CN114016323A - 一种以木质素为粘合剂的生物可降解纤维素纸的制备方法及其应用 - Google Patents

一种以木质素为粘合剂的生物可降解纤维素纸的制备方法及其应用 Download PDF

Info

Publication number
CN114016323A
CN114016323A CN202111138598.7A CN202111138598A CN114016323A CN 114016323 A CN114016323 A CN 114016323A CN 202111138598 A CN202111138598 A CN 202111138598A CN 114016323 A CN114016323 A CN 114016323A
Authority
CN
China
Prior art keywords
lignin
cellulose paper
cellulose
based biodegradable
biodegradable cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111138598.7A
Other languages
English (en)
Inventor
郭丹郡
王宏勋
胥伟
易阳
孙莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Polytechnic University
Original Assignee
Wuhan Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Polytechnic University filed Critical Wuhan Polytechnic University
Priority to CN202111138598.7A priority Critical patent/CN114016323A/zh
Publication of CN114016323A publication Critical patent/CN114016323A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/23Lignins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/06Alcohols; Phenols; Ethers; Aldehydes; Ketones; Acetals; Ketals
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/64Alkaline compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/005Mechanical treatment
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/10Packing paper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0386Paper sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Paper (AREA)

Abstract

本发明提供一种以木质素为粘合剂的生物可降解纤维素纸的制备方法及其应用,涉及纤维素纸加工技术领域。所述纤维素纸的制备方法主要包括:纤维素纸的溶胀、木质素的预处理、木质素与纤维素纸的混合、热压等步骤。本发明克服了现有技术的不足,有效提升纤维素纸的力学强度,同时提升纤维素纸的耐水性能,扩大其使用范围,提升材料的使用价值。

Description

一种以木质素为粘合剂的生物可降解纤维素纸的制备方法及 其应用
技术领域
本发明涉及纤维素纸加工技术领域,具体涉及一种以木质素为粘合剂的生物可降解纤维素纸的制备方法及其应用。
背景技术
塑料由各种合成或半合成石化产品组成,由于具有耐久性(不可生物降解)、低回收利用率和废物管理不善等缺点,塑料废物对环境和人类健康造成了巨大的威胁。纤维素纸由于其丰富的可再生资源、环境友好性和可生物降解性等优势,在塑料替代方面显示出巨大的潜力。
纤维素纸具有良好的生物降解性、资源丰富、生产规模大、材料成本低等优点,但因其耐水性差、塑料替代物机械强度差而受到限制。纤维素纸面临的主要问题包括:1、纤维素表面天然存在的亲水性羟基,导致纤维素纸的水分含量不稳定;2、纤维素纸中随机分布的纤维和大量的空隙限制了这种材料的力学性能,纤维素纸具有良好的生物降解性、资源丰富、生产规模大、材料成本低等优点,但因其耐水性差、塑料替代物机械强度差而受到限制。
发明内容
针对现有技术不足,本发明提供一种以木质素为粘合剂的生物可降解纤维素纸的制备方法及其应用,有效提升纤维素纸的力学强度,同时提升纤维素纸的耐水性能,扩大其使用范围,提升材料的使用价值。
为实现以上目的,本发明的技术方案通过以下技术方案予以实现:
一种以木质素为粘合剂的生物可降解纤维素纸的制备方法,所述以木质素为粘合剂的生物可降解纤维素纸的制备方法包括以下步骤:
(1)溶胀:将纤维素纸在的氢氧化钠水溶液中进行溶胀处理,后在乙醇溶液中浸泡洗涤,重复乙醇溶液清洗洗涤五次;
(2)除水:将上述清洗后的纤维素纸放入无水乙醇中浸泡30min去除水分,后取出得膨化的纤维素纸备用;
(3)木质素预处理:将碱木质素分散在丙酮溶液中进行超声处理,然后将溶液进行离心处理,得上清液备用;
(4)混合:将步骤(2)中的膨化的纤维素纸在上述步骤(3)中所得的上清液中密封浸泡,使丙酮在室温下蒸发,得纤维素-木质素材料备用;
(5)热压:然后将该纤维素-木质素材料进行热压处理,得木质素-纤维素材料。
优选的,所述步骤(1)中氢氧化钠水溶液的浓度为4%,且溶胀时间为2h。
优选的,所述步骤(1)中乙醇溶液的浓度为50%,且浸泡洗涤的时间为30min。
优选的,所述步骤(3)中离心的转速为5000rpm,离心时间为10min。
优选的,所述步骤(3)中所得上清液中木质素的重量含量百分数为0-26wt%。
优选的,所述步骤(5)中热压的压力为5MPa,热压的温度为100-130℃。
上述木质素-纤维素材料可作为户外防紫外线聚合物、医药包装和新兴电子产品中柔性集成电路电路板的基材。
本发明提供一种以木质素为粘合剂的生物可降解纤维素纸的制备方法及其应用,与现有技术相比优点在于:
(1)本方法通过连续渗透和机械热压处理,将木质素作为增强基质加入到纤维素纤维支架中,制得拉伸强度优异的木质素-纤维素复合材料。此外,木质素-纤维素复合材料成分来自天然木材,可生物降解,对环境友好,是一种很有前途的塑料替代物。
(2)本方法使用木质素作为增强剂,显著提高纤维素的抗拉伸强度和水稳定性,制得的木质素-纤维素复合材料具有优异的各向同性拉伸强度(200MPa),明显高于传统纤维素纸(40MPa)和一些商用石油基塑料。此外,该复合材料还表现出50MPa的优异湿强度,同时,木质素是一种以苯丙烷为基础的生物聚合物,含有大量的酚羟基,具有良好的紫外线吸收能力,添加木质素还提高了纤维素纸的耐热性和抗紫外线性能,扩大了纤维素纸的使用范围。
(3)本方法制备的木质素-纤维素复合材料可吸收96%的紫外光,其反射率为4%,使得木质素-纤维素材料可以屏蔽100%的紫外光,其为一种良好的环保材料,可以替代某些不可生物降解塑料的基材,用于便携式和可穿戴电子设备。
附图说明:
图1:为普通纤维纸(上)和木质素(26%)-纤维复合材料的弯曲图片;
图2:为纤维素(a),热压前纤维素(26%)-木质素复合材料(b)和热压后木质素(26%)-纤维素复合材料(c)的形态示意图;
图3:7%木质素(a)和26%木质素(b)在纤维素纤维上生成的纤维素-木质素复合材料(热压前)的SEM图像;
图4:不同木质素含量的木质素-纤维素材料的图像;
图5:木质素含量对不同木质素-纤维素配方的拉伸强度-应变曲线的影响曲线图;
图6:木质素含量与纤维素纸和木质素-纤维素的最大拉伸强度和最大拉伸应变的关系图;
图7:纤维素纸和木质素(26%)-纤维素复合材料的抗张强度曲线图;
图8:温度对木质素(26%)-纤维素机械强度的影响示意图;
图9:纤维素纸和木质素(26%)-纤维素在水中的稳定性试验7d的实验过程示意图;
图10:纤维素纸和木质素(26%)-纤维素的接触角-时间曲线图;
图11:纤维素纸和木质素(26%)-纤维素随时间的吸水曲线图;
图12:纤维素纸和木质素(26%)-纤维素在水中渗透10分钟后的湿拉伸强度曲线图;
图13:纤维素纸(a),木质素和木质素-纤维素的重量损失和(b)质量损失率曲线图;
图14:纤维素纸和木质素(26%)-纤维素的紫外透过率曲线;
图15:木质素-纤维素作为柔性集成电路板基板的应用示意图;
图16:木质素-纤维素纸上的3D打印电路的数字图像。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面结合本发明实施例对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
一种以木质素为粘合剂的生物可降解纤维素纸的制备方法:
(1)将纤维素纸切成10×20cm2的长方形,在4%(w/w)的氢氧化钠水溶液中溶胀2h,然后在乙醇/水(1/1,v/v)中浸泡30min以去除残留的化学物质,按以上操作,用乙醇/水重复洗涤五次;
(2)将洗过的纤维素纸样放入无水乙醇中浸泡30min,去除纤维素纸样中的水,备用;
(3)将碱木质素分散在丙酮中,进行超声处理,然后将溶液在5000rpm下离心10min,得上清液;
(4)将膨化的纤维素纸在500mL的上述上清液中密封浸泡12h,使丙酮在室温下蒸发,碱木素充分渗透木质素溶液,让木质素覆盖在纤维素纤维上;
(5)然后将该纤维素-木质素材料在5MPa的压力下热压3d,得致密的木质素-纤维素材料。
实施例2:
木质素浓度的确定:
采用上述实施例1的制备方法,其中步骤(3)中所得上清液中木质素的浓度分别设为0%、7%、13%、26%、38%、47%,且步骤(5)中热压温度设为100℃,分别检测不同浓度的木质素所制备材料的性能具体结果如图1-7所示:
机械稳定性测试:使用Instron3367材料拉伸实验机,测试木质素-纤维素样品的机械性能。将拉伸样品的尺寸裁为100mm×5mm×0.04mm,试样两端夹紧,在室温下以5mmmin-1的恒定试验速度沿试样长度方向拉伸,直到断裂,结果取两次测量的平均值。
其中图1分别对普通的纤维素纸和本申请中木质素浓度为26%的木质素-纤维素复合纸进行卷曲,由图可知二者具有类似的弯曲弹性;
由图2和图3可知复合木质素后的纤维素纸结构更加致密,且热压后的物质结构更佳;
由图4、图5、图6可知木质素含量在7%-47%的木质素-纤维素复合材料中木质素含量为26%的木质素-纤维素复合材料的抗拉强度最佳,性能最优越;
由图7可知在木质素含量为26%时木质素-纤维素纸的抗张强度高达200MPa,是未经处理的纤维素纸的5倍。
实施例3:
热压温度的确定:
上述实施例1步骤(3)中所得上清液中木质素的浓度设为26%,步骤(5)中热压温度分别设为50℃、100℃、130℃、150℃,其余步骤与实施例1相同,检测不同热压温度下木质素-纤维素机械强度,具体结果见图8,其中可知在热压温度为100-130℃时,机械强度最佳。
实施例4:
上述实施例1步骤(3)中所得上清液中木质素的浓度设为26%,步骤(5)中热压温度为100℃,其余步骤与实施例1相同,检测普通纤维素纸和本实施例所制得的木质素-纤维素纸的性能,结果如图9-14所示:
其中,图9中显示在水中浸泡7d后普通纤维素纸一部分断裂,而而木质素-纤维素复合纸稳定并能保持其形状;
图10中显示了纤维素纸的接触角随时间从80°逐渐减小到0°,木质素-纤维素的接触角保持稳定在50°左右;
图11中纤维素纸的吸水率超过100%,木质素纸的吸水率保持在50%左右;
图12中纤维素纸的拉伸强度显着低于木质素-纤维素复合纸的拉伸强度;
图13中木质素可以有效地提高纤维素的热稳定性;
图14中木质素-纤维素复合材料具有优异的UV阻挡性能;
由上述各检测可知,本申请所制备的木质素-纤维素复合材料,具有良好的机械性能和耐水性,同时能够达到有效防紫外线的效果,即其具有广泛的应用前景。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (7)

1.一种以木质素为粘合剂的生物可降解纤维素纸的制备方法,其特征在于,所述以木质素为粘合剂的生物可降解纤维素纸的制备方法包括以下步骤:
(1)溶胀:将纤维素纸在的氢氧化钠水溶液中进行溶胀处理,后在乙醇溶液中浸泡洗涤,重复乙醇溶液清洗洗涤五次;
(2)除水:将上述清洗后的纤维素纸放入无水乙醇中浸泡30min去除水分,后取出得膨化的纤维素纸备用;
(3)木质素预处理:将碱木质素分散在丙酮溶液中进行超声处理,然后将溶液进行离心处理,得上清液备用;
(4)混合:将步骤(2)中的膨化的纤维素纸在上述步骤(3)中所得的上清液中密封浸泡,使丙酮在室温下蒸发,得纤维素-木质素材料备用;
(5)热压:然后将该纤维素-木质素材料进行热压处理,得木质素-纤维素材料。
2.根据权利要求1所述的一种以木质素为粘合剂的生物可降解纤维素纸的制备方法,其特征在于:所述步骤(1)中氢氧化钠水溶液的浓度为4%,且溶胀时间为2h。
3.根据权利要求1所述的一种以木质素为粘合剂的生物可降解纤维素纸的制备方法,其特征在于:所述步骤(1)中乙醇溶液的浓度为50%,且浸泡洗涤的时间为30min。
4.根据权利要求1所述的一种以木质素为粘合剂的生物可降解纤维素纸的制备方法,其特征在于:所述步骤(3)中离心的转速为5000rpm,离心时间为10min。
5.根据权利要求1所述的一种以木质素为粘合剂的生物可降解纤维素纸的制备方法,其特征在于:所述步骤(3)中制得上清液中木质素的重量含量百分数的范围为7-47wt%。
6.根据权利要求1所述的一种以木质素为粘合剂的生物可降解纤维素纸的制备方法,其特征在于:所述步骤(5)中热压的压力为5MPa,热压的温度为100-130℃。
7.一种如权利1所述的以木质素为粘合剂的生物可降解纤维素纸作为户外防紫外线聚合物、医药包装和新兴电子产品中柔性集成电路电路板的基材应用。
CN202111138598.7A 2021-09-27 2021-09-27 一种以木质素为粘合剂的生物可降解纤维素纸的制备方法及其应用 Pending CN114016323A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111138598.7A CN114016323A (zh) 2021-09-27 2021-09-27 一种以木质素为粘合剂的生物可降解纤维素纸的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111138598.7A CN114016323A (zh) 2021-09-27 2021-09-27 一种以木质素为粘合剂的生物可降解纤维素纸的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN114016323A true CN114016323A (zh) 2022-02-08

Family

ID=80055163

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111138598.7A Pending CN114016323A (zh) 2021-09-27 2021-09-27 一种以木质素为粘合剂的生物可降解纤维素纸的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN114016323A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103358385A (zh) * 2012-04-01 2013-10-23 中国科学院过程工程研究所 一种以碱木质素为胶粘剂的无醛环保刨花板制备方法
US20170335138A1 (en) * 2014-02-18 2017-11-23 Api Intellectual Property Holdings, Llc Processes for producing lignin-coated hydrophobic cellulose, and compositions and products produced therefrom
CN113026420A (zh) * 2021-03-26 2021-06-25 南京大学 纤维素耐水纸及其制备方法
CN113215860A (zh) * 2021-05-12 2021-08-06 东北林业大学 一种木质素/纤维素复合薄膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103358385A (zh) * 2012-04-01 2013-10-23 中国科学院过程工程研究所 一种以碱木质素为胶粘剂的无醛环保刨花板制备方法
US20170335138A1 (en) * 2014-02-18 2017-11-23 Api Intellectual Property Holdings, Llc Processes for producing lignin-coated hydrophobic cellulose, and compositions and products produced therefrom
CN113026420A (zh) * 2021-03-26 2021-06-25 南京大学 纤维素耐水纸及其制备方法
CN113215860A (zh) * 2021-05-12 2021-08-06 东北林业大学 一种木质素/纤维素复合薄膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BO JIANG ET AL.,: "Lignin as a Wood-Inspired Binder Enabled Strong, Water Stable, and Biodegradable Paper for Plastic Replacement", 《ADVANCED FUNCTIONAL MATERIALS》 *

Similar Documents

Publication Publication Date Title
Jiang et al. Lignin as a wood‐inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement
Chen et al. Effect of alkali treatment on microstructure and mechanical properties of individual bamboo fibers
Ramadevi et al. EFFECT OF ALKALI TREATMENT ON WATER ABSORPTION OF SINGLE CELLULOSIC ABACA FIBER.
Siakeng et al. Alkali treated coir/pineapple leaf fibres reinforced PLA hybrid composites: Evaluation of mechanical, morphological, thermal and physical properties.
Nayak et al. Influence of chemical treatment on tensile strength, water absorption, surface morphology, and thermal analysis of areca sheath fibers
Edhirej et al. Preparation and characterization of cassava bagasse reinforced thermoplastic cassava starch
Reddy et al. Preparation and properties of self-reinforced cellulose composite films from Agave microfibrils using an ionic liquid
Thamae et al. Influence of fibre extraction method, alkali and silane treatment on the interface of Agave americana waste HDPE composites as possible roof ceilings in Lesotho
Jayamani et al. Study of sound absorption coefficients and characterization of rice straw stem fibers reinforced polypropylene composites
Sari et al. Characterization of the density and mechanical properties of corn husk fiber reinforced polyester composites after exposure to ultraviolet light
Ivanovska et al. Influence of the alkali treatment on the sorption and dielectric properties of woven jute fabric
Hoque et al. Fabrication and characterization of pineapple fiber-reinforced polypropylene based composites
Lassoued et al. Thermomechanical behavior of Tunisian palm fibers before and after alkalization
Punyamurthy et al. Surface modification of abaca fiber by benzene diazonium chloride treatment and its influence on tensile properties of abaca fiber reinforced polypropylene composites
Ogunsile et al. Utilization of banana stalk fiber as reinforcement in low density polyethylene composite
Punyamurthy et al. Influence of esterification on the water absorption property of single abaca fiber
Van Nguyen et al. Microfibrillated cellulose film with enhanced mechanical and water-resistant properties by glycerol and hot-pressing treatment
Song et al. Biodegradable and transparent films with tunable UV-blocking property from Lignocellulosic waste by a top-down approach
Gapsari et al. Modification of palm fiber with chitosan-AESO blend coating
Jonjankiat et al. Improvement of poly (vinyl alcohol) adhesives with cellulose microfibre from sugarcane bagasse
Kollia et al. Effect of water aging on the mechanical properties of flax fiber/bio‐based resin composites
Yusuf et al. Determination of structural, physical, and thermal properties of biocomposite thin film from waste banana peel
Obame et al. Characterization of the Neuropeltis acuminatas liana fiber treated as composite reinforcement
Hossen et al. Preparation and evaluation mechanical, chemical and thermal properties of hybrid jute and coir fibers reinforced bio-composites using poly-lactic acid and poly-caprolactone blends
Syafri et al. Effect of ultrafine grinding and ultrasonication duration on the performance of polyvinyl alcohol (PVA) agave gigantea cellulose micro fiber (CMF) bio-composite film

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination