进行自驱动偏振光探测测试(如图2所示)。采用405nm激光,保持激光强度不变和探测器件静止,激光依次经过起偏器和半波片,照射在器件单晶表面,旋转半波片(5°/s),能在零偏压下测得光电流随光偏振角度的变化。
实施例7
本实施例的二维有机无机杂化钙钛矿铁电体单晶为(正丁胺)2(乙胺)Pb3I10,对制备好的器件进行自驱动偏振光探测测试(如图2所示)。采用405nm激光,保持激光强度不变和探测器件静止,激光依次经过起偏器和半波片,照射在器件单晶表面,旋转半波片(5°/s),能在零偏压下测得光电流随光偏振角度的变化。
以上所述仅为本发明的示例性实施例,并不用以限制本发明,凡在本发明的精神和原则之内所做的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.基于铁电体体光伏效应的自驱动偏振光探测器,其特征在于:包括玻璃基底层(1)、粘附于所述玻璃基底层(1)一侧面上的二维有机无机杂化钙钛矿铁电体单晶层(2)及镀制在二维有机无机杂化钙钛矿铁电体单晶层(2)外侧自由面上的一组金属电极组(3)。
2.如权利要求1所述的一种基于铁电体体光伏效应的自驱动偏振光探测器,其特征在于:所述的二维有机无机杂化钙钛矿铁电体单晶层(2)的单晶为具有A1 2A2 n-1BnX3n+1钙钛矿结构的单晶体,其中A1为乙胺、丙胺、正丁胺或异丁胺;A2为甲胺、乙胺、甲脒、胍、二甲胺或铯;B为Pb、Ge或Sn;X为Cl、Br或I。
3.如权利要求1所述的一种基于铁电体体光伏效应的自驱动偏振光探测器,其特征在于:所述的金属电极组(3)包括距离为100μm-1cm且由铜制成的源电极和漏电极。
4.如权利要求1-3中任一项所述的一种基于铁电体体光伏效应的自驱动偏振光探测器的制备方法,其特征在于:包括以下步骤:
一、将玻璃基底层(1)用无水乙醇清洗后置于真空干燥箱中干燥;
二、去除二维有机无机杂化钙钛矿铁电体单晶层(2)表面残留的溶剂或杂质并在真空干燥箱中干燥;
三、将经步骤二处理后的二维有机无机杂化钙钛矿铁电体单晶层(2)粘附至经步骤一处理后的玻璃基底层(1)一侧面上;
四、然后在经步骤三处理的二维有机无机杂化钙钛矿铁电体单晶层(2)的外侧自由面上镀制金属电极组(3),即得。
5.如权利要求4所述的一种基于铁电体体光伏效应的自驱动偏振光探测器的制备方法,其特征在于:步骤二中去除二维有机无机杂化钙钛矿铁电体单晶层(2)表面残留的溶剂或杂质时采用气体吹洗或有机溶剂冲洗除去表面残留溶剂或杂质。
6.根据权利要求5所述的基于铁电体体光伏效应的自驱动偏振光探测器的制备方法,其特征在于:步骤二中在真空干燥箱中干燥温度为30-80℃,干燥时间为10-12h。
CN202111304368.3A 2021-11-05 2021-11-05 基于铁电体体光伏效应的自驱动偏振光探测器及制备方法 Pending CN114023885A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111304368.3A CN114023885A (zh) 2021-11-05 2021-11-05 基于铁电体体光伏效应的自驱动偏振光探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111304368.3A CN114023885A (zh) 2021-11-05 2021-11-05 基于铁电体体光伏效应的自驱动偏振光探测器及制备方法

Publications (1)

Publication Number Publication Date
CN114023885A true CN114023885A (zh) 2022-02-08

Family

ID=80061201

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111304368.3A Pending CN114023885A (zh) 2021-11-05 2021-11-05 基于铁电体体光伏效应的自驱动偏振光探测器及制备方法

Country Status (1)

Country Link
CN (1) CN114023885A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836835A (zh) * 2022-05-05 2022-08-02 闽都创新实验室 一种准二维钙钛矿单晶及其制备方法和一种x射线探测器
CN115124432A (zh) * 2022-07-25 2022-09-30 上海科技大学 基于手性锡铅混合钙钛矿圆偏振光电探测器及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664218A (zh) * 2012-05-29 2012-09-12 哈尔滨工业大学 一种基于二维功能材料制备柔性光探测器的方法
CN106848063A (zh) * 2017-01-13 2017-06-13 浙江大学 基于耐潮湿有机‑无机杂化钙钛矿材料的高响应度光探测器
CN107564991A (zh) * 2017-07-25 2018-01-09 南方科技大学 蓝紫光探测器及其制备方法
US20180204682A1 (en) * 2017-01-18 2018-07-19 Iowa State University Research Foundation, Inc. Solvent-free, solid phase synthesis of hybrid lead halide perovskites with superior purity
US20180277695A1 (en) * 2017-03-24 2018-09-27 Alliance For Sustainable Energy, Llc Hybrid perovskite bulk photovoltaic effect devices and methods of making the same
CN111575001A (zh) * 2020-05-21 2020-08-25 深圳大学 一种发室温磷光的有机无机杂化钙钛矿及其制备方法、应用
CN111864080A (zh) * 2020-09-07 2020-10-30 天津理工大学 一种二维有机无机杂化钙钛矿晶体光电探测器及其制备方法
CN112652722A (zh) * 2020-12-29 2021-04-13 哈尔滨师范大学 自供电双功能光电探测器及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664218A (zh) * 2012-05-29 2012-09-12 哈尔滨工业大学 一种基于二维功能材料制备柔性光探测器的方法
CN106848063A (zh) * 2017-01-13 2017-06-13 浙江大学 基于耐潮湿有机‑无机杂化钙钛矿材料的高响应度光探测器
US20180204682A1 (en) * 2017-01-18 2018-07-19 Iowa State University Research Foundation, Inc. Solvent-free, solid phase synthesis of hybrid lead halide perovskites with superior purity
US20180277695A1 (en) * 2017-03-24 2018-09-27 Alliance For Sustainable Energy, Llc Hybrid perovskite bulk photovoltaic effect devices and methods of making the same
CN107564991A (zh) * 2017-07-25 2018-01-09 南方科技大学 蓝紫光探测器及其制备方法
CN111575001A (zh) * 2020-05-21 2020-08-25 深圳大学 一种发室温磷光的有机无机杂化钙钛矿及其制备方法、应用
CN111864080A (zh) * 2020-09-07 2020-10-30 天津理工大学 一种二维有机无机杂化钙钛矿晶体光电探测器及其制备方法
CN112652722A (zh) * 2020-12-29 2021-04-13 哈尔滨师范大学 自供电双功能光电探测器及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LINA LI ETAL: "Two-Dimensional Hybrid Perovskite-Type Ferroelectric for Highly Polarization-Sensitive Shortwave Photodetection", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 *
SHIGUO等: "High-Temperature Antiferroelectric of Lead Iodide Hybrid Perovskites.", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 *
陆新荣等: "ABX_3型钙钛矿光伏材料的结构与性质调控", 《无机化学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836835A (zh) * 2022-05-05 2022-08-02 闽都创新实验室 一种准二维钙钛矿单晶及其制备方法和一种x射线探测器
WO2023213030A1 (zh) * 2022-05-05 2023-11-09 闽都创新实验室 一种准二维钙钛矿单晶及其制备方法和一种x射线探测器
CN115124432A (zh) * 2022-07-25 2022-09-30 上海科技大学 基于手性锡铅混合钙钛矿圆偏振光电探测器及其制备方法
CN115124432B (zh) * 2022-07-25 2024-01-16 上海科技大学 基于手性锡铅混合钙钛矿圆偏振光电探测器及其制备方法

Similar Documents

Publication Publication Date Title
Gómez et al. Ferroelectricity-free lead halide perovskites
Deng et al. All‐sprayed‐processable, large‐area, and flexible perovskite/MXene‐based photodetector arrays for photocommunication
Xia et al. Compact and large‐area perovskite films achieved via soft‐pressing and multi‐functional polymerizable binder for flat‐panel X‐ray imager
Meng et al. Revealing the strain-associated physical mechanisms impacting the performance and stability of perovskite solar cells
Leijtens et al. Mapping electric field‐induced switchable poling and structural degradation in hybrid lead halide perovskite thin films
Cao et al. Semitransparent, flexible, and self‐powered photodetectors based on ferroelectricity‐assisted perovskite nanowire arrays
He et al. Ferroelectric, photoelectric, and photovoltaic performance of silver niobate ceramics
CN114023885A (zh) 基于铁电体体光伏效应的自驱动偏振光探测器及制备方法
Peng et al. Ion-exchange-induced slow crystallization of 2D-3D perovskite thick junctions for X-ray detection and imaging
US20130037092A1 (en) Ferroelectric diode and photovoltaic devices and methods
CN109585489A (zh) 柔性光电探测器阵列及其制备方法
Gao et al. High Performance Polarization‐Resolved Photodetectors Based on Intrinsically Stretchable Organic Semiconductors
Guo et al. 2D Ruddlesden-Popper perovskite ferroelectric film for high-performance, self-powered and ultra-stable UV photodetector boosted by ferro-pyro-phototronic effect and surface passivation
Zhang et al. Flexoelectricity on the photovoltaic and pyroelectric effect and ferroelectric memory of 3D-printed BaTiO3/PVDF nanocomposite
Jiang et al. Identifying inverted-hysteresis behavior of CH3NH3PbI3− xClx planar hybrid perovskite solar cells based on external bias precondition
CN113921628A (zh) 光电器件及其制备方法、偏振成像装置
CN113130704A (zh) 基于CrPS4偏振敏感的光电探测器的制备方法
Li et al. Poling effect on the electrostrictive and piezoelectric response in CH3NH3PbI3 single crystals
Wang et al. Flexible array of high performance and stable formamidinium-based low-n 2D halide perovskite photodetectors for optical imaging
Sheng et al. Switchable photovoltaic response in hexagonal LuMnO3 single crystals
Aliouat et al. In situ measurements of the structure and strain of a π-conjugated semiconducting polymer under mechanical load
Tsai et al. Quantum Efficiency Gain in 2D Perovskite Photo and X‐Ray Detectors
CN114034387A (zh) 铁电体圆偏振光伏效应驱动圆偏振光探测器及制备方法
WO2018150160A1 (en) Photovoltaic device
Liao et al. A Wet‐Fusing Assembly Strategy for Forming Low Dark Current 2D/3D Perovskite X‐Ray Detector on a Thin Film Transistor Backplane

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220208