CN114015154A - 一种环保型高压电缆聚丙烯绝缘料的制备方法 - Google Patents

一种环保型高压电缆聚丙烯绝缘料的制备方法 Download PDF

Info

Publication number
CN114015154A
CN114015154A CN202111323325.XA CN202111323325A CN114015154A CN 114015154 A CN114015154 A CN 114015154A CN 202111323325 A CN202111323325 A CN 202111323325A CN 114015154 A CN114015154 A CN 114015154A
Authority
CN
China
Prior art keywords
polypropylene
environment
preparation
fiber
antioxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111323325.XA
Other languages
English (en)
Other versions
CN114015154B (zh
Inventor
侯帅
展云鹏
傅明利
朱闻博
惠宝军
陈俊
张逸凡
冯宾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CSG Electric Power Research Institute
Guangzhou Power Supply Bureau of Guangdong Power Grid Co Ltd
Original Assignee
CSG Electric Power Research Institute
Guangzhou Power Supply Bureau of Guangdong Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CSG Electric Power Research Institute, Guangzhou Power Supply Bureau of Guangdong Power Grid Co Ltd filed Critical CSG Electric Power Research Institute
Priority to CN202111323325.XA priority Critical patent/CN114015154B/zh
Publication of CN114015154A publication Critical patent/CN114015154A/zh
Application granted granted Critical
Publication of CN114015154B publication Critical patent/CN114015154B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Abstract

本发明属于绝缘材料技术领域,公开了一种环保型高压电缆聚丙烯绝缘料的制备方法。本发明热塑性电缆用聚丙烯材料的制备方法包括以下步骤:通过熔融静电纺丝制得聚合物纤维;所述聚合物为衍生自包含苯乙烯的重复单元;将所得聚合物纤维在180℃~220℃下热处理,短切,得短切纤维;将所得短切纤维与抗氧剂、聚丙烯混合,造粒,即成。本发明的方法所制得的电缆用聚丙烯材料在保证了电阻率高的基础上,显著的提升了材料的断裂伸长率以及冲击强度等力学性能,良好的平衡了材料的力学性能和电学性能,适用于200、320、525千伏高压直流电缆绝缘材料领域。

Description

一种环保型高压电缆聚丙烯绝缘料的制备方法
技术领域
本发明涉及绝缘材料技术领域,具体涉及一种环保型高压电缆聚丙烯绝缘料的制备方法。
背景技术
聚丙烯作为高压直流电缆的热塑性绝缘材料具有很大的潜力。然而现有聚丙烯材料的机械性能与力学性能不平衡,限制了其应用。聚丙烯存在α、β和γ等多种晶型,不同的晶型在宏观性能等方面有很大的差别。β晶聚丙烯不仅具有优良的电气性能,而且力学性能优异。然而,在普通加工条件下只能获得少量的β晶,只有在特定条件下才能获得大量的β晶,添加β成核剂是目前为止获得大量β晶的有效途径。
β成核剂主要分为无机类和有机类两大类。其中,有机类成核剂主要包括稠环芳烃类、有机酸及盐类和酰胺类。有机类成核剂结构复杂,作用机理尚未形成定论,成核剂与基体的相互作用对提高成核效率的影响不确定。无机类β成核剂主要包括无机氧化物、无机盐类及一些低熔点的金属粉末。无机类成核剂价格便宜,但是成核效率较低,影响制品的透明性,并且引入的离子性物质可能会对聚丙烯的电气性能产生极大的负面影响,该类成核剂的应用受到一定的限制作用。
因此,如何在实际加工应用中改善β成核剂的成核效率,并平衡所制备的聚丙烯材料机械性能与力学性能,以适应电缆绝缘聚丙烯材料的发展趋势,是本领域亟待解决的重点研究方向之一。
发明内容
本发明的目的在于克服现有技术的不足之处而提供一种环保型高压电缆聚丙烯绝缘料的制备方法,以克服现有电缆绝缘聚丙烯材料制备时成核效率低的技术问题。
为实现上述目的,本发明采取的技术方案如下:
第一方面,本发明提供了一种环保型高压电缆聚丙烯绝缘料的制备方法,包括以下步骤:
(1)通过熔融静电纺丝制得聚合物纤维;
所述聚合物为衍生自包含苯乙烯的重复单元;
(2)将所得聚合物纤维在180℃~220℃下热处理,短切,得短切纤维;
(3)将所得短切纤维与抗氧剂、聚丙烯混合,造粒,即成。
作为本发明制备方法的优选实施方式,所述步骤(1)中,所述聚合物为聚苯乙烯或苯乙烯-丙烯腈共聚物;所述聚合物纤维的直径为0.01~1μm。
作为本发明制备方法的优选实施方式,所述步骤(2)中,短切纤维的长度为1~50μm。
作为本发明制备方法的优选实施方式,所述步骤(3)中,所述聚丙烯为等规聚丙烯;进一步的,所述等规聚丙烯的等规度≥96%。
按质量比计,所述短切纤维:抗氧剂:聚丙烯=0.1~5:0.2:100。
所述抗氧化剂为抗氧剂1010、抗氧剂300、抗氧剂1076中的至少一种。
第二方面,本发明提供了所述环保型高压电缆聚丙烯绝缘料的制备方法所制备的产品。
第三方面,本发明将所述产品在200、320、525千伏高压直流电缆绝缘材料中应用。
与现有技术相比,本发明的有益效果为:
本发明的环保型高压电缆聚丙烯绝缘料的制备方法所制得的电缆用聚丙烯材料在保证了电阻率高的基础上,显著的提升了材料的断裂伸长率以及冲击强度等力学性能,良好的平衡了材料的力学性能和电学性能,适用于电缆绝缘材料领域。
具体实施方式
为更好地说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。本领域技术人员应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例中所用的试验方法如无特殊说明,均为常规方法;所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
下述实施例及对比例中,性能检测方法为:
采用GB/T2951.2标准测定断裂伸长率;采用GB/T 3048.13标准测定冲击强度;采用GB T 3048.4标准测定体积电阻率;
实施例1
本实施例所述环保型高压电缆聚丙烯绝缘料的制备方法包括以下步骤:
(1)通过熔融静电纺丝技术制得聚苯乙烯纤维;纤维直径为0.8μm;
(2)将步骤(1)所得聚苯乙烯纤维在200℃下热处理2h短切;短切后的纤维长度为15μm;
(3)将步骤(2)所得短切后的聚苯乙烯纤维与抗氧剂1010、等规聚丙烯(等规度为97%)按照重量比5:0.2:100在高速搅拌锅中混合均匀后,使用双螺杆挤出造粒,得到电缆聚丙烯绝缘料。
环保型高压电缆聚丙烯绝缘料的制备方法中,其一:包含苯乙烯单体的聚合物纤维(如聚苯乙烯、苯乙烯-丙烯腈共聚物等)可诱发聚丙烯产生β晶,β晶聚丙烯力学及电学性能优异。静电纺丝初纺的聚苯乙烯纤维为无定形态,结晶态的聚苯乙烯纤维才可以诱发聚丙烯产生β晶。经过退火处理可以使初纺的聚苯乙烯纤维结晶,在退火过程中,无定形态聚苯乙烯纤维主要会发生链段松弛和冷结晶这两个过程,退火温度高于110℃时才会发生冷结晶,退火温度为200℃时的冷结晶程度最大,此温度下诱发β晶的效果最佳(即得到的β晶含量最高)。聚苯乙烯中的主要晶体在225℃时会融化,从而失去诱发β晶的效果。
其二:聚合物纤维自身对聚丙烯材料也具有增韧效果,在受到冲击时聚丙烯会产生裂纹,当裂纹扩展到纤维上时,纤维会改变裂纹的扩展方向,消耗更多的冲击能。
其三:在聚丙烯中加入纤维不仅提高了机械性能,而且改变了基体的结晶结构。聚苯乙烯纤维会诱导聚丙烯在其表面成核,可以在纤维表面生成α晶。
后续采用聚丙烯绝缘料造缆时,在达到特定的温度区间后,β晶生长速率大于α晶,然后β晶在聚丙烯材料的纤维表面生成的α晶生长前沿位置生长。β晶的含量主要取决于等温结晶温度和降温速率。如:β晶生长的低临界温度为100~105℃,高临界温度为141℃,在此区间内β晶生长速率大于α晶(该区间会随聚丙烯等规度的不同而改变)。降温速率越快,α晶结晶温度越低。若降温速率较慢,α晶结晶完成后将不会产生β晶。因此,后续造缆时只需迅速淬火到合适温度等温结晶即可诱发大量的β晶。
其四:不同于传统的小分子成核剂,经静电纺丝法制得的包含苯乙烯单体的聚合物纤维比表面积大,成核效率更高,聚合物与聚丙烯结构相近且熔点较高,可以更好的与聚丙烯配合。
实施例2
本实施例所述环保型高压电缆聚丙烯绝缘料的制备方法包括以下步骤:
(1)通过熔融静电纺丝技术制得聚苯乙烯纤维;纤维直径为0.1μm;
(2)将步骤(1)所得聚苯乙烯纤维在200℃下热处理2h短切;短切后的纤维长度为35μm;
(3)将步骤(2)所得短切后的聚苯乙烯纤维与抗氧剂1010、等规聚丙烯(等规度为96%)按照重量比1:0.2:100在高速搅拌锅中混合均匀后,使用双螺杆挤出造粒,得到电缆聚丙烯绝缘料。
实施例3
本实施例所述环保型高压电缆聚丙烯绝缘料的制备方法法包括以下步骤:
(1)通过熔融静电纺丝技术制得聚苯乙烯纤维;纤维直径为0.5μm;
(2)将步骤(1)所得聚苯乙烯纤维在200℃下热处理2h短切;短切后的纤维长度为48μm;
(3)将步骤(2)所得短切后的聚苯乙烯纤维与抗氧剂1010、等规聚丙烯(等规度为98%)按照重量比0.1:0.2:100在高速搅拌锅中混合均匀后,使用双螺杆挤出造粒,得到电缆绝丙烯绝缘料。
对比例1
本对比例所述热塑性电缆用聚丙烯材料制备方法包括以下步骤:
(1)通过熔融静电纺丝技术制得聚苯乙烯纤维;纤维直径为0.1μm;
(2)将步骤(1)所得聚苯乙烯纤维在120℃下热处理2h短切;短切后的纤维长度为35μm;
(3)将步骤(2)所得短切后的聚苯乙烯纤维与抗氧剂1010、等规聚丙烯(等规度为96%)按照重量比1:0.2:100在高速搅拌锅中混合均匀后,使用双螺杆挤出造粒,得到电缆聚丙烯绝缘料。
对比例2
本对比例所述热塑性电缆用聚丙烯材料制备方法包括以下步骤:
(1)通过熔融静电纺丝技术制得聚苯乙烯纤维;纤维直径为0.1μm;
(2)将步骤(1)所得聚苯乙烯纤维在150℃下热处理2h短切;短切后的纤维长度为35μm;
(3)将步骤(2)所得短切后的聚苯乙烯纤维与抗氧剂1010、等规聚丙烯(等规度为96%)按照重量比1:0.2:100在高速搅拌锅中混合均匀后,使用双螺杆挤出造粒,得到电缆聚丙烯绝缘料。
测试实施例1~3和对比例1、2所得电缆用聚丙烯材料的电学以及力学性能,结果如表1所示。
表1电缆聚丙烯绝缘料性能
样品 断裂伸长率(%) 冲击强度(kJ/m<sup>2</sup>) 体积电阻率(*10<sup>14</sup>Ω·cm)
实施例1 679.40 37.2 15.1
实施例2 762.91 34.9 14.9
实施例3 666.40 33.5 14.2
对比例1 482.76 14.9 15.7
对比例2 537.63 17.8 15.4
等规聚丙烯 467.10 2.8 13.5
由表1可知,与对比例相比,实施例中热处理温度为200℃时制备的电缆绝丙烯绝缘料具有更高的断裂伸长率以及冲击强度,力学性能显著提升。且,与常规热塑性电缆材料等规聚丙烯相比,实施例制备的电缆绝丙烯绝缘料体积电阻率也有所提升,这是由于聚苯乙烯中的苯环具有吸收高能电子的特点,限制了载流子的运动,从而提高了体积电阻率。
综上,本发明实施例的环保型高压电缆聚丙烯绝缘料的制备方法所制得的电缆绝丙烯绝缘料,在保证了电阻率高的基础上,显著的提升了材料的断裂伸长率以及冲击强度等力学性能,良好的平衡了材料的力学性能和电学性能,可应用于电缆绝缘材料领域。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

1.一种环保型高压电缆聚丙烯绝缘料的制备方法,其特征在于,包括以下步骤:
(1)通过熔融静电纺丝制得聚合物纤维;
所述聚合物为衍生自包含苯乙烯的重复单元;
(2)将所得聚合物纤维在180℃~220℃下热处理,短切,得短切纤维;
(3)将所得短切纤维与抗氧剂、聚丙烯混合,造粒,即成。
2.根据权利要求1所述的环保型高压电缆聚丙烯绝缘料的制备方法,其特征在于,所述步骤(1)中,所述聚合物为聚苯乙烯或苯乙烯-丙烯腈共聚物。
3.根据权利要求1所述的环保型高压电缆聚丙烯绝缘料的制备方法,其特征在于,所述步骤(1)中,所述聚合物纤维的直径为0.01~1μm。
4.根据权利要求1所述的环保型高压电缆聚丙烯绝缘料的制备方法,其特征在于,所述步骤(2)中,短切纤维的长度为1~50μm。
5.根据权利要求1所述的环保型高压电缆聚丙烯绝缘料的制备方法,其特征在于,所述步骤(3)中,所述聚丙烯为等规聚丙烯。
6.根据权利要求5所述的环保型高压电缆聚丙烯绝缘料的制备方法,其特征在于,所述等规聚丙烯的等规度≥96%。
7.根据权利要求1所述的环保型高压电缆聚丙烯绝缘料的制备方法,其特征在于,所述步骤(3)中,按质量比计,所述短切纤维:抗氧剂:聚丙烯=0.1~5:0.2:100。
8.根据权利要求1所述的环保型高压电缆聚丙烯绝缘料的制备方法,其特征在于,所述步骤(3)中,所述抗氧化剂为抗氧剂1010、抗氧剂300、抗氧剂1076中的至少一种。
9.权利要求1~8任一项所述环保型高压电缆聚丙烯绝缘料的制备方法所制备的产品。
10.权利要求9所述产品在200、320、525千伏高压直流电缆绝缘材料中的应用。
CN202111323325.XA 2021-11-09 2021-11-09 一种环保型高压电缆聚丙烯绝缘料的制备方法 Active CN114015154B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111323325.XA CN114015154B (zh) 2021-11-09 2021-11-09 一种环保型高压电缆聚丙烯绝缘料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111323325.XA CN114015154B (zh) 2021-11-09 2021-11-09 一种环保型高压电缆聚丙烯绝缘料的制备方法

Publications (2)

Publication Number Publication Date
CN114015154A true CN114015154A (zh) 2022-02-08
CN114015154B CN114015154B (zh) 2023-08-18

Family

ID=80062732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111323325.XA Active CN114015154B (zh) 2021-11-09 2021-11-09 一种环保型高压电缆聚丙烯绝缘料的制备方法

Country Status (1)

Country Link
CN (1) CN114015154B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024036855A1 (zh) * 2022-08-18 2024-02-22 上海锦湖日丽塑料有限公司 一种纳米增容聚丙烯聚苯乙烯组合物及其制备方法

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3019077A (en) * 1960-02-09 1962-01-30 Union Carbide Corp Crystalline isotactic polystyrene fibers
JPS6245318A (ja) * 1985-08-23 1987-02-27 Dainippon Ink & Chem Inc 気体分離膜の製造方法
EP0325125A2 (en) * 1988-01-13 1989-07-26 Idemitsu Kosan Company Limited Styrene-based polymer moldings and process for production thereof
EP0351707A2 (en) * 1988-07-22 1990-01-24 The Dow Chemical Company High strength fibers of stereoregular polystyrene
CN1039455A (zh) * 1988-06-30 1990-02-07 出光興产株式会社 无纺织物
CN1047516A (zh) * 1989-02-28 1990-12-05 希蒙特公司 新结晶形态的间规苯乙烯聚合物制品
US6248835B1 (en) * 1998-11-05 2001-06-19 Fina Technology, Inc. Polypropylene/polystyrene polymer blend, improved fibers produced from the blend and method of manufacturing
CN101035949A (zh) * 2004-10-03 2007-09-12 多纤维公司 着色的聚丙烯/聚苯乙烯载体
CN102942736A (zh) * 2011-08-15 2013-02-27 金发科技股份有限公司 一种高玻纤含量增强聚丙烯材料及其制备方法
CN103589060A (zh) * 2013-10-29 2014-02-19 天津金发新材料有限公司 玻纤增强聚丙烯/聚苯乙烯合金复合材料及其制备与应用
WO2015046357A1 (ja) * 2013-09-26 2015-04-02 Dic株式会社 耐熱性シートおよびその製造方法
JP2015183140A (ja) * 2014-03-26 2015-10-22 日本ポリプロ株式会社 繊維強化ポリプロピレン系樹脂材料
US20160215130A1 (en) * 2013-10-18 2016-07-28 Dow Global Technologies Llc Optical fiber cable components
JP2017110311A (ja) * 2015-12-16 2017-06-22 東洋紡株式会社 シンジオタクチックポリスチレン繊維の製造方法
CN107226960A (zh) * 2017-07-05 2017-10-03 泰安石英复合材料有限公司 热塑性纤维增强复合材料、制备方法及应用
CN107429071A (zh) * 2015-03-19 2017-12-01 国立大学法人京都大学 含有化学修饰纤维素纳米纤维和热塑性树脂的纤维强化树脂组合物
CN107653514A (zh) * 2017-09-26 2018-02-02 江南大学 一种皮芯结构复合纤维及高性能纤维基复合板材
CN110240755A (zh) * 2019-05-17 2019-09-17 武汉金牛经济发展有限公司 一种具有抗低温冲击韧性的ppr管材
CN110498997A (zh) * 2019-07-22 2019-11-26 西安交通大学 一种聚丙烯基高压直流电缆料及其制备方法
KR102121936B1 (ko) * 2018-12-13 2020-06-11 서울대학교산학협력단 전기 방사를 이용한 폴리스티렌 섬유 제조방법
CN111471236A (zh) * 2020-04-10 2020-07-31 天津大学 一种聚丙烯电缆绝缘材料及其制备方法、用途
CN113248832A (zh) * 2021-02-03 2021-08-13 中国电力科学研究院有限公司 一种高压直流聚丙烯电缆料

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB955116A (en) * 1960-02-09 1964-04-15 Union Carbide Corp Improvements in and relating to polymers
US3019077A (en) * 1960-02-09 1962-01-30 Union Carbide Corp Crystalline isotactic polystyrene fibers
JPS6245318A (ja) * 1985-08-23 1987-02-27 Dainippon Ink & Chem Inc 気体分離膜の製造方法
EP0325125A2 (en) * 1988-01-13 1989-07-26 Idemitsu Kosan Company Limited Styrene-based polymer moldings and process for production thereof
CN1039455A (zh) * 1988-06-30 1990-02-07 出光興产株式会社 无纺织物
EP0351707A2 (en) * 1988-07-22 1990-01-24 The Dow Chemical Company High strength fibers of stereoregular polystyrene
CN1047516A (zh) * 1989-02-28 1990-12-05 希蒙特公司 新结晶形态的间规苯乙烯聚合物制品
US6248835B1 (en) * 1998-11-05 2001-06-19 Fina Technology, Inc. Polypropylene/polystyrene polymer blend, improved fibers produced from the blend and method of manufacturing
CN101035949A (zh) * 2004-10-03 2007-09-12 多纤维公司 着色的聚丙烯/聚苯乙烯载体
CN102942736A (zh) * 2011-08-15 2013-02-27 金发科技股份有限公司 一种高玻纤含量增强聚丙烯材料及其制备方法
WO2015046357A1 (ja) * 2013-09-26 2015-04-02 Dic株式会社 耐熱性シートおよびその製造方法
US20160215130A1 (en) * 2013-10-18 2016-07-28 Dow Global Technologies Llc Optical fiber cable components
CN103589060A (zh) * 2013-10-29 2014-02-19 天津金发新材料有限公司 玻纤增强聚丙烯/聚苯乙烯合金复合材料及其制备与应用
JP2015183140A (ja) * 2014-03-26 2015-10-22 日本ポリプロ株式会社 繊維強化ポリプロピレン系樹脂材料
CN107429071A (zh) * 2015-03-19 2017-12-01 国立大学法人京都大学 含有化学修饰纤维素纳米纤维和热塑性树脂的纤维强化树脂组合物
JP2017110311A (ja) * 2015-12-16 2017-06-22 東洋紡株式会社 シンジオタクチックポリスチレン繊維の製造方法
CN107226960A (zh) * 2017-07-05 2017-10-03 泰安石英复合材料有限公司 热塑性纤维增强复合材料、制备方法及应用
CN107653514A (zh) * 2017-09-26 2018-02-02 江南大学 一种皮芯结构复合纤维及高性能纤维基复合板材
KR102121936B1 (ko) * 2018-12-13 2020-06-11 서울대학교산학협력단 전기 방사를 이용한 폴리스티렌 섬유 제조방법
CN110240755A (zh) * 2019-05-17 2019-09-17 武汉金牛经济发展有限公司 一种具有抗低温冲击韧性的ppr管材
CN110498997A (zh) * 2019-07-22 2019-11-26 西安交通大学 一种聚丙烯基高压直流电缆料及其制备方法
CN111471236A (zh) * 2020-04-10 2020-07-31 天津大学 一种聚丙烯电缆绝缘材料及其制备方法、用途
CN113248832A (zh) * 2021-02-03 2021-08-13 中国电力科学研究院有限公司 一种高压直流聚丙烯电缆料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
柴春鹏等: "《高分子合成材料学》", 31 January 2019, 北京理工大学出版社, pages: 49 - 51 *
韦福建: ""熔纺-拉伸法制备高性能聚丙烯中空纤维膜的研究"", 《万方数据库》 *
韦福建: ""熔纺-拉伸法制备高性能聚丙烯中空纤维膜的研究"", 《万方数据库》, 28 April 2017 (2017-04-28), pages 1 - 70 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024036855A1 (zh) * 2022-08-18 2024-02-22 上海锦湖日丽塑料有限公司 一种纳米增容聚丙烯聚苯乙烯组合物及其制备方法

Also Published As

Publication number Publication date
CN114015154B (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
Allison et al. The cold drawing of polyethylene terephthalate
JP6529578B2 (ja) コンデンサフィルム用のポリプロピレン組成物
Meng et al. Comparisons of different polypropylene copolymers as potential recyclable HVDC cable insulation materials
CN114015154A (zh) 一种环保型高压电缆聚丙烯绝缘料的制备方法
Vaughan et al. On additives, morphological evolution and dielectric breakdown in low density polyethylene
KR20210102950A (ko) 파괴 강도가 개선된 2축 배향 폴리프로필렌 필름
Zhou et al. Different crystallization behavior of olefin block copolymer in α-and β-polypropylene matrix
Zhang et al. Effects of melt structure on crystallization behavior of isotactic polypropylene nucleated with α/β compounded nucleating agents
He et al. Dependence of β-crystal formation of isotactic polypropylene on crystallization conditions
Zhao et al. On the crystallization, morphology and physical properties of a clarified propylene/ethylene copolymer
Zhang et al. Influence of nucleating agent on properties of isotactic polypropylene
Sun et al. HDPE/UHMWPE composite foams prepared by compression molding with optimized foaming capacity and mechanical properties
Yan et al. Effect of trap level density on breakdown strength and space charge distribution of polypropylene/low‐density polyethylene composites
Lin et al. Crystal structure dependent tensile properties of silicone rubber: Influence of aluminium hydroxide
WO2014170128A1 (en) Insulation layer for cables
Yoshino et al. Application of a novel polypropylene to the insulation of an electric power cable
Tian et al. Interfacial crystallization and its mechanism in in-situ dynamically vulcanized iPP/POE blends
CN113248832A (zh) 一种高压直流聚丙烯电缆料
Liang et al. Block polypropylene/styrene-ethylene-butylene-styrene tri-block copolymer blends for recyclable HVDC cable insulation
Motsoeneng et al. Structure and properties of a β‐nucleated polypropylene impact copolymer
Sun et al. Enhanced electrical insulating properties of polyethylene by incorporating polyethylene‐g‐polystyrene graft copolymers
Fan et al. Great improvement of low‐temperature impact resistance of isotactic polypropylene/ethylene propylene diene monomer rubber blends by traces of carbon nanotubes and β‐nucleating agents
Gao et al. Effect of β‐nucleating agents on the crystallization behavior and force‐electric properties of the polypropylene blends
Chen et al. Realizing simultaneous high‐temperature strength and low‐temperature elongation in polyolefin elastomer toughened polypropylene via controlling the dispersed phase size
Green et al. Electrical and mechanical properties of new recyclable power cable insulation materials based upon polyethylene blends

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant