CN114014869A - Chiral 2,2' -bipyridine ligand and preparation method and application thereof - Google Patents

Chiral 2,2' -bipyridine ligand and preparation method and application thereof Download PDF

Info

Publication number
CN114014869A
CN114014869A CN202111434132.1A CN202111434132A CN114014869A CN 114014869 A CN114014869 A CN 114014869A CN 202111434132 A CN202111434132 A CN 202111434132A CN 114014869 A CN114014869 A CN 114014869A
Authority
CN
China
Prior art keywords
formula
chiral
reaction
stirring
ligand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111434132.1A
Other languages
Chinese (zh)
Other versions
CN114014869B (en
Inventor
李鹏飞
欧阳彝钊
张帅
茜姆勃玟
宋沛东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202111434132.1A priority Critical patent/CN114014869B/en
Publication of CN114014869A publication Critical patent/CN114014869A/en
Application granted granted Critical
Publication of CN114014869B publication Critical patent/CN114014869B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/10Spiro-condensed systems
    • C07D491/113Spiro-condensed systems with two or more oxygen atoms as ring hetero atoms in the oxygen-containing ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • B01J31/1835Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline comprising aliphatic or saturated rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/36Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal
    • C07C29/38Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal by reaction with aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0261Complexes comprising ligands with non-tetrahedral chirality
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Pyridine Compounds (AREA)

Abstract

The invention provides a chiral 2,2 '-bipyridine ligand and a preparation method and application thereof, wherein the chiral 2,2' -bipyridine ligand is simple as shown in the formula(1) Or a compound represented by the formula (1'),

Description

Chiral 2,2' -bipyridine ligand and preparation method and application thereof
Technical Field
The invention belongs to the technical field of fine chemical engineering, and relates to a chiral 2,2' -bipyridyl ligand and a preparation method and application thereof.
Background
The construction of molecules is a difficult art, but is at the heart of chemistry, upon which many areas and industries of research, including biomedical and materials science, rely. Among them, the construction of chiral molecules has long been a goal to be overcome by chemists. First, chirality is closely related to life phenomena, and the development of chirality science is not left in the aspects of exploring the mysterious and evolutionary mechanisms of life origin and operation, and developing drugs, pesticides, biological detection reagents, biomimetic materials and the like related to life. With the development of the field of material science, chiral materials have shown unique values in molecular machines, nonlinear optics, three-dimensional display and information storage and transmission. Whether oriented to scientific and technological application or life health, the efficient and accurate preparation of chiral substances is always the most important one.
Transition metal catalytic reaction, enzyme catalytic reaction and organic small molecule catalytic reaction are three ways of constructing chiral molecules, and transition metal catalysis is the most widely studied and applied type. The ligand is an important component of the metal complex, and has a key regulation function on the electronic structure of the central metal, the spatial structure of the complex and the physicochemical properties of the complex.
However, most of the chiral ligands widely used at present depend on chiral skeletons provided by natural molecules, and most of artificially designed ligand skeletons are difficult to synthesize, expensive in raw materials and narrow in application range. Especially for chiral 2, 2-bipyridine type ligands, the development is more slow. Therefore, it is of far-reaching significance to design a 2, 2-bipyridyl ligand skeleton which is easy to synthesize and has cheap raw materials.
Disclosure of Invention
Aiming at the problems in the prior art, the invention provides a chiral 2,2' -bipyridyl ligand and a preparation method and application thereof, wherein the ligand has low synthesis raw material cost, is simple and easy to obtain, and is convenient to synthesize.
The invention is realized by the following technical scheme:
a chiral 2,2 '-bipyridine ligand has a structural formula shown as formula (1) or formula (1'):
Figure BDA0003381016020000021
wherein R is aryl or alkyl.
The preparation method of the chiral 2,2' -bipyridyl ligand comprises the following steps:
(1) brominating 2-cyclopentene-1-one under the action of liquid bromine, and reacting with diethyl malonate to obtain a pair of enantiomers;
(2) reacting the obtained enantiomer with (R) -tert-butyl sulfinamide and tetraethyl titanate, then separating and purifying the product to obtain sulfinyl imine, and then hydrolyzing with hydrochloric acid to obtain chiral ketone shown in formula (2) and/or formula (2');
Figure BDA0003381016020000022
(3) placing chiral ketone shown in a formula (2) and hydroxylamine into ethanol for reaction to obtain oxime shown in a formula (3);
or, placing the chiral ketone shown in the formula (2 ') and hydroxylamine into ethanol for reaction to obtain oxime shown in the formula (3');
Figure BDA0003381016020000023
(4) adding oxime shown in a formula (3) into toluene, and then adding iron powder, acetic anhydride and acetic acid to react to obtain amide shown in a formula (4);
or adding the oxime shown in the formula (3 ') into toluene, and then adding iron powder, acetic anhydride and acetic acid to react to obtain the amide shown in the formula (4');
Figure BDA0003381016020000031
(5) dissolving amide shown in a formula (4) in N, N-dimethylformamide, then dropwise adding phosphorus oxychloride, and reacting to obtain a chloropyridine derivative shown in a formula (5);
or dissolving the amide shown in the formula (4 ') in N, N-dimethylformamide, and then dropwise adding phosphorus oxychloride to react to obtain the chloropyridine derivative shown in the formula (5');
Figure BDA0003381016020000032
(6) dissolving the chloropyridine derivative shown in the formula (5) in tetrahydrofuran, and then dropwise adding the solution into a toluene solution of DIBAL-H at a low temperature to react to obtain a diol derivative shown in the formula (6);
or dissolving the chloropyridine derivative shown in the formula (5 ') in tetrahydrofuran, and then dropwise adding the solution into a toluene solution of DIBAL-H at a low temperature to react to obtain a diol derivative shown in the formula (6');
Figure BDA0003381016020000033
(7) reacting the diol obtained in the formula (6) with p-toluenesulfonic acid, stannous chloride, a molecular sieve and methyl ketal under the reflux condition of 1, 2-dichloroethane to obtain a ketal derivative shown in a formula (7);
or reacting the diol obtained in the formula (6 ') with p-toluenesulfonic acid, stannous chloride, a molecular sieve and methyl ketal under the reflux condition of 1, 2-dichloroethane to obtain the ketal derivative shown in the formula (7').
Figure BDA0003381016020000041
(8) Adding manganese powder, nickel chloride hexahydrate and triphenylphosphine into N, N-dimethylformamide, heating and stirring for 1 hour, then adding a chloropyridine derivative shown in a formula (7) or a formula (7 ') dissolved in the N, N-dimethylformamide, and reacting to obtain the chiral 2,2' -bipyridine ligand.
Preferably, the specific process of step (1) is as follows: under the protection of nitrogen, 2-cyclopentene-1-ketone and liquid bromine react in dichloromethane at 0 ℃ to room temperature for 4-8 hours to obtain 2-bromo-2-cyclopentene-1-ketone, the 2-bromo-2-cyclopentene-1-ketone and diethyl malonate react in 1, 2-dichloroethane solvent under the catalysis of alkali, the temperature is heated to 90 ℃ for 12-24 hours, and a pair of enantiomers are obtained by filtration and column chromatography separation.
Preferably, the specific process of step (3) is as follows: placing the chiral ketone shown in the formula (2) or the formula (2 ') and hydroxylamine into an ethanol solution, heating, refluxing and stirring for 18-24 hours, then washing with water, extracting with dichloromethane, drying the obtained organic phase with anhydrous sodium sulfate, and removing the solvent to obtain the oxime shown in the formula (3) or the formula (3').
Preferably, the specific process of step (4) is as follows: adding oxime shown in a formula (3) or a formula (3 ') into toluene, cooling to 0 ℃, adding iron powder, adding a mixture of acetic anhydride and acetic acid, heating to room temperature for reaction, stirring for 18-24 hours, filtering out the iron powder, adding an ammonium chloride aqueous solution, extracting by using ethyl acetate, and performing silica gel column chromatography separation to obtain amide shown in a formula (4) or a formula (4').
Preferably, the specific process of step (5) is as follows: dissolving the amide shown in the formula (4) or the formula (4 ') in N, N-dimethylformamide, then dropwise adding phosphorus oxychloride in an ice bath, stirring at the temperature of 80-100 ℃ for 18-24 hours, and separating the mixture by using column chromatography to obtain the chloropyridine derivative shown in the formula (5) or the formula (5').
The chiral 2,2' -bipyridyl ligand is used as a catalyst ligand in the preparation of chiral diaryl methanol.
Preferably, the method comprises the following steps:
under the condition of argon, stirring and mixing a nickel dibromide glycol dimethyl ether complex, a chiral 2,2' -bipyridine ligand and 2-methyltetrahydrofuran at room temperature, adding zinc powder and sodium tetraphenyltetrafluoroborate, and continuously stirring and mixing at room temperature; adding aldehyde and aryl halide into a reaction system, and stirring the obtained reaction mixture at-30-0 ℃ for reaction; after the reaction is finished, removing the solvent; the obtained crude reaction product is separated and purified to obtain the chiral diaryl methanol.
The chiral 2,2' -bipyridyl ligand is used as a catalyst ligand in the preparation of chiral self-coupling diaryl compounds.
Preferably, the method comprises the following steps:
under the condition of argon, heating, stirring and mixing a nickel dichloride triphenylphosphine complex, a chiral 2,2' -bipyridine ligand and N, N-dimethylacetamide, adding manganese powder and aryl chloride, and stirring and reacting the obtained reaction mixture at 60-80 ℃; and after the reaction is finished, removing the solvent, and separating and purifying the obtained crude reaction product to obtain the chiral biaryl compound.
Compared with the prior art, the invention has the following beneficial technical effects:
the chiral 2,2' -bipyridyl ligand has the advantages of low raw material cost, simplicity, easy obtainment and convenient synthesis. In the process of synthesizing the ligand, the substituent group of the ligand can be randomly regulated and controlled so as to regulate and control the electrical property and the steric hindrance condition of the ligand, so that the ligand disclosed by the invention can use different groups according to different reactions so as to meet the requirement of wide applicability. The ligand of the invention has been used for preparing chiral diaryl methanol and chiral self-coupling diaryl compounds, and the effectiveness and the applicability of the ligand are verified. When the method is applied to preparing chiral diaryl methanol and self-coupling diaryl, the yield and enantioselectivity of products can be kept at a high level when cheap metallic nickel is used as a catalyst.
The chiral 2,2' -bipyridyl ligand has the advantages of low raw material cost, simplicity, easy obtainment and convenient synthesis.
The ligand of the invention is adopted to prepare chiral diaryl methanol, cheap aryl aldehyde and aryl halide can be adopted as raw materials, the catalyst is cheap metal nickel, the product has good stereoselectivity and high yield, and the purification is easy.
The ligand of the invention is adopted to prepare the chiral self-coupling diaryl product, cheap aryl chloride can be adopted as the raw material, the catalyst is cheap metallic nickel, the product has good stereoselectivity and high yield, and the purification is easy.
Drawings
FIG. 1 shows chiral 2,2' -bipyridine ligands of formula (1) R in example 1 of the present invention are phenyl-substituted1H NMR spectrum.
FIG. 2 shows that the chiral 2,2 '-bipyridine ligand of formula (1') R in example 2 of the present invention is methyl-substituted1H NMR spectrum.
Detailed Description
The present invention will now be described in further detail with reference to specific examples, which are intended to be illustrative, but not limiting, of the invention.
A chiral 2,2 '-bipyridine ligand with different substituents has a structural formula shown as a formula (1) or a formula (1'):
Figure BDA0003381016020000061
wherein R is aryl or alkyl.
A method for preparing chiral 2,2' -bipyridine ligands with different substituents comprises the following steps:
the first step is as follows: under the protection of nitrogen, liquid bromine is dissolved in dichloromethane and then is dripped into dichloromethane solution of 2-cyclopentene-1-ketone under the condition of ice water bath, and triethylamine is added after 2-5 hours of reaction. Washing with water after reaction, extracting with dichloromethane, combining organic phases, drying with anhydrous magnesium sulfate, filtering, decompressing and evaporating the solvent to dryness, and further purifying the obtained crude product to obtain the 2-bromo-2-cyclopentene-1-ketone. Under the catalysis of alkali and phase transfer catalyst, 2-bromo-2-cyclopentene-1-one and diethyl malonate react in 1, 2-dichloroethane to obtain one pair of enantiomers.
The second step is that: the obtained enantiomer is stirred with (R) -tert-butyl sulfinamide and a certain amount of tetraethyl titanate in 1, 2-dichloroethane at 90 ℃ overnight, and then the product is separated and purified by using a silica gel chromatographic column to obtain optically pure sulfinyl imine. Subsequent hydrolysis with aqueous hydrochloric acid affords the chiral ketones of formula (2) and/or formula (2'), respectively.
Figure BDA0003381016020000071
The third step: placing the chiral ketone shown in the formula (2) or the formula (2') and excess hydroxylamine into an ethanol solution, refluxing and stirring for 18-24 hours, then washing with water, and extracting with dichloromethane. The organic phase was dried over anhydrous sodium sulfate, and the solvent was removed to obtain an oxime represented by the formula (3) or (3') in which the ketone was converted.
Figure BDA0003381016020000072
The fourth step: an oxime represented by the formula (3) or the formula (3') is added to an appropriate amount of toluene. The toluene solution was then cooled to 0 ℃ and excess iron powder was added. Then a mixture of the appropriate acetic anhydride and acetic acid is slowly added to the solution and allowed to warm to room temperature. After reacting for 18-24 hours, filtering the iron powder, adding a proper amount of ammonium chloride aqueous solution into the filtrate, extracting by using ethyl acetate, and then carrying out silica gel column chromatography separation to obtain the corresponding amide product shown in the formula (4) or the formula (4').
Figure BDA0003381016020000081
The fifth step: an amide represented by the formula (4) or (4') is dissolved in N, N-dimethylformamide. Then dropping phosphorus oxychloride into the ice bath. After stirring at 80-100 ℃ for 18-24 hours, the mixture is separated by column chromatography to obtain the chloropyridine derivative which is an important intermediate shown in the formula (5) or the formula (5').
Figure BDA0003381016020000082
And a sixth step: dissolving the chloropyridine derivative shown in the formula (5) or the formula (5 ') in tetrahydrofuran, dropwise adding the solution into a toluene solution of diisobutylaluminum hydride (DIBAL-H) at a temperature of between 20 ℃ below zero and 0 ℃, stirring for 2 to 4 hours, quenching, extracting by using dichloromethane, collecting an organic phase, concentrating, and recrystallizing by using acetone to obtain the diol derivative shown in the formula (6) or the formula (6').
Figure BDA0003381016020000083
The seventh step: the diol obtained by the formula (6) or the formula (6 ') reacts with p-toluenesulfonic acid, tin dichloride, a molecular sieve and methyl ketal with different substituents for 4 to 8 hours under the reflux condition of 1, 2-dichloroethane at 90 ℃, and after the reaction is finished, silica gel column chromatography separation is carried out to obtain ketal derivatives protected by different substituents, namely the formula (7) or the formula (7').
Figure BDA0003381016020000091
Eighth step: adding manganese powder and a nickel dichloride triphenylphosphine complex into N, N-dimethylformamide, heating and stirring for 1 hour, recovering to room temperature, adding a chloropyridine derivative shown in a formula (7) or a formula (7 ') dissolved in the N, N-dimethylformamide, heating to 60 ℃, stirring for 12-18 hours, and separating by silica gel column chromatography to obtain chiral 2,2' -bipyridine ligands shown in the formula (1) or the formula (1 ') with different substituents.
Figure BDA0003381016020000092
The application of the chiral 2,2' -bipyridyl ligand as a catalyst ligand in preparing diaryl methanol comprises the following steps:
under the condition of argon, adding nickel dibromide ethylene glycol dimethyl ether complex, chiral 2,2 '-bipyridine ligand of formula (1) or formula (1') and 2-methyltetrahydrofuran, stirring at room temperature for 1 hour, adding zinc powder and sodium tetraphenyltetrafluoroborate, and continuing stirring at room temperature for 1 hour. After fully stirring, adding aldehyde and aryl halide into the reaction system in turn, and placing the reaction mixture at-30-0 ℃ for stirring for 24-48 hours. After completion of the reaction, the reaction mixture was warmed to room temperature and then distilled under reduced pressure to remove 2-methyltetrahydrofuran. And separating the crude reaction product by silica gel column chromatography to obtain a chiral diaryl methanol product.
The structure of the chiral diaryl methanol compound is shown as the formula (8):
Figure BDA0003381016020000101
wherein R is1Represents an aromatic ring, a substituted aromatic ring or a naphthalene ring, R2Represents an aromatic ring, a substituted aromatic ring or a naphthalene ring.
The application of the chiral 2,2' -bipyridyl ligand as a catalyst ligand in preparing the chiral self-coupling diaryl product comprises the following steps:
under the condition of argon, adding nickel dichloride triphenylphosphine complex, chiral 2,2 '-bipyridyl ligand of formula (1) or formula (1') and N, N-dimethylacetamide, stirring at 60 ℃ for 1 hour, adding manganese powder and aryl chloride, and placing the reaction mixture at 60-80 ℃ for stirring for 24-48 hours. After completion of the reaction, the reaction mixture was returned to room temperature, and then N, N-dimethylacetamide was removed by extraction with dichloromethane and water, and dichloromethane was removed by rotary evaporation. And separating the crude reaction product by silica gel column chromatography to obtain a chiral self-coupling diaryl product.
The structure of the chiral self-coupling diaryl compound is shown as the formula (9):
Figure BDA0003381016020000102
wherein R is3Represents an aromatic ring, a substituted aromatic ring or a naphthalene ring.
Example 1
Synthesis of chiral 2,2' -bipyridine ligand:
1.1
Figure BDA0003381016020000103
2-cyclopenten-1-one was dissolved in 60mL Dichloromethane (DCM) and Br was added at 0 deg.C2(liquid bromine is stored under water seal, the lowest liquid bromine is required to be sucked up) is dissolved in 60mL of DCM, and the system is added through a constant pressure dropping funnel (dropping is carried out, and the temperature of the system is controlled to be less than 5 ℃). About 30min after the addition was complete, the temperature was maintained at 0 ℃ for 10 min. Adding Et3Dissolving N in 60mL of DCM, quickly dropwise adding the N into the system through a constant-pressure dropping funnel (about 10min), stirring the system at room temperature for 4h after the addition is finished, adding a saturated ammonium chloride aqueous solution (20mL) to quench the reaction, extracting the combined organic phase for 3 times by using 50-60mL of DCM each time, drying the combined organic phase by using anhydrous sodium sulfate, filtering and concentrating under reduced pressure, and separating and purifying the obtained crude product by using column chromatography to obtain the 2-bromo-2-cyclopentene-1-one.
1.2
Figure BDA0003381016020000111
2-bromo-2-cyclopenten-1-one (240mmol, 1.0equiv), 39g diethyl malonate (480mmol,2.0equiv), 15.6g tetrahexylammonium bromide (36mmol, 15 mol%) and 200g potassium carbonate (1440mmol, 6.0equiv) were added to 240mL 1, 2-dichloroethane. The reaction mixture was stirred at 90 ℃ for 20 hours, cooled to room temperature, filtered and the solvent was evaporated off. The crude reaction product was subjected to silica gel column chromatography to separate a group of mixed enantiomer products of (1R,5S) -2-oxobicyclo [3.1.0] hexane-6, 6-diacetic acid ethyl ester and (1S,5R) -2-oxobicyclo [3.1.0] hexane-6, 6-diacetic acid ethyl ester.
1.3
Figure BDA0003381016020000112
The above enantiomer (3.9g, 15mmol) was taken and reacted with (R) - (+) -tert-butylsulfinamide (1.81g, 15mmol) and tetraethyltitanate (6.8g, 30mmol) in dichloroethane (75mL) at 90 ℃ for 20 hours. And (3) cooling the materials to room temperature, adding saturated ammonium chloride aqueous solution (20mL) to quench the materials for reaction, extracting the materials for 3 times by using 20-30mL ethyl acetate each time, combining organic phases, drying the organic phases by using anhydrous sodium sulfate, filtering the organic phases, concentrating the organic phases under reduced pressure, and separating and purifying the obtained crude product by using column chromatography to obtain optically pure sulfinylimine intermediates respectively. The intermediate was hydrolyzed with an aqueous hydrochloric acid solution (20mL) to give ethyl (1R,5S) -2-oxobicyclo [3.1.0] hexane-6, 6-diacetate and ethyl (1S,5R) -2-oxobicyclo [3.1.0] hexane-6, 6-diacetate, respectively.
1.4
Figure BDA0003381016020000121
(1S,5R) -2-oxobicyclo [3.1.0] hexane-6, 6-diacetic acid ethyl ester (3.6g, 15mmol) was dissolved in 20mL of ethanol, and hydroxylamine (1.5g, 45mmol) was added thereto, followed by heating to 80 ℃ and stirring under reflux overnight. The system is cooled to room temperature, 20mL of water is added, and the mixture is extracted 3 times with 20-30mL of dichloromethane each time, the organic phases are combined and dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to obtain a crude product of (1S,5R) -2-isonitrobicyclo [3.1.0] hexane-6, 6-diacetic acid ethyl ester.
1.5
Figure BDA0003381016020000122
Ethyl (1S,5R) -2-isonitrobicyclo [3.1.0] hexane-6, 6-diacetate (2.5g, 10mmol) obtained in the previous step was dissolved in toluene (20mL) and iron powder (3.35g, 60mmol) was added and cooled to 0 ℃. A mixture of acetic anhydride (3.1g, 30mmol) and acetic acid (1.8g, 30mmol) was then slowly added to the system and allowed to return to room temperature. Stirring for 18-24 hr, adding saturated ammonium chloride aqueous solution (20mL), quenching, extracting with 20-30mL ethyl acetate for 3 times, mixing organic phases, drying with anhydrous sodium sulfate, filtering, concentrating under reduced pressure, and separating and purifying the obtained crude product by column chromatography to obtain (1S,5R) -2-acetamido-bicyclo [3.1.0] -2-ene-hexane-6, 6-diacetic acid ethyl ester.
1.6
Figure BDA0003381016020000131
Ethyl (1S,5R) -2-acetamido-bicyclo [3.1.0] -2-ene-hexane-6, 6-diacetate (11.2g, 40mmol) obtained in the previous step and N, N-dimethylformamide (17.5g, 240mmol) were taken out of the round-bottomed flask, and after nitrogen gas was replaced, phosphorus oxychloride (42g, 280mmol) was added dropwise. After the completion of the dropwise addition, the mixture was heated to 100 ℃ and stirred for 24 hours. Cooling to room temperature, and directly separating and purifying by column chromatography to obtain the chloropyridine diester derivative shown in formula (5).
1.7
Figure BDA0003381016020000132
The chloropyridine diester derivative of formula (5) (4.8g, 15.8mmol) obtained in the previous step was dissolved in 80mL of tetrahydrofuran and sufficiently stirred at 0 ℃. Diisobutylaluminum hydride (1.5M in toluene, 63mL, 95mmol) was diluted to 1M with 32mL of tetrahydrofuran, and then slowly added dropwise to the reaction solution. After the addition was complete, the reaction mixture was slowly warmed to room temperature and stirring was continued for 2 hours. After completion of the reaction, the reaction mixture was quenched by slowly dropping distilled water under cooling in an ice-water bath, extracted with dichloromethane, and then the organic phases were combined and the solvent was removed by rotary evaporation. The crude reaction product is subjected to silica gel column chromatography to obtain the chloropyridine diol derivative shown in the formula (6).
1.8
Figure BDA0003381016020000133
Phenyl is exemplified as the substituent in this step. Taking the chloropyridine diol derivative obtained in the previous step of formula (6) (450mg, 2mmol), benzophenone dimethyl ketal (3.0equiv), p-toluenesulfonic acid (5 mol%), stannous chloride (5 mol%) and
Figure BDA0003381016020000142
molecular sieves (400mg, 200mg/mmol) were added dry 1, 2-dichloroethane (1.0M). The reaction mixture was stirred at 100 ℃ for 24 hours. After completion of the reaction, the reaction mixture was filtered to collect the filtrate, and the solvent was distilled off under reduced pressure. The crude reaction product is subjected to silica gel column chromatography to separate chloropyridine derivativesFormula (7-Ph).
1.9
Figure BDA0003381016020000141
Manganese powder (440mg, 8mmol) and nickel dichloride triphenylphosphine complex (131mg, 0.2mmol) were added to N, N-dimethylformamide (15mL), and then heated to 70 ℃ and stirred for 2 hours. After the color was observed to turn green, the chloropyridine derivative of formula (7-Ph) (778mg, 2mmol) was dissolved in N, N-dimethylformamide (3mL), and the chloropyridine derivative of formula (7-Ph) solution was added dropwise to the above reaction system, followed by stirring for 36 hours. And filtering after the reaction is finished, combining organic phases, drying by using anhydrous sodium sulfate, filtering, and concentrating under reduced pressure to obtain a crude product, and separating and purifying by using column chromatography to obtain the chiral 2,2' -bipyridyl ligand Ph-Sbpy of the formula (1) with the R group being phenyl. Preparation of the chiral 2,2' -bipyridyl ligand Ph-Sbpy1The H NMR spectrum is shown in FIG. 1.
Example 2
Synthesis of chiral 2,2' -bipyridine ligand:
2.1
Figure BDA0003381016020000151
the reaction time of 1.1 in example 1 was shortened to 2 hours, and the reaction results were the same under the same conditions.
2.2
Figure BDA0003381016020000152
The reaction stirring time of 1.2 in example 1 was shortened to 12 hours, and the reaction results were the same under the same conditions.
2.3
Figure BDA0003381016020000153
The reaction stirring time of 1.3 in example 1 was shortened to 12 hours, and the reaction results were the same under the same conditions.
2.4
Figure BDA0003381016020000154
The reaction time was shortened to 6 hours by replacing ethyl (1S, 5S) -2-oxobicyclo [3.1.0] hexane-6, 6-diacetate with ethyl (1R,5S) -2-oxobicyclo [3.1.0] hexane-6, 6-diacetate in the reaction of 1.4 in example 1, and the same conditions were applied to obtain ethyl (1R,5S) -2-isonitrosobicyclo [3.1.0] hexane-6, 6-diacetate as a crude product.
2.5
Figure BDA0003381016020000161
(1S, 5S) -2-Isonitrosobicyclo [3.1.0] hexane-6, 6-diacetic acid ethyl ester in the 1.5 reaction in example 1 was replaced with (1R,5S) -2-isonitrobicyclo [3.1.0] hexane-6, 6-diacetic acid ethyl ester obtained in the 2.4 step, and the same conditions were used to obtain (1R,5S) -2-acetamidobicyclo [3.1.0] -2-ene-hexane-6, 6-diacetic acid ethyl ester.
2.6
Figure BDA0003381016020000162
Ethyl (1R,5S) -2-acetamido-bicyclo [3.1.0] -2-ene-hexane-6, 6-diacetate (11.2g, 40mmol) obtained in the previous step and N, N-dimethylformamide (17.5g, 240mmol) were taken out of the round-bottomed flask, and after nitrogen gas was replaced, phosphorus oxychloride (42g, 280mmol) was added dropwise. After the completion of the dropwise addition, the mixture was heated to 100 ℃ and stirred for 16 hours. Cooling to room temperature, and directly separating and purifying by column chromatography to obtain the chloropyridine diester derivative formula (5').
2.7
Figure BDA0003381016020000163
The chloropyridine diester derivative of formula (5') (4.8g, 15.8mmol) obtained in the previous step was dissolved in 80mL of tetrahydrofuran and stirred well at 0 ℃. Diisobutylaluminum hydride (1.5M in toluene, 63mL, 95mmol) was diluted to 1M with 32mL of tetrahydrofuran, and then slowly added dropwise to the reaction solution. After the addition was complete, the reaction mixture was slowly warmed to room temperature and stirring was continued for 2 hours. After completion of the reaction, the reaction mixture was quenched by slowly dropping distilled water under cooling in an ice-water bath, extracted with dichloromethane, and then the organic phases were combined and the solvent was distilled off under reduced pressure. The crude reaction product is separated by silica gel column chromatography to obtain the chloropyridine diol derivative formula (6').
2.8
Figure BDA0003381016020000171
Methyl groups are exemplified as substituents in this step. The chloropyridine diol derivatives obtained in the previous step, formula (6') (450mg, 2mmol), 2, 2-dimethoxypropane (3.0equiv), p-toluenesulfonic acid (5 mol%), stannous chloride (5 mol%) and
Figure BDA0003381016020000173
molecular sieves (400mg, 200mg/mmol) were added dry 1, 2-dichloroethane (1.0M). The reaction mixture was stirred at 100 ℃ for 24 hours. After completion of the reaction, the reaction mixture was filtered to collect the filtrate, and the solvent was distilled off under reduced pressure. The crude reaction product was subjected to silica gel column chromatography to isolate the chloropyridine derivative of formula (7' -Me).
2.9
Figure BDA0003381016020000172
Manganese powder (440mg, 8mmol) and nickel dichloride triphenylphosphine complex (131mg, 0.2mmol) were added to N, N-dimethylformamide (15mL), and then heated to 70 ℃ and stirred for 2 hours. After the color was observed to turn green, the chloropyridine derivative of formula (7' -Me) (531mg, 2mmol) was dissolved in N, N-dimethylformamide (3mL), and the chloropyridine derivative was addedThe solution of the formula (7-Ph) was added dropwise to the above reaction system, followed by stirring for 36 hours. Filtering after the reaction is finished, combining organic phases, drying by using anhydrous sodium sulfate, filtering, decompressing and concentrating, and separating and purifying the obtained crude product by using column chromatography to obtain the chiral 2,2 '-bipyridyl ligand Me-Sbpy of the formula (1') with the R group being methyl. Preparation of the chiral 2,2' -bipyridyl ligand Me-Sbpy1The H NMR spectrum is shown in FIG. 2.
The following examples further illustrate the use of the invention and do not therefore limit the scope of the invention described.
Preparation of chiral diaryl methanol
Preparation of example 1
This example is for the preparation of (S) - (4-methoxyphenyl) -phenylmethanol, comprising in particular the following steps: nickel dibromide ethylene glycol dimethyl ether complex (7.0mg, 0.02mmol,10 mol%), Ph-SBpy (17.0mg,0.024mmol,12 mol%) and 2-methyltetrahydrofuran (0.5mL) were combined under argon and stirred at 33 ℃ for 1 hour. Tetrabutylammonium tetraphenylborate (28.0mg,0.05mmol,25 mol%) and zinc powder (19.6mg,0.3mmol,1.5equiv) were added to the reaction solution under the protection of a nitrogen stream and stirring was continued at 33 ℃ for 1 hour. After sufficient stirring, the reaction system was a dark blue-green mixture. Subsequently, benzaldehyde (0.2mmol,1.0equiv), 4-iodoanisole (0.5mmol,2.5equiv), 1, 4-dioxane (0.5mL) and methylene chloride (0.1mL) were added to the reaction system in this order, and the reaction mixture was left to stand at-30 ℃ for 24 hours with stirring. After the reaction, the solvent was removed by a rotary evaporator, and the product was purified by silica gel column chromatography (using 200-300 mesh silica gel, the mass ratio of silica gel to the substance to be purified was 50-100: 1, and the eluent was petroleum ether and ethyl acetate, and the volume ratio was 5-10: 1) to obtain ((S) - (4-methoxyphenyl) -phenylmethanol (88% yield, 91% ee).1H NMR(400MHz,CDCl3)δ7.21–7.39(m,2H),6.85(d,J=8.4Hz,2H),5.79(s,1H),3.78(s,3H),2.25(s,1H).13C NMR(100MHz,CDCl3)δ159.0,144.0,136.2,128.5,127.9,127.4,126.4,113.9,75.8,55.3.
Preparation of example 2
Replacement of the benzyl radical in preparation example 1 with 4-methylbenzaldehydeAldehyde, otherwise under the same conditions, gave (S) - (4-methoxyphenyl) - (4-methylphenyl) -methanol (92% yield, 88% ee).1H NMR(400MHz,CDCl3)δ7.28-7.23(m,4H),7.14(d,J=8.0Hz,2H),6.85(d,J=8.4Hz,2H),5.76(d,J=1.6Hz,1H),3.78(s,3H),2.32(s,3H),2.18(d,J=3.2Hz,1H).13C NMR(100MHz,CDCl3)δ159.0,141.2,137.1,136.4,129.2,127.8,126.4,113.8,75.7,55.3,21.1.
Preparation of example 3
The reaction was carried out under the same conditions except for using 4-tert-butyliodobenzene instead of 4-iodoanisole in preparation example 1 to give (S) - (4-tert-butylphenyl) -phenylmethanol (91% yield, 88% ee).1H NMR(400MHz,CDCl3)δ7.51–7.08(m,9H),5.72(s,1H),2.21(s,1H),1.22(s,9H).13C NMR(100MHz,CDCl3)δ150.5,143.9,140.9,128.5,127.5,126.5,126.3,125.5,76.1,34.5,31.4.
Preparation of example 4
The reaction was carried out under the same conditions using 2-methoxyiodobenzene instead of 4-iodoanisole in preparation example 1 to give (S) - (2-methylphenyl) -phenylmethanol (77% yield, 84% ee).1H NMR(400MHz,CDCl3)δ7.39(d,J=7.6Hz,2H),7.32(t,J=7.6Hz,2H),7.29–7.19(m,3H),6.94(t,J=7.6Hz,1H),6.89(d,J=8.0Hz,1H),6.05(d,J=5.2Hz,1H),3.81(s,3H),3.06(d,J=5.6Hz,1H).13C NMR(100MHz,CDCl3)δ156.8,143.2,131.9,128.8,128.2,127.9,127.2,126.6,120.8,110.8,72.3,55.4.
Preparation of chiral biaryl products
Preparation of example 5
This example is a preparation of (S) -5,5',6,6' -tetramethoxy- [1,1' -biphenyl]-2,2' -dicarboxaldehyde, comprising in particular the following steps: 2-chloro-3, 4-dimethoxybenzaldehyde (0.1mmol,1.0equiv), NiCl, under argon2(PPh3)2(6.5mg,0.01mmol,10 mol%), Ph-SBpy (11.6mg,0.01mmol,10 mol%), zinc powder (3.1mg,0.2mmol,2.0equiv) and TBAI (18.5mg,0.05mmol,0.5equiv) were mixed. Adding dry NMP, heating in 45 deg.C oil bath, stirring for 16 hr, removing solvent with rotary evaporator, and performing silica gel column chromatography (using 200-300 mesh silica gel)And (3) glue, wherein the mass ratio of the silica gel to the substance to be purified is 50-100: 1, eluent is petroleum ether and ethyl acetate, and the volume ratio is 5-10: 1) purifying the product to obtain (S) -5,5',6,6' -tetramethoxy- [1,1' -biphenyl]-2,2' -dicarboxaldehyde (92% yield, 91% ee).1H NMR(400MHz,CDCl3)δ9.55(s,2H),7.84(d,J=8.6Hz,2H),7.12(d,J=8.6Hz,2H),4.00(s,6H),3.60(s,6H).13C NMR(100MHz,CDCl3)δ190.1,157.7,146.7,131.5,128.6,126.1,112.1,60.6,56.1.
Preparation of example 6
The 1-chloro-2-naphthaldehyde was used in place of the 2-chloro-3, 4-dimethoxybenzaldehyde of preparation example 5, under otherwise identical conditions, to react to (R) - [1,1' -binaphthyl]-2,2' -dicarboxaldehyde (81% yield, 86% ee).1H NMR(400MHz,CDCl3)δ9.62(s,2H),8.21(d,J=8.6Hz,2H),8.13(d,J=8.7Hz,2H),8.02(d,J=8.2Hz,2H),7.64(t,J=7.5Hz,2H),7.38(t,J=7.7Hz,2H),7.24(d,J=8.5Hz,2H).13C NMR(100MHz,CDCl3)δ191.2,139.8,136.1,133.6,133.4,129.9,129.6,128.7,128.1,127.4,122.5.
Preparation of example 7
The 1-chloro-6-cyclopropyl-2-naphthaldehyde was used in place of the 2-chloro-3, 4-dimethoxybenzaldehyde of preparation example 5, and the reaction was carried out under the same conditions as for (R) -6,6 '-bicyclopropyl- [1,1' -binaphthyl ] -aldehyde]-2,2' -dicarboxaldehyde (91% yield, 92% ee).1H NMR(400MHz,CDCl3)δ9.56(s,2H),8.14(d,J=8.7Hz,2H),7.99(d,J=8.7Hz,2H),7.66(d,J=1.4Hz,2H),7.11(d,J=8.8Hz,2H),7.04–7.01(m,2H),2.09–2.02(m,2H),1.12–1.05(m,4H),0.85–0.79(m,4H).13C NMR(100MHz,CDCl3)δ191.3,146.4,140.0,136.3,132.5,131.9,129.0,127.5,126.4,124.3,122.6,16.0,10.3,10.2.
The chiral diaryl carbinol and the chiral biaryl products obtained by the preparation method have higher yield and stereoselectivity. The product can be used for synthesizing intermediates of medicines/pesticides, and the preparation method can be used for preparing a plurality of similar products and has industrial application value.

Claims (10)

1. A chiral 2,2 '-bipyridine ligand is characterized in that the structural formula is shown as a formula (1) or a formula (1'):
Figure FDA0003381016010000011
wherein R is aryl or alkyl.
2. A process for the preparation of chiral 2,2' -bipyridine ligands of claim 1, comprising the steps of:
(1) brominating 2-cyclopentene-1-one under the action of liquid bromine, and reacting with diethyl malonate to obtain a pair of enantiomers;
(2) reacting the obtained enantiomer with (R) -tert-butyl sulfinamide and tetraethyl titanate, then separating and purifying the product to obtain sulfinyl imine, and then hydrolyzing with hydrochloric acid to obtain chiral ketone shown in formula (2) and/or formula (2');
Figure FDA0003381016010000012
(3) placing chiral ketone shown in a formula (2) and hydroxylamine into ethanol for reaction to obtain oxime shown in a formula (3);
or, placing the chiral ketone shown in the formula (2 ') and hydroxylamine into ethanol for reaction to obtain oxime shown in the formula (3');
Figure FDA0003381016010000021
(4) adding oxime shown in a formula (3) into toluene, and then adding iron powder, acetic anhydride and acetic acid to react to obtain amide shown in a formula (4);
or adding the oxime shown in the formula (3 ') into toluene, and then adding iron powder, acetic anhydride and acetic acid to react to obtain the amide shown in the formula (4');
Figure FDA0003381016010000022
(5) dissolving amide shown in a formula (4) in N, N-dimethylformamide, then dropwise adding phosphorus oxychloride, and reacting to obtain a chloropyridine derivative shown in a formula (5);
or dissolving the amide shown in the formula (4 ') in N, N-dimethylformamide, and then dropwise adding phosphorus oxychloride to react to obtain the chloropyridine derivative shown in the formula (5');
Figure FDA0003381016010000023
(6) dissolving the chloropyridine derivative shown in the formula (5) in tetrahydrofuran, and then dropwise adding the solution into a toluene solution of DIBAL-H at a low temperature to react to obtain a diol derivative shown in the formula (6);
or dissolving the chloropyridine derivative shown in the formula (5 ') in tetrahydrofuran, and then dropwise adding the solution into a toluene solution of DIBAL-H at a low temperature to react to obtain a diol derivative shown in the formula (6');
Figure FDA0003381016010000031
(7) reacting the diol obtained in the formula (6) with p-toluenesulfonic acid, stannous chloride, a molecular sieve and methyl ketal under the reflux condition of 1, 2-dichloroethane to obtain a ketal derivative shown in a formula (7);
or reacting the diol obtained in the formula (6 ') with p-toluenesulfonic acid, stannous chloride, a molecular sieve and methyl ketal under the reflux condition of 1, 2-dichloroethane to obtain the ketal derivative shown in the formula (7');
Figure FDA0003381016010000032
(8) adding manganese powder, nickel chloride hexahydrate and triphenylphosphine into N, N-dimethylformamide, heating and stirring for 1 hour, then adding a chloropyridine derivative shown in a formula (7) or a formula (7 ') dissolved in the N, N-dimethylformamide, and reacting to obtain the chiral 2,2' -bipyridine ligand.
3. The method for preparing chiral 2,2' -bipyridine ligand according to claim 2, wherein the specific process of step (1) is as follows: under the protection of nitrogen, 2-cyclopentene-1-ketone and liquid bromine react in dichloromethane at 0 ℃ to room temperature for 4-8 hours to obtain 2-bromo-2-cyclopentene-1-ketone, the 2-bromo-2-cyclopentene-1-ketone and diethyl malonate react in 1, 2-dichloroethane solvent under the catalysis of alkali, the temperature is heated to 90 ℃ for 12-24 hours, and a pair of enantiomers are obtained by filtration and column chromatography separation.
4. The method for preparing chiral 2,2' -bipyridine ligand according to claim 2, wherein the step (3) comprises the following steps: placing the chiral ketone shown in the formula (2) or the formula (2 ') and hydroxylamine into an ethanol solution, heating, refluxing and stirring for 18-24 hours, then washing with water, extracting with dichloromethane, drying the obtained organic phase with anhydrous sodium sulfate, and removing the solvent to obtain the oxime shown in the formula (3) or the formula (3').
5. The method for preparing chiral 2,2' -bipyridine ligand according to claim 2, wherein the step (4) comprises the following steps: adding oxime shown in a formula (3) or a formula (3 ') into toluene, cooling to 0 ℃, adding iron powder, adding a mixture of acetic anhydride and acetic acid, heating to room temperature for reaction, stirring for 18-24 hours, filtering out the iron powder, adding an ammonium chloride aqueous solution, extracting by using ethyl acetate, and performing silica gel column chromatography separation to obtain amide shown in a formula (4) or a formula (4').
6. The method for preparing chiral 2,2' -bipyridine ligand according to claim 2, wherein the step (5) comprises the following steps: dissolving the amide shown in the formula (4) or the formula (4 ') in N, N-dimethylformamide, then dropwise adding phosphorus oxychloride in an ice bath, stirring at the temperature of 80-100 ℃ for 18-24 hours, and separating the mixture by using column chromatography to obtain the chloropyridine derivative shown in the formula (5) or the formula (5').
7. Use of the chiral 2,2' -bipyridine ligand of claim 1 as a catalyst ligand in the preparation of chiral diarylmethanol.
8. The use according to claim 7, comprising:
under the condition of argon, stirring and mixing a nickel dibromide glycol dimethyl ether complex, a chiral 2,2' -bipyridine ligand and 2-methyltetrahydrofuran at room temperature, adding zinc powder and sodium tetraphenyltetrafluoroborate, and continuously stirring and mixing at room temperature; adding aldehyde and aryl halide into a reaction system, and stirring the obtained reaction mixture at-30-0 ℃ for reaction; after the reaction is finished, removing the solvent; the obtained crude reaction product is separated and purified to obtain the chiral diaryl methanol.
9. Use of a chiral 2,2' -bipyridine ligand of claim 1 as a catalyst ligand in the preparation of chiral self-coupled diaryl compounds.
10. The use according to claim 9, comprising:
under the condition of argon, heating, stirring and mixing a nickel dichloride triphenylphosphine complex, a chiral 2,2' -bipyridine ligand and N, N-dimethylacetamide, adding manganese powder and aryl chloride, and stirring and reacting the obtained reaction mixture at 60-80 ℃; and after the reaction is finished, removing the solvent, and separating and purifying the obtained crude reaction product to obtain the chiral biaryl compound.
CN202111434132.1A 2021-11-29 2021-11-29 Chiral 2,2' -bipyridine ligand and preparation method and application thereof Active CN114014869B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111434132.1A CN114014869B (en) 2021-11-29 2021-11-29 Chiral 2,2' -bipyridine ligand and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111434132.1A CN114014869B (en) 2021-11-29 2021-11-29 Chiral 2,2' -bipyridine ligand and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN114014869A true CN114014869A (en) 2022-02-08
CN114014869B CN114014869B (en) 2023-03-24

Family

ID=80067082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111434132.1A Active CN114014869B (en) 2021-11-29 2021-11-29 Chiral 2,2' -bipyridine ligand and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN114014869B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1449840A1 (en) * 2003-02-19 2004-08-25 Kyushu University Method of producing optically active lactone compound
WO2009087364A1 (en) * 2008-01-07 2009-07-16 Lomox Limited Electroluminescent materials
CN104496736A (en) * 2014-10-23 2015-04-08 北京理工大学 Rare earth metal compound-based cross-coupling reaction and use thereof
CN110128341A (en) * 2019-05-13 2019-08-16 西安交通大学 A kind of chiral 2,2 '-bipyridine ligand and preparation method thereof and preparing the application in chiral cyclopropane derivative
CN112724168A (en) * 2020-12-29 2021-04-30 西安交通大学 Chiral pyridine derived N, B ligand, preparation method and application in iridium-catalyzed asymmetric boronation reaction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1449840A1 (en) * 2003-02-19 2004-08-25 Kyushu University Method of producing optically active lactone compound
WO2009087364A1 (en) * 2008-01-07 2009-07-16 Lomox Limited Electroluminescent materials
CN104496736A (en) * 2014-10-23 2015-04-08 北京理工大学 Rare earth metal compound-based cross-coupling reaction and use thereof
CN110128341A (en) * 2019-05-13 2019-08-16 西安交通大学 A kind of chiral 2,2 '-bipyridine ligand and preparation method thereof and preparing the application in chiral cyclopropane derivative
CN112724168A (en) * 2020-12-29 2021-04-30 西安交通大学 Chiral pyridine derived N, B ligand, preparation method and application in iridium-catalyzed asymmetric boronation reaction

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALAKESH, B. ET AL.: "Benzenecarboperoxoic acid, 1, 1-dimethylethyl Ester", 《E-EROS ENCYCLOPEDIA OF REAGENTS FOR ORGANIC SYNTHESIS》 *
YIZHAO OUYANG ET AL.: "Z-bpy, a new C2-symmetric bipyridine ligand and its application in enantioselective copper(I)-catalyzed cyclopropanation of olefins", 《CHIN. J. CHEM.》 *
ZHANG, SHUAI ET AL.: "Design and Synthesis of Tunable Chiral 2,2"-Bipyridine Ligands:Application to the Enantioselective Nickel-Catalyzed Reductive Arylation of Aldehydes", 《ANGEWANDTE CHEMIE, INTERNATIONAL EDITION》 *

Also Published As

Publication number Publication date
CN114014869B (en) 2023-03-24

Similar Documents

Publication Publication Date Title
CN108069934B (en) Method for preparing polyaromatic substituted naphthalene derivative by reaction of biphenyl type arone and tolane catalyzed by ruthenium
CN110483252B (en) Method for synthesizing asymmetric triarylmethane derivative
CN110128341B (en) Chiral 2, 2' -bipyridyl ligand, preparation method thereof and application thereof in preparation of chiral cyclopropane derivative
CN100482644C (en) Chiral diene ligand, synthesis method and its application in asymmetric reaction
CN111925356B (en) Synthesis method and application of chiral quinoline-imidazoline ligand
CN114014869B (en) Chiral 2,2' -bipyridine ligand and preparation method and application thereof
Zhao et al. Organocatalytic asymmetric cyclopropanation of α, β-unsaturated aldehydes with arsonium ylides
CN111995554A (en) Method for preparing asymmetric organic selenium ether compound by metal-free chemical oxidation method
CN111848480A (en) Method for synthesizing aryl difluoromethyl seleno ether from arylboronic acid and application thereof
CN114768866B (en) Chiral deuterated Maruoka phase transfer catalyst, preparation method thereof and application thereof in asymmetric catalytic reaction
CN112920072B (en) NOBIN biaryl compound and synthetic method thereof
CN112979523B (en) Preparation method of chiral 1, 4-diphenyl-2-hydroxy-1, 4-dibutyl ketone compound
CN111116450B (en) Axial chiral naphthylamine squaramide organic catalyst, and preparation method and application thereof
CN110437277B (en) Synthetic method of phosphoalkenyl ester compound
CN109666041B (en) Chiral monophosphine ligand HP-Phos with diphenyl ether skeleton, preparation method and application thereof
Mešková et al. The development of an approach toward sterically-hindered chiral 2′-aryl-1, 1′-binaphthalenes functionalized at position 2
CN112979513A (en) Chiral sulfoxide containing styrene monomer and preparation method thereof
CN102627571B (en) Preparation and synthesis method for chiral ammonium salt
Massa et al. N-Tosylimidates in highly enantioselective organocatalytic Michael reactions
CN109970752A (en) A kind of synthetic method of chirality 4- loop coil pyrazole compound
CN107892669A (en) A kind of method by reacting synthesis of quinoline derivatives by means of hydrogen
CN111732508B (en) Synthesis method of spiro compound
CN114736108B (en) Allyl carbonyl enol compound and synthesis method thereof
CN108586331B (en) Intermediate for synthesizing nitrogen-containing heterocyclic compound and preparation method thereof
CN109232151B (en) Solid-phase synthesis method of 1, 1-diaryl alkene compound

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant