CN114006659B - High-order vector soliton generation system and method based on passive resonant cavity - Google Patents
High-order vector soliton generation system and method based on passive resonant cavity Download PDFInfo
- Publication number
- CN114006659B CN114006659B CN202111270809.2A CN202111270809A CN114006659B CN 114006659 B CN114006659 B CN 114006659B CN 202111270809 A CN202111270809 A CN 202111270809A CN 114006659 B CN114006659 B CN 114006659B
- Authority
- CN
- China
- Prior art keywords
- polarization
- vector
- intensity
- continuous wave
- modulator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000010287 polarization Effects 0.000 claims abstract description 155
- 238000004088 simulation Methods 0.000 claims description 22
- 239000000835 fiber Substances 0.000 claims description 12
- 230000002902 bimodal effect Effects 0.000 claims description 11
- 238000005086 pumping Methods 0.000 claims description 9
- 230000008878 coupling Effects 0.000 claims description 8
- 238000010168 coupling process Methods 0.000 claims description 8
- 238000005859 coupling reaction Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 6
- 239000006185 dispersion Substances 0.000 claims description 5
- 230000009471 action Effects 0.000 claims description 3
- 230000005684 electric field Effects 0.000 claims description 3
- 230000005284 excitation Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 12
- 238000001228 spectrum Methods 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/508—Pulse generation, e.g. generation of solitons
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/54—Intensity modulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
Description
技术领域technical field
本发明涉及光脉冲输出领域,尤其涉及一种基于无源谐振腔的高阶矢量孤子产生系统及方法。The invention relates to the field of optical pulse output, in particular to a high-order vector soliton generation system and method based on a passive resonant cavity.
背景技术Background technique
矢量孤子是指具有多个孤子分量且各孤子分量耦合在一起以相同的群速度在介质中传播的孤子。单模光纤通常都具有弱的双折射,导致光纤中存在两个正交的偏振方向,使矢量孤子在单模光纤中产生成为可能。根据光纤双折射大小的不同,光纤中能产生各种类型的矢量孤子。在光纤激光器中也能获得了矢量孤子,由光纤激光器产生的矢量孤子通过投影可以获得高阶矢量孤子。A vector soliton refers to a soliton that has multiple soliton components and each soliton component is coupled together and propagates in the medium at the same group velocity. Single-mode fibers usually have weak birefringence, resulting in two orthogonal polarization directions in the fiber, making it possible to generate vector solitons in single-mode fibers. Depending on the size of the fiber birefringence, various types of vector solitons can be generated in the fiber. Vector solitons can also be obtained in fiber lasers, and vector solitons generated by fiber lasers can be projected to obtain high-order vector solitons.
克尔谐振器/无源谐振腔中也能产生矢量孤子,克尔谐振器/无源谐振腔中时间腔孤子/矢量孤子的产生不仅取决于克尔非线性和色散之间的相互作用,还依赖于非线性参量增益和腔损耗之间的平衡。Vector solitons can also be generated in Kerr resonators/passive resonators, and the generation of time cavity solitons/vector solitons in Kerr resonators/passive resonators not only depends on the interaction between Kerr nonlinearity and dispersion, but also Rely on the balance between nonlinear parametric gain and cavity loss.
目前为止,基于光纤激光器产生高阶矢量孤子的相关研究已有所报道,而基于无源谐振腔产生的高阶矢量孤子还未见报道。So far, there have been reports on the generation of high-order vector solitons based on fiber lasers, but there have been no reports on the generation of high-order vector solitons based on passive resonators.
上述内容仅用于辅助理解本发明的技术方案,并不代表承认上述内容是现有技术。The above content is only used to assist in understanding the technical solution of the present invention, and does not mean that the above content is admitted as prior art.
发明内容Contents of the invention
本发明的主要目的在于,解决现有技术中,基于无源谐振腔无法产生高阶矢量孤子的技术问题。The main purpose of the present invention is to solve the technical problem in the prior art that high-order vector solitons cannot be generated based on the passive resonant cavity.
为实现上述目的,本发明提供一种基于无源谐振腔的高阶矢量孤子产生系统,包括:连续波泵浦源、第一偏振控制器、第一偏振分束器、第一调制器、第一模式发生器、第二调制器、第二模式发生器、偏振合束器、耦合器、第二偏振控制器、第三偏振控制器和第二偏振分束器;To achieve the above object, the present invention provides a high-order vector soliton generation system based on a passive resonant cavity, including: a continuous wave pump source, a first polarization controller, a first polarization beam splitter, a first modulator, a second a mode generator, a second modulator, a second mode generator, a polarization beam combiner, a coupler, a second polarization controller, a third polarization controller and a second polarization beam splitter;
所述连续波泵浦源与所述第一偏振控制器的进口连接,所述第一偏振控制器的出口与所述第一偏振分束器的进口连接,所述第一偏振分束器的3a出口与所述第一调制器的第一进口连接,所述第一偏振分束器的3b出口与所述第二调制器的第一进口连接,所述第一模式发生器与所述第一调制器的第二进口连接,所述第二模式发生器与所述第二调制器的第二进口连接,所述第一调制器的出口与所述偏振合束器的8a进口连接,所述第二调制器的出口与所述偏振合束器的8b进口连接,所述偏振合束器的出口与所述耦合器的9b进口连接,所述耦合器的9a进口与所述第二偏振控制器的出口连接,所述耦合器的9c出口与所述第二偏振控制器的进口连接,所述耦合器的9d出口与所述第三偏振控制器的进口连接,所述第三偏振控制器的出口与所述第二偏振分束器的进口连接。The continuous wave pump source is connected to the inlet of the first polarization controller, the outlet of the first polarization controller is connected to the inlet of the first polarization beam splitter, and the outlet of the first polarization beam splitter The
优选地,所述连续波泵浦源在仿真时采用单色光的连续波激光器,所述单色光的连续波激光器的功率为2W,波长为1550nm。Preferably, the continuous wave pumping source adopts a monochromatic continuous wave laser during simulation, the power of the monochromatic continuous wave laser is 2W, and the wavelength is 1550nm.
优选地,所述第一偏振分束器在仿真时的分光比为50:50。Preferably, the light splitting ratio of the first polarization beam splitter in simulation is 50:50.
优选地,所述第一模式发生器和所述第二模式发生器在仿真时均采用电脉冲发生器,所述电脉冲发生器的工作功率范围为20至100W,所述电脉冲发生器用于产生预设脉宽、强度和时延的高斯脉冲;Preferably, both the first mode generator and the second mode generator use an electric pulse generator during simulation, and the working power range of the electric pulse generator is 20 to 100W, and the electric pulse generator is used for Generate Gaussian pulses with preset pulse width, intensity and time delay;
仿真时根据需求,所述第一模式发生器和所述第二模式发生器依次产生的高斯脉冲为:According to requirements during simulation, the Gaussian pulses generated by the first mode generator and the second mode generator in turn are:
脉宽为20ps,强度为72W,时间间隔为60ps的两个单峰高斯脉冲;Two single-peak Gaussian pulses with a pulse width of 20ps, an intensity of 72W, and a time interval of 60ps;
脉宽为20ps,强度为72W,时间间隔为360ps的一个单峰高斯脉冲和一个双峰高斯脉冲,其中双峰高斯脉冲之间的时间间隔设置为200ps;A single-peak Gaussian pulse and a double-peak Gaussian pulse with a pulse width of 20ps, an intensity of 72W, and a time interval of 360ps, where the time interval between the double-peak Gaussian pulses is set to 200ps;
脉宽为20ps,强度为72W,时间间隔为440ps的两个双峰高斯脉冲,其中双峰高斯脉冲之间的时间间隔均设置为200ps。Two bimodal Gaussian pulses with a pulse width of 20ps, an intensity of 72W, and a time interval of 440ps, where the time interval between the bimodal Gaussian pulses is set to 200ps.
优选地,所述第一调制器和所述第二调制器在仿真时均采用强度调制,获取添加了强度微扰的连续波泵浦场;Preferably, both the first modulator and the second modulator use intensity modulation during simulation to obtain a continuous wave pump field with intensity perturbation added;
所述添加了强度微扰的连续波泵浦场包括:偏振态u和偏振态v,u轴和v轴为两个正交偏振轴;The continuous wave pump field with intensity perturbation added includes: polarization state u and polarization state v, u axis and v axis are two orthogonal polarization axes;
所述偏振态u表示为:The polarization state u is expressed as:
所述偏振态v表示为:The polarization state v is expressed as:
其中,Ein为连续波泵浦源输出的连续波泵浦场;Ein,u(z,τ)和Ein,v(z,τ)分别为对应于偏振态u和v的第一模式发生器和第二模式发生器产生的驱动场强度;Ep,u和Ep,v分别为对应于偏振态u和v的第一模式发生器和第二模式发生器产生的用于强度调制的驱动场峰值强度;τu和τv分别为第一模式发生器和第二模式发生器产生的高斯脉冲的脉宽;Δτdrift为偏振态v相对于u的漂移时间;f(z)为矩形函数,f(z)=Π(z/L-n0-1/2)对于z∈[n0L,(n0+1)L],z和L分别为传输距离与腔长,当f(z)为0时表示在第n0圈注入了强度调制。Among them, E in is the continuous wave pump field output by the continuous wave pump source; E in,u(z,τ) and E in,v(z,τ) are the first modes corresponding to the polarization states u and v The driving field strength generated by the generator and the second mode generator; E p,u and E p,v are the intensity modulation generated by the first mode generator and the second mode generator corresponding to the polarization states u and v respectively τ u and τ v are the pulse widths of the Gaussian pulses generated by the first mode generator and the second mode generator respectively; Δτ drift is the drift time of the polarization state v relative to u; f(z) is Rectangular function, f(z)=Π(z/Ln 0 -1/2) For z∈[n 0 L,(n 0 +1)L], z and L are the transmission distance and cavity length respectively, when f( When z) is 0, it means that the intensity modulation is injected in the n 0th cycle.
优选地,所述耦合器在仿真时的耦合度为90:10。Preferably, the coupling degree of the coupler during simulation is 90:10.
优选地,所述耦合器和所述第二偏振控制器通过保偏光纤组成无源环形谐振腔,所述添加了强度微扰的连续波泵浦场通过所述无源环形谐振腔获得矢量腔孤子;Preferably, the coupler and the second polarization controller form a passive ring resonant cavity through a polarization-maintaining fiber, and the continuous wave pump field with intensity perturbation is added to obtain a vector cavity through the passive ring resonant cavity Soliton;
所述添加了强度微扰的连续波泵浦场在所述无源环形谐振腔内的演化公式如下:The evolution formula of the continuous wave pump field with intensity perturbation added in the passive ring resonator is as follows:
其中,z为腔内的传输距离;u和v为两个偏振态的缓变电场包络;α1=(α-ln(1-k))/(2L),α为腔内损耗,k为功率耦合系数,L为腔长;Δβ为两个偏振模式之间的波矢失配;δ1=δ0/L,δ0为环程相位失谐;β2为群速度色散;Δβ1为群速度失配;γ为克尔非线性系数;η=k1/2/L;Ein为一个连续波泵浦场;χ为泵浦场的线性偏振方向。Among them, z is the transmission distance in the cavity; u and v are the slowly changing electric field envelopes of the two polarization states; α 1 =(α-ln(1-k))/(2L), α is the loss in the cavity, k is the power coupling coefficient, L is the cavity length; Δβ is the wavevector mismatch between two polarization modes; δ 1 = δ 0 /L, δ 0 is the phase mismatch of the loop; β 2 is the group velocity dispersion; Δβ 1 is the group velocity mismatch; γ is the Kerr nonlinear coefficient; η=k 1/2 /L; E in is a continuous wave pump field; χ is the linear polarization direction of the pump field.
一种基于无源谐振腔的高阶矢量孤子产生方法,基于上述的基于无源谐振腔的高阶矢量孤子产生系统实现,包括:A method for generating high-order vector solitons based on passive resonators, realized based on the above-mentioned high-order vector soliton generation system based on passive resonators, including:
S1:开始仿真,所述连续波泵浦源产生输入激光;S1: Start the simulation, the continuous wave pump source generates input laser light;
S2:所述输入激光依次经过所述第一偏振控制器、所述第一偏振分束器、所述第一调制器、所述第二调制器,且分别在所述第一模式发生器和所述第二模式发生器的作用下进行强度调制,得到添加了强度微扰的连续波泵浦场;所述耦合器和所述第二偏振控制器构成所述无源环形谐振腔;S2: The input laser light passes through the first polarization controller, the first polarization beam splitter, the first modulator, and the second modulator in sequence, and passes through the first mode generator and the second modulator respectively. Intensity modulation is performed under the action of the second mode generator to obtain a continuous wave pump field with intensity perturbation added; the coupler and the second polarization controller form the passive ring resonator;
S3:将所述添加了强度微扰的连续波泵浦场依次经过所述偏振合束器和所述耦合器,进入所述无源环形谐振腔进行激励并得到矢量腔孤子;S3: passing the continuous wave pump field with intensity perturbation added through the polarization beam combiner and the coupler in sequence, entering the passive ring resonator for excitation and obtaining vector cavity solitons;
S4:将所述矢量腔孤子依次经过所述第三偏振控制器和第二偏振分束器,矢量腔孤子的两个偏振正交成分分别在所述第二偏振分束器的横轴和纵轴上进行投影,获取横轴投影结果和纵轴投影结果;S4: Pass the vector cavity soliton through the third polarization controller and the second polarization beam splitter in sequence, and the two polarization orthogonal components of the vector cavity soliton are respectively on the horizontal axis and the vertical axis of the second polarization beam splitter Project on the axis to obtain the results of horizontal axis projection and vertical axis projection;
投影过程如下:The projection process is as follows:
H=u·cosθ+v·sinθH=u·cosθ+v·sinθ
V=u·sinθ-v·cosθV=u·sinθ-v·cosθ
其中,H表示横轴投影结果,V表示纵轴投影结果,θ表示偏振态u与第二偏振分束器中横轴的夹角;Wherein, H represents the projection result on the horizontal axis, V represents the projection result on the vertical axis, and θ represents the angle between the polarization state u and the horizontal axis in the second polarization beam splitter;
S5:根据所述矢量腔孤子的两个偏振正交成分、所述横轴投影结果和所述纵轴投影结果获得高阶矢量孤子,具体为:S5: Obtain a higher-order vector soliton according to the two polarization orthogonal components of the vector cavity soliton, the horizontal-axis projection result, and the vertical-axis projection result, specifically:
对于两个偏振正交成分为“1+1”的所述矢量腔孤子,若横轴投影结果和纵轴投影结果皆为两个脉冲,则投影后得到的矢量孤子为“2+2”型高阶矢量孤子;对应的第一模式发生器和第二模式发生器输出的高斯脉冲分别为:脉宽为20ps,强度为72W,时间间隔为60ps的两个单峰高斯脉冲;For the two vector cavity solitons whose polarization orthogonal components are "1+1", if both the projection results on the horizontal axis and the projection results on the vertical axis are two pulses, then the vector soliton obtained after projection is of the "2+2" type High-order vector solitons; the corresponding Gaussian pulses output by the first mode generator and the second mode generator are: two single-peak Gaussian pulses with a pulse width of 20 ps, an intensity of 72 W, and a time interval of 60 ps;
对于两个偏振正交成分为“1+2”的所述矢量腔孤子,若横轴投影结果和纵轴投影结果皆为三个脉冲,则投影后得到的矢量孤子为“3+3”型高阶矢量孤子;对应的第一模式发生器和第二模式发生器输出的高斯脉冲分别为:脉宽为20ps,强度为72W,时间间隔为360ps的一个单峰高斯脉冲和一个双峰高斯脉冲,其中双峰高斯脉冲之间的时间间隔设置为200ps;For the two vector cavity solitons whose polarization orthogonal components are "1+2", if both the projection results on the horizontal axis and the projection results on the vertical axis are three pulses, then the vector solitons obtained after projection are of the "3+3" type High-order vector solitons; the corresponding Gaussian pulses output by the first mode generator and the second mode generator are: a single-peak Gaussian pulse and a double-peak Gaussian pulse with a pulse width of 20ps, an intensity of 72W, and a time interval of 360ps , where the time interval between bimodal Gaussian pulses is set to 200ps;
对于两个偏振正交成分为“2+2”的所述矢量腔孤子,若横轴投影结果和纵轴投影结果皆为四个脉冲,则投影后得到的矢量孤子为“4+4”型高阶矢量孤子;对应的第一模式发生器和第二模式发生器输出的高斯脉冲分别为:脉宽为20ps,强度为72W,时间间隔为440ps的两个双峰高斯脉冲,其中双峰高斯脉冲之间的时间间隔均设置为200ps。For the two vector cavity solitons whose polarization orthogonal components are "2+2", if both the projection results on the horizontal axis and the projection results on the vertical axis are four pulses, then the vector soliton obtained after projection is of the "4+4" type High-order vector solitons; the corresponding Gaussian pulses output by the first mode generator and the second mode generator are: two double-peak Gaussian pulses with a pulse width of 20ps, an intensity of 72W, and a time interval of 440ps, of which the double-peaked Gaussian pulse The time interval between pulses was set to 200ps.
本发明具有以下有益效果:The present invention has the following beneficial effects:
通过基于无源谐振腔产生高阶矢量孤子,提供一种产生高阶矢量孤子的新思路。By generating high-order vector solitons based on passive resonators, a new idea for generating high-order vector solitons is provided.
附图说明Description of drawings
图1为本发明实施例系统结构图;Fig. 1 is a system structure diagram of an embodiment of the present invention;
图2为本发明实施例方法流程图;Fig. 2 is the flow chart of the method of the embodiment of the present invention;
图3为“2+2”型高阶矢量孤子的时域图;Fig. 3 is a time-domain diagram of a "2+2" type high-order vector soliton;
图4为“2+2”型高阶矢量孤子的光谱图;Fig. 4 is a spectrum diagram of a "2+2" type high-order vector soliton;
图5为“3+3”型高阶矢量孤子的时域图;Fig. 5 is a time-domain diagram of a "3+3" type high-order vector soliton;
图6为“3+3”型高阶矢量孤子的光谱图;Fig. 6 is a spectrum diagram of a "3+3" type high-order vector soliton;
图7为“4+4”型高阶矢量孤子的时域图;Fig. 7 is a time-domain diagram of a "4+4" type high-order vector soliton;
图8为“4+4”型高阶矢量孤子的光谱图;Figure 8 is a spectrum diagram of a "4+4" type high-order vector soliton;
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。The realization of the purpose of the present invention, functional characteristics and advantages will be further described in conjunction with the embodiments and with reference to the accompanying drawings.
具体实施方式Detailed ways
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
参照图1,本发明提供一种基于无源谐振腔的高阶矢量孤子产生系统,包括:连续波泵浦源1、第一偏振控制器2、第一偏振分束器3、第一调制器6、第一模式发生器4、第二调制器7、第二模式发生器5、偏振合束器8、耦合器9、第二偏振控制器10、第三偏振控制器11和第二偏振分束器12;Referring to Fig. 1, the present invention provides a high-order vector soliton generation system based on a passive resonator, including: a continuous
所述连续波泵浦源1与所述第一偏振控制器2的进口连接,所述第一偏振控制器2的出口与所述第一偏振分束器3的进口连接,所述第一偏振分束器3的3a出口与所述第一调制器6的第一进口连接,所述第一偏振分束器3的3b出口与所述第二调制器7的第一进口连接,所述第一模式发生器4与所述第一调制器6的第二进口连接,所述第二模式发生器5与所述第二调制器7的第二进口连接,所述第一调制器6的出口与所述偏振合束器8的8a进口连接,所述第二调制器7的出口与所述偏振合束器8的8b进口连接,所述偏振合束器8的出口与所述耦合器9的9b进口连接,所述耦合器9的9a进口与所述第二偏振控制器10的出口连接,所述耦合器9的9c出口与所述第二偏振控制器10的进口连接,所述耦合器9的9d出口与所述第三偏振控制器11的进口连接,所述第三偏振控制器11的出口与所述第二偏振分束器12的进口连接。The continuous
本实施例中,所述连续波泵浦源1在仿真时采用单色光的连续波激光器,所述单色光的连续波激光器的功率为2W,波长为1550nm;其中标记A为泵浦光输入,标记B为高阶矢量孤子的激光输出。In this embodiment, the continuous
本实施例中,第一偏振控制器2和第一偏振分束器3的组合仿真用于实现正交偏振分量的分离,所述第一偏振分束器3在仿真时的分光比为50:50,分离后的激光分别由输出端口3a和输出端口3b输出。In this embodiment, the combined simulation of the
本实施例中,所述第一模式发生器4和所述第二模式发生器5在仿真时均采用电脉冲发生器,所述电脉冲发生器的工作功率范围为20至100W,所述电脉冲发生器用于产生预设脉宽、强度和时延的高斯脉冲;In this embodiment, the first pattern generator 4 and the
仿真时根据需求,所述第一模式发生器4和所述第二模式发生器5依次产生的高斯脉冲为:According to requirements during simulation, the Gaussian pulses generated by the first pattern generator 4 and the
(1)脉宽为20ps,强度为72W,时间间隔为60ps的两个单峰高斯脉冲;(1) Two single-peak Gaussian pulses with a pulse width of 20ps, an intensity of 72W, and a time interval of 60ps;
(2)脉宽为20ps,强度为72W,时间间隔为360ps的一个单峰高斯脉冲和一个双峰高斯脉冲,其中双峰高斯脉冲之间的时间间隔设置为200ps;(2) A single-peak Gaussian pulse and a double-peak Gaussian pulse with a pulse width of 20ps, an intensity of 72W, and a time interval of 360ps, wherein the time interval between the double-peak Gaussian pulses is set to 200ps;
(3)脉宽为20ps,强度为72W,时间间隔为440ps的两个双峰高斯脉冲,其中双峰高斯脉冲之间的时间间隔均设置为200ps。(3) Two bimodal Gaussian pulses with a pulse width of 20 ps, an intensity of 72 W, and a time interval of 440 ps, wherein the time interval between the bimodal Gaussian pulses is set to 200 ps.
本实施例中,所述第一调制器6和所述第二调制器7在仿真时均采用强度调制;由第一模式发生器4和第二模式发生器5产生的高斯脉冲信号分别驱动第一调制器6和第二调制器7,将强度扰动添加到由端口3a和端口3b输入的连续波泵浦场,获得添加了强度微扰的连续波泵浦场;In this embodiment, the
所述添加了强度微扰的连续波泵浦场包括:偏振态u和偏振态v,u轴和v轴为两个正交偏振轴;The continuous wave pump field with intensity perturbation added includes: polarization state u and polarization state v, u axis and v axis are two orthogonal polarization axes;
所述偏振态u表示为:The polarization state u is expressed as:
所述偏振态v表示为:The polarization state v is expressed as:
其中,Ein为连续波泵浦源1输出的连续波泵浦场;Ein,u(z,τ)和Ein,v(z,τ)分别为对应于偏振态u和v的第一模式发生器4和第二模式发生器5产生的驱动场强度;Ep,u和Ep,v分别为对应于偏振态u和v的第一模式发生器4和第二模式发生器5产生的用于强度调制的驱动场峰值强度;τu和τv分别为第一模式发生器4和第二模式发生器5产生的高斯脉冲的脉宽;Δτdrift为偏振态v相对于u的漂移时间;f(z)为矩形函数,f(z)=Π(z/L-n0-1/2)对于z∈[n0L,(n0+1)L],z和L分别为传输距离与腔长,当f(z)为0时表示在第n0圈注入了强度调制。Among them, E in is the continuous wave pump field output by the continuous
本实施例中,偏振合束器8用于将两束经过调制后的正交偏振激光分别从8a进口和8b进口处输入进行耦合;In this embodiment, the polarization beam combiner 8 is used to input and couple two modulated orthogonally polarized laser beams from the
所述耦合器9在仿真时的耦合度为90:10,其中标记9a、9b为耦合器9的进口,标记9c、9d分别为耦合器9的10%出口、90%出口。The coupling degree of the
本实施例中,所述耦合器9和所述第二偏振控制器10通过保偏光纤组成无源环形谐振腔,所述添加了强度微扰的连续波泵浦场通过所述无源环形谐振腔获得矢量腔孤子;In this embodiment, the
所述无源环形谐振腔在仿真时的长度为85m,重复频率为2.39MHz,单位长度损耗为0.0011/m,群速度色散为-20ps2km-1,群速度失配为1×10-13s·m-1,波矢失配为-0.0049m-1,克尔非线性系数为1.2×10-3W-1m-1,耦合效率为0.0026m-1,泵浦场的线性偏振方向为0.15π;The length of the passive ring resonator in simulation is 85m, the repetition frequency is 2.39MHz, the loss per unit length is 0.0011/m, the group velocity dispersion is -20ps 2 km -1 , and the group velocity mismatch is 1×10 -13 s·m -1 , the wave vector mismatch is -0.0049m -1 , the Kerr nonlinear coefficient is 1.2×10 -3 W -1 m -1 , the coupling efficiency is 0.0026m -1 , the linear polarization direction of the pump field is 0.15π;
第二偏振控制器10根据每个偏振模的两个共振来调整波矢失配,确保激光停止频率位于有效的红光失谐区域;The
所述添加了强度微扰的连续波泵浦场在所述无源环形谐振腔内的演化公式如下:The evolution formula of the continuous wave pump field with intensity perturbation added in the passive ring resonator is as follows:
其中,z为腔内的传输距离;u和v为两个偏振态的缓变电场包络;α1=(α-ln(1-k))/(2L),α为腔内损耗,k为功率耦合系数,L为腔长;Δβ为两个偏振模式之间的波矢失配;δ1=δ0/L,δ0为环程相位失谐;β2为群速度色散;Δβ1为群速度失配;γ为克尔非线性系数;η=k1/2/L;Ein为一个连续波泵浦场;χ为泵浦场的线性偏振方向;Among them, z is the transmission distance in the cavity; u and v are the slowly changing electric field envelopes of the two polarization states; α 1 =(α-ln(1-k))/(2L), α is the loss in the cavity, k is the power coupling coefficient, L is the cavity length; Δβ is the wavevector mismatch between two polarization modes; δ 1 = δ 0 /L, δ 0 is the phase mismatch of the loop; β 2 is the group velocity dispersion; Δβ 1 is the group velocity mismatch; γ is the Kerr nonlinear coefficient; η=k 1/2 /L; E in is a continuous wave pump field; χ is the linear polarization direction of the pump field;
第三偏振控制器11用于改变由9d出口输出的基阶或高阶矢量孤子的偏振方向以及两正交偏振成分之间的相位差,第二偏振分束器12通过光纤耦合偏振分束器,此时基阶或高阶矢量孤子的两个偏振成分会在偏振分束器的横轴和纵轴上产生投影,投影的结果可以获得高阶矢量孤子。The
参考图2,本发明提供一种基于无源谐振腔的高阶矢量孤子产生方法,基于上述的基于无源谐振腔的高阶矢量孤子产生系统实现,包括:Referring to Fig. 2, the present invention provides a method for generating high-order vector solitons based on passive resonators, based on the realization of the above-mentioned high-order vector soliton generation system based on passive resonators, including:
S1:开始仿真,所述连续波泵浦源1产生输入激光;S1: Start the simulation, the continuous
具体实现中,仿真时将连续波泵浦源1的输出功率设置为2W;In the specific implementation, the output power of the continuous
S2:所述输入激光依次经过所述第一偏振控制器2、所述第一偏振分束器3、所述第一调制器6、所述第二调制器7,且分别在所述第一模式发生器4和所述第二模式发生器5的作用下进行强度调制,得到添加了强度微扰的连续波泵浦场;所述耦合器9和所述第二偏振控制器10构成所述无源环形谐振腔;S2: The input laser light sequentially passes through the
S3:将所述添加了强度微扰的连续波泵浦场依次经过所述偏振合束器8和所述耦合器9,进入所述无源环形谐振腔进行激励并得到矢量腔孤子;S3: passing the continuous wave pump field with intensity perturbation added through the polarization beam combiner 8 and the
S4:将所述矢量腔孤子依次经过所述第三偏振控制器11和第二偏振分束器12,矢量腔孤子的两个偏振正交成分分别在所述第二偏振分束器12的横轴和纵轴上进行投影,获取横轴投影结果和纵轴投影结果;S4: Pass the vector cavity soliton through the
投影过程如下:The projection process is as follows:
H=u·cosθ+v·sinθH=u·cosθ+v·sinθ
V=u·sinθ-v·cosθV=u·sinθ-v·cosθ
其中,H表示横轴投影结果,V表示纵轴投影结果,θ表示偏振态u与第二偏振分束器12中横轴的夹角;Wherein, H represents the projection result on the horizontal axis, V represents the projection result on the vertical axis, and θ represents the angle between the polarization state u and the horizontal axis in the second
S5:根据所述矢量腔孤子的两个偏振正交成分、所述横轴投影结果和所述纵轴投影结果获得高阶矢量孤子,具体为:S5: Obtain a higher-order vector soliton according to the two polarization orthogonal components of the vector cavity soliton, the horizontal-axis projection result, and the vertical-axis projection result, specifically:
对于两个偏振正交成分为“1+1”的所述矢量腔孤子,若横轴投影结果和纵轴投影结果皆为两个脉冲,则投影后得到的矢量孤子为“2+2”型高阶矢量孤子;对应的第一模式发生器4和第二模式发生器5输出的高斯脉冲分别为:脉宽为20ps,强度为72W,时间间隔为60ps的两个单峰高斯脉冲;图3为“2+2”型高阶矢量孤子的时域图,图4为“2+2”型高阶矢量孤子的光谱图;For the two vector cavity solitons whose polarization orthogonal components are "1+1", if both the projection results on the horizontal axis and the projection results on the vertical axis are two pulses, then the vector soliton obtained after projection is of the "2+2" type High-order vector solitons; the corresponding Gaussian pulses output by the first mode generator 4 and the
对于两个偏振正交成分为“1+2”的所述矢量腔孤子,若横轴投影结果和纵轴投影结果皆为三个脉冲,则投影后得到的矢量孤子为“3+3”型高阶矢量孤子;对应的第一模式发生器4和第二模式发生器5输出的高斯脉冲分别为:脉宽为20ps,强度为72W,时间间隔为360ps的一个单峰高斯脉冲和一个双峰高斯脉冲,其中双峰高斯脉冲之间的时间间隔设置为200ps;图5为“3+3”型高阶矢量孤子的时域图,图6为“3+3”型高阶矢量孤子的光谱图;For the two vector cavity solitons whose polarization orthogonal components are "1+2", if both the projection results on the horizontal axis and the projection results on the vertical axis are three pulses, then the vector solitons obtained after projection are of the "3+3" type High-order vector solitons; the corresponding Gaussian pulses output by the first mode generator 4 and the
对于两个偏振正交成分为“2+2”的所述矢量腔孤子,若横轴投影结果和纵轴投影结果皆为四个脉冲,则投影后得到的矢量孤子为“4+4”型高阶矢量孤子;对应的第一模式发生器4和第二模式发生器5输出的高斯脉冲分别为:脉宽为20ps,强度为72W,时间间隔为440ps的两个双峰高斯脉冲,其中双峰高斯脉冲之间的时间间隔均设置为200ps;图7为“4+4”型高阶矢量孤子的时域图,图8为“4+4”型高阶矢量孤子的光谱图。For the two vector cavity solitons whose polarization orthogonal components are "2+2", if both the projection results on the horizontal axis and the projection results on the vertical axis are four pulses, then the vector soliton obtained after projection is of the "4+4" type High-order vector solitons; the corresponding Gaussian pulses output by the first mode generator 4 and the
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。It should be noted that, as used herein, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or system comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or system. Without further limitations, an element defined by the phrase "comprising a..." does not preclude the presence of additional identical elements in the process, method, article or system comprising that element.
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。词语第一、第二、以及第三等的使用不表示任何顺序,可将这些词语解释为标识。The serial numbers of the above embodiments of the present invention are for description only, and do not represent the advantages and disadvantages of the embodiments. In a unit claim enumerating several means, several of these means can be embodied by one and the same item of hardware. The use of the words first, second, and third etc. does not indicate any order and these words may be construed as designations.
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above are only preferred embodiments of the present invention, and are not intended to limit the patent scope of the present invention. Any equivalent structure or equivalent process conversion made by using the description of the present invention and the contents of the accompanying drawings, or directly or indirectly used in other related technical fields , are all included in the scope of patent protection of the present invention in the same way.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111270809.2A CN114006659B (en) | 2021-10-29 | 2021-10-29 | High-order vector soliton generation system and method based on passive resonant cavity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111270809.2A CN114006659B (en) | 2021-10-29 | 2021-10-29 | High-order vector soliton generation system and method based on passive resonant cavity |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114006659A CN114006659A (en) | 2022-02-01 |
CN114006659B true CN114006659B (en) | 2023-06-06 |
Family
ID=79925091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111270809.2A Active CN114006659B (en) | 2021-10-29 | 2021-10-29 | High-order vector soliton generation system and method based on passive resonant cavity |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114006659B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114710209B (en) * | 2022-03-29 | 2024-02-13 | 浙江农林大学 | A codable information system and method based on vector period-doubling soliton pulsation |
CN116417890B (en) * | 2023-06-06 | 2023-08-22 | 武汉中科锐择光电科技有限公司 | Device for generating ultrashort pulse based on polarization cycle replacement optical fiber passive resonant cavity |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104038289A (en) * | 2014-06-07 | 2014-09-10 | 吉林大学 | Optical soliton pulse generator formed by erbium-doped-fiber laser |
CN105607382A (en) * | 2016-03-04 | 2016-05-25 | 西安新纳信息科技有限公司 | Novel method for generating high-order vector dissipative solitons |
WO2018113893A1 (en) * | 2016-12-19 | 2018-06-28 | Csem Centre Suisse D'electronique Et De Microtechnique S.A. | Laser source apparatus and method for generating temporal dissipative cavity solitons |
CN108963737A (en) * | 2018-08-18 | 2018-12-07 | 深圳华中科技大学研究院 | A kind of multidimensional multiplexing soliton fiber laser |
CN109119882A (en) * | 2018-09-30 | 2019-01-01 | 中国科学院西安光学精密机械研究所 | Deterministic optical soliton frequency comb generation system and method based on microcavity |
CN113168067A (en) * | 2018-09-17 | 2021-07-23 | 洛桑联邦理工学院 | Generation of optical pulses via soliton states of optical microresonators coupled to chip-based semiconductor lasers |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2962156B1 (en) * | 2013-02-28 | 2018-05-09 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Generating optical pulses via a soliton state of an optical microresonator |
US10270529B2 (en) * | 2017-01-16 | 2019-04-23 | Ecole Polytechnique Federale De Lausanne (Epfl) | Single and multiple soliton generation device and method |
-
2021
- 2021-10-29 CN CN202111270809.2A patent/CN114006659B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104038289A (en) * | 2014-06-07 | 2014-09-10 | 吉林大学 | Optical soliton pulse generator formed by erbium-doped-fiber laser |
CN105607382A (en) * | 2016-03-04 | 2016-05-25 | 西安新纳信息科技有限公司 | Novel method for generating high-order vector dissipative solitons |
WO2018113893A1 (en) * | 2016-12-19 | 2018-06-28 | Csem Centre Suisse D'electronique Et De Microtechnique S.A. | Laser source apparatus and method for generating temporal dissipative cavity solitons |
CN108963737A (en) * | 2018-08-18 | 2018-12-07 | 深圳华中科技大学研究院 | A kind of multidimensional multiplexing soliton fiber laser |
CN113168067A (en) * | 2018-09-17 | 2021-07-23 | 洛桑联邦理工学院 | Generation of optical pulses via soliton states of optical microresonators coupled to chip-based semiconductor lasers |
CN109119882A (en) * | 2018-09-30 | 2019-01-01 | 中国科学院西安光学精密机械研究所 | Deterministic optical soliton frequency comb generation system and method based on microcavity |
Non-Patent Citations (2)
Title |
---|
伪高阶偏振锁定矢量孤子的产生;周延;李月锋;房永征;廖梅松;;应用技术学报(02);196-201 * |
光纤激光器研制及其在全光调制信号分析仪中的应用;吴志超;中国博士学位论文全文数据库 信息科技辑(第3期);43-44 * |
Also Published As
Publication number | Publication date |
---|---|
CN114006659A (en) | 2022-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114006659B (en) | High-order vector soliton generation system and method based on passive resonant cavity | |
Bello et al. | Persistent coherent beating in coupled parametric oscillators | |
Buono et al. | Chiral relations and radial-angular coupling in nonlinear interactions of optical vortices | |
EP2376980B1 (en) | Frequency-tripled fiber mopa | |
US5659561A (en) | Spatial solitary waves in bulk quadratic nonlinear materials and their applications | |
CN106911060B (en) | High-efficiency high-power mid-infrared laser with tunable wavelength | |
CN113219584B (en) | Second harmonic control device based on high-order topological photonic crystal | |
Harris | Stabilization and modulation of laser oscillators by internal time-varying perturbation | |
Mak et al. | Solitons in coupled waveguides with quadratic nonlinearity | |
US8373924B2 (en) | Frequency-tripled fiber MOPA | |
US7724421B2 (en) | Phase sensitive optical amplification | |
JP2022523735A (en) | Multistage optical parametric module and picosecond pulsed laser source incorporating the module | |
JP2534529B2 (en) | Radiation generator | |
JPS58191481A (en) | Electromagnetic radiation frequency deviation cavity | |
JPH05500718A (en) | square light pulse generator | |
CN105811237A (en) | White laser generating device | |
CN205787512U (en) | A kind of optical communicating waveband generation device for continuous variable quantum entanglement source | |
CN104698720A (en) | Generating set of continuous-variable multi-component polarized entangled optical field | |
Neyer et al. | Nonlinear electrooptic oscillator using an integrated interferometer | |
US3437399A (en) | Solid-state crystal optical modulator | |
CN205790925U (en) | A kind of white light laser generator | |
CN211123573U (en) | An entanglement enhancement device for four-component bound entanglement sources | |
CN109904716A (en) | A dual-wavelength co-repetitive mid-infrared ultrashort pulse all-fiber laser source | |
JPH05224251A (en) | Method and device for compensating optical fiber dispersion | |
Baudin et al. | Weak Langmuir turbulence in disordered multimode optical fibers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |