CN114004162A - 一种多工况场景下的冶炼负荷谐波发射水平的建模方法 - Google Patents

一种多工况场景下的冶炼负荷谐波发射水平的建模方法 Download PDF

Info

Publication number
CN114004162A
CN114004162A CN202111293594.6A CN202111293594A CN114004162A CN 114004162 A CN114004162 A CN 114004162A CN 202111293594 A CN202111293594 A CN 202111293594A CN 114004162 A CN114004162 A CN 114004162A
Authority
CN
China
Prior art keywords
harmonic
data
formula
power
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111293594.6A
Other languages
English (en)
Inventor
马兴
何永胜
陈咏涛
廖玉祥
张友强
董光德
杨爽
匡红刚
付昂
朱小军
王瑞妙
易鹏飞
汪颖
周为
邹平
赵小娟
胡文曦
喻梦洁
周敬森
朱晟毅
方辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute of State Grid Chongqing Electric Power Co Ltd
State Grid Corp of China SGCC
State Grid Chongqing Electric Power Co Ltd
Original Assignee
Electric Power Research Institute of State Grid Chongqing Electric Power Co Ltd
State Grid Corp of China SGCC
State Grid Chongqing Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Research Institute of State Grid Chongqing Electric Power Co Ltd, State Grid Corp of China SGCC, State Grid Chongqing Electric Power Co Ltd filed Critical Electric Power Research Institute of State Grid Chongqing Electric Power Co Ltd
Priority to CN202111293594.6A priority Critical patent/CN114004162A/zh
Publication of CN114004162A publication Critical patent/CN114004162A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/04Power grid distribution networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/02Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Mathematical Analysis (AREA)
  • Data Mining & Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Computing Systems (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Geometry (AREA)
  • Algebra (AREA)
  • Computer Hardware Design (AREA)
  • Databases & Information Systems (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种多工况场景下的冶炼负荷谐波发射水平的建模方法,包括:S1、获取冶炼负荷电能质量监测数据;S2、利用主成分分析法对冶炼负荷电能质量监测数据的谐波特征进行筛选;S3、根据筛选得到的谐波特征,进行冶炼负荷运行工况的检测;S4、构建多工况场景下的BP神经网络模型,并采用实测数据对模型参数进行辨识;S5、得到多工况场景下的冶炼负荷谐波发射水平的BP神经网络模型。本发明实现了对冶炼负荷不同工况的准确辨识,准确地刻画了不同工况场景下冶炼负荷的谐波发射水平;基于该结果可以准确的评估和分析不同运行工况下冶炼负荷接入对电力系统电能质量特征的影响,有益于为分析谐波交互影响提供理论依据。

Description

一种多工况场景下的冶炼负荷谐波发射水平的建模方法
技术领域
本发明涉及谐波建模技术领域,特别是提出了一种多工况场景下的冶炼负荷谐波发射水平的建模方法。
背景技术
近些年来,随着传统工业和高新技术产业的快速发展,冶炼企业等冲击性负荷构成了冲击性负荷集群对附近敏感的高新技术产业用户造成了严重的影响。这些冲击性负荷在不同运行工况下,对电网的造成的影响不同。如对于以电弧炉为代表的冶炼负荷,在熔化期和精炼期对电网造成的影响均不相同,造成电能质量治理方案设计困难。为了准确的评估和分析不同运行工况下冶炼负荷接入对电力系统电能质量特征的影响,非常有必要对其建立准确的谐波模型。
目前,对于冶炼负荷等谐波源的建模已经展开了许多研究,主要可以分为机理建模和数据驱动建模两大类。其中基于物理机理的谐波源建模方法,一般包括谐波含有率模型、Norton等效模型、基于交叉频率导纳矩阵模型等,主要是通过负荷内在机理,构建具有明确物理意义的数学模型,计算结果都具有明确的物理意义,但是模型计算精度会随着负荷内部结构的变化而下降,并且对于复杂模型很难对其进行机理分析,因此机理建模的适用场景十分受限。而数据驱动建模方法,可以不考虑负荷运行机理,直接构建黑箱模型,使用实测数据辨识谐波源模型参数。目前有最小二乘法、神经网络和支持向量机等方法。但是目前数据驱动的建模方法鲜少考虑负荷运行工况的影响。
发明内容
有鉴于此,本发明所解决的技术问题在于提供一种多工况场景下的冶炼负荷谐波发射水平的建模方法,通过采用负荷实际有功功率曲线和无功功率曲线,获得负荷运行状态突变点,然后利用各状态下的谐波特征进行聚类,得到负荷的典型运行工况。最后在不同工况下建立BP神经网络模型,实现了对冶炼负荷不同工况的准确辨识,准确地刻画了不同工况场景下冶炼负荷的谐波发射水平。
本发明提供一种多工况场景下的冶炼负荷谐波发射水平的建模方法,其包括:
S1、获取冶炼负荷电能质量监测数据;
S2、利用主成分分析法对冶炼负荷电能质量监测数据的谐波特征进行筛选;
S3、根据筛选得到的谐波特征,进行冶炼负荷运行工况的检测;
S4、构建多工况场景下的BP神经网络模型,并采用实测数据对模型参数进行辨识;
S5:得到多工况场景下的冶炼负荷谐波发射水平的BP神经网络模型。
优选地,步骤S1为:采用电能质量监测系统中时间间隔为3min的采样数据展开研究,包括有功功率(P)、无功功率(Q)、总谐波电压畸变率(THDu)、总谐波电流畸变率(THDi)、各次谐波电流有效值(Ih)、各次谐波电压有效值(Vh)。
优选地,步骤S1包括以下步骤:
电能质量监测数据清洗:包括缺失数据处理、噪声数据处理、异常数据处理;
根据清洗后的电能质量监测数据,构建冶炼负荷功率特征集S和谐波特征集X,其中,
Figure BDA0003335819850000031
公式中,N表示总采样点数,S中p表示有功功率,q表示无功功率,Ihj(h=2,3,……,n,j=1,2,……,N)表示h次谐波电流的第j个采样值。
优选地,所述缺失数据处理包括数据删除和数据填充;如果缺失数据超过90%,则删除数据的集合,否则采用3次牛顿插值法对缺失数据进行填充处理,填充处理的表达式为:
N3(xi)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)
f[x0]=f(x0)
Figure BDA0003335819850000032
Figure BDA0003335819850000033
公式中,N3(xi)表示当x=xi时,牛顿多项式的插值结果,f[.]表示均差,f[x0]为零阶均差,f[x0,x1]为一阶均差,f[x0,x1,x2]为二阶均差。
优选地,所述噪声数据处理采用小波阈值去噪法;所述异常数据处理的方法为:通过人工检查的方式,将明显偏离实际测量值的数据用数据填充的方式替换。
优选地,步骤S2的实现过程如下:
S61、对谐波电流特征集X进行零均值化处理,
Figure BDA0003335819850000041
j=1,2,…N,
公式中,Ihj(h=2,3,……,n,j=1,2,……,N)表示h次谐波电流的第j个采样值;
S62、计算零均值化谐波电流特征集X的协方差矩阵cov(X),
Figure BDA0003335819850000042
公式中,E[(X-E(X))(X-E(X))T]表示协方差矩阵,cov(In,In)表示两个元素之间的协方差,n表示谐波的频次;
S63、计算协方差矩阵cov(X)的特征值λi和特征向量μi
cov(X)μi=λiμi
每个特征值λi对应一个特征向量μi,共N1个特征值,将特征值λi按照从大到小的顺序进行排序,选取前k个特征值对应的特征向量,得到原始谐波电流特征降维后的投影特征矩阵,其中k的取值应满足如下表达式:
Figure BDA0003335819850000043
S64、利用投影矩阵求出降维后的谐波电流特征子集X',
Figure BDA0003335819850000044
公式中,μi表示特征向量,XT表示谐波特征集X的转置,[μ12,…μk]t表示特征向量矩阵,x′kN表示谐波电流特征子集X’的第k行第N列元素。
优选地,步骤S3中,通过变点检测算法对功率曲线进行分段,然后对每段功率区间内的谐波电流特征进行聚类,得到的每类聚类结果具有相似的谐波发射水平,即属于同一运行工况,具体步骤为:
S71、对功率特征集S中功率曲线进行平滑处理;
S72、分别计算有功功率曲线和无功功率曲线的CUSUM统计函数gk
Figure BDA0003335819850000051
Figure BDA0003335819850000052
公式中,μ0表示变点发生前的平均值,σ为外界引起的噪声,p表示有功功率,q表示无功功率,下标k表示第k个采样时刻,
Figure BDA0003335819850000053
分别表示第k个采样时刻的CUSUM统计函数值,
Figure BDA0003335819850000054
分别表示无功功率和有功功率CUSUM统计函数的初始值,S72中的公式表示只有当功率变化量大于噪声时,才有可能引起功率曲线发生大的突变;
当CUSUM统计函数gk都大于设置的阈值h,即gk>h时,意味着功率突变点被检测出来,由于检测可能存在延迟,将延迟因子记作d,则当0<gk≤h时,令延迟因子d=d+1,直至gk>h,此时突变时刻记为t=k-d,最终得到由D个突变时刻组成的功率曲线突变发生时刻序列T:
T=[t1,t2,…tD,tD+1]T
公式中,t1表示功率曲线的起始时刻,tD+1表示功率曲线的结束时刻;
S73、提取时间区间[tn,tn+1]内谐波特征子集X'中的谐波特征,得到D个谐波特征子矩阵Xn
Figure BDA0003335819850000061
n=1,2,…D
公式中,An表示时间区间[tn,tn+1]内各谐波特征的总个数;
S74、采用典型的k-means聚类方法对D个谐波特征子矩阵进行聚类,得到对应用户的运行工况数,并记录其时间区间,此时每个工况具有相似的谐波发射水平。
优选地,S73中,由于不同突变点之间的时间间隔可能不同,因此得到的D个谐波特征子矩阵列向量长度可能会不同,为了统一矩阵维度,采用牛顿插值法对数据特征进行向后补差,将其统一补充为A×k的谐波特征子矩阵Xn
A=max(length(Xn)),n=1,2,…D,
公式中,A表示谐波特征子矩阵列向量中最长列向量的维度,length(.)用于计算向量的长度。
优选地,步骤S4中,通过步骤S3得到的冶炼负荷的运行工况结果,得到
Ih=fh(V2,V3,…,VN),h=1,2,…N,
公式中,Ih为h次谐波电流有效值,Fh为负荷吸收的第h次谐波电流有效值,V2、V3、…VN为各次谐波电压有效值;
其中,各次谐波电流的幅值与各次谐波电压的幅值的非线性映射关系通过训练BP网络建立,通过利用不同运行工况下的实测数据进行参数辨识,得到适合不同工况场景下的谐波模型,其过程如下:
S91、训练数据的整理:
提取步骤S3聚类得到的不同运行工况下的谐波电压特征集V,以及谐波电流特征集I,
Figure BDA0003335819850000071
Figure BDA0003335819850000072
公式中,k表示谐波频次,j=1,2,…,A,表示采样点数,如Ikj表示k次谐波电流的第j个采样值;
在数据处理过程中可用matlab自带的premnmx()函数将这些数据归一化处理;
S92、BP神经网络模型的设计:
神经元表示的输入与输出的关系式为:
Figure BDA0003335819850000073
公式中,μi为第i个神经元的内部状态,xi为该神经元模型的输入信号,
Figure BDA0003335819850000074
为神经元连接的权值,si为某一外部输入的控制信号,θj为阈值,yi该神经元模型的输出信号,f(x)为神经元的激励函数;
其中,BP神经网络模型设计过程为:
S921、以谐波电压特征集V为输入,输入层的神经元节点数为谐波电压特征集V的列向量个数,即有k个节点;
S922、隐含层的设置为1层,隐含层中神经元数目的计算表达式如下:
Figure BDA0003335819850000081
公式中,k为输入层神经元个数,m为输出层神经元个数,a为[1,10]之间的常数;
S923、每次训练选择谐波电流特征集I一个特征作为输出,因此输出层神经元节点为1,传递函数采用S型对数函数;
S924、网络采用梯度下降法进行学习,通过反向传播不断调整网络的权值和阈值,以满足网络的误差平方和最小的要求,网络输出层的误差函数为:
Figure BDA0003335819850000082
公式中,yi表示神经网络的目标输出,di表示神经网络实际输出值;
S93、模型的训练与参数辨识:
利用不同工况下的训练数据对模型进行训练,以实现该工况场景下谐波模型的参数辨识,其中网络参数设置为:网络迭代次数epochs为5000次,期望误差goal为0.00001,学习速率lr为0.01;
S94、模型的性能评估:
利用训练好的谐波模型生成不同工况下的各次谐波电流幅值的预测结果,并计算其均方根误差εRMSE,用于评估谐波模型的计算精度,
Figure BDA0003335819850000083
公式中:Ih’为该模型的计算结果,Ih为实际测量结果。
优选地,步骤(1)中,在数据处理过程中,用matlab自带的premnmx()函数将谐波电压特征集V和谐波电流特征集I归一化处理。
由于采用了上述技术方案,本发明具有如下的优点:实现了对冶炼负荷不同工况的准确辨识,准确地刻画了不同工况场景下冶炼负荷的谐波发射水平。基于此,可以准确的评估和分析不同运行工况下冶炼负荷接入对电力系统电能质量特征的影响,有益于为分析谐波交互影响提供理论依据。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明实施例中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为本发明实施例的一种多工况场景下的冶炼负荷谐波发射水平的建模方法的流程示意图;
图2为本发明实施例的某钢铁冶炼厂六月份有功功率曲线;
图3为本发明实施例的某钢铁冶炼厂六月份无功功率曲线;
图4为本发明实施例的BP神经网络模型中的单个神经元的基本结构。
具体实施方式
结合附图和实施例对本发明作进一步说明,显然,所描述的实施例仅是本发明实施例一部分实施例,而不是全部的实施例。本领域普通技术人员所获得的所有其他实施例,都应当属于本发明实施例保护的范围。
图1为本发明实施例一的一种多工况场景下的冶炼负荷谐波发射水平的建模方法的流程示意图,如图1所示,具体地,该方法包含如下步骤:
S101、获取冶炼负荷电能质量监测数据;
S102、利用主成分分析法对冶炼负荷电能质量监测数据的谐波特征进行筛选;
在本实施例中,对于电弧炉等冶炼类负荷其2、3、4、5、7次谐波为主要的谐波成分。但是在不同的运行情景下,起主要作用的谐波成分也会有所不同,为了更准确地减少数据分析维度,采用主成分分析法(PrincipalComponentAnalysis,PCA)对冶炼负荷谐波特征集进行谐波特征的筛选。
S103、根据筛选得到的谐波特征,进行冶炼负荷运行工况的检测;
S104、构建多工况场景下的BP神经网络模型,并采用实测数据对模型参数进行辨识;
S105、得到多工况场景下的冶炼负荷谐波发射水平的BP神经网络模型。
在本实施例中,步骤S101为:采用电能质量监测系统中时间间隔为3min的采样数据展开研究,包括有功功率(P)、无功功率(Q)、总谐波电压畸变率(THDu)、总谐波电流畸变率(THDi)、各次谐波电流有效值(Ih)、各次谐波电压有效值(Vh)。
在本实施例中,步骤S101包括以下步骤:
S1011、电能质量监测数据清洗:包括缺失数据处理、噪声数据处理、异常数据处理;
电力系统的海量数据大部分都是通过复杂传感器进行采集,并传输到终端系统内。在数据转换与通信的各个环节都有可能受到干扰,导致数据缺失或大量异常点的出现,影响数据的精度和可靠性。为此需要对电能质量监测数据进行数据清洗。
S1012、根据清洗后的电能质量监测数据,构建冶炼负荷功率特征集S和谐波特征集X,其中,
Figure BDA0003335819850000111
公式中,N表示总采样点数,S中p表示有功功率,q表示无功功率,Ihj(h=2,3,……,n,j=1,2,……,N)表示h次谐波电流的第j个采样值。
在本实施例中,缺失数据处理包括数据删除和数据填充;如果缺失数据超过90%,则删除数据的集合,否则采用3次牛顿插值法对缺失数据进行填充处理,填充处理的表达式为:
N3(xi)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)
f[x0]=f(x0)
Figure BDA0003335819850000112
Figure BDA0003335819850000113
公式中,N3(xi)表示当x=xi时,牛顿多项式的插值结果,f[.]表示均差,f[x0]为零阶均差,f[x0,x1]为一阶均差,f[x0,x1,x2]为二阶均差。
在本实施例中,噪声数据处理采用小波阈值去噪法;异常数据处理的方法为:通过人工检查的方式,将明显偏离实际测量值的数据用数据填充的方式替换。
在本实施例中,步骤S102的实现过程如下:
S61、对谐波电流特征集X进行零均值化处理,
Figure BDA0003335819850000121
j=1,2,…N,
公式中,Ihj(h=2,3,……,n,j=1,2,……,N)表示h次谐波电流的第j个采样值;
S62、计算零均值化谐波电流特征集X的协方差矩阵cov(X),
Figure BDA0003335819850000122
公式中,E[(X-E(X))(X-E(X))T]表示协方差矩阵,cov(In,In)表示两个元素之间的协方差,n表示谐波的频次;
S63、计算协方差矩阵cov(X)的特征值λi和特征向量μi
cov(X)μi=λiμi
每个特征值λi对应一个特征向量μi,共N1个特征值,将特征值λi按照从大到小的顺序进行排序,选取前k个特征值对应的特征向量,得到原始谐波电流特征降维后的投影特征矩阵,其中k的取值应满足如下表达式:
Figure BDA0003335819850000123
S64、利用投影矩阵求出降维后的谐波电流特征子集X',
Figure BDA0003335819850000124
公式中,μi表示特征向量,XT表示谐波特征集X的转置,[μ12,…μk]T表示特征向量矩阵,x′kN表示谐波电流特征子集X’的第k行第N列元素。
在本实施例中,步骤S103中,通过变点检测算法对功率曲线进行分段,然后对每段功率区间内的谐波电流特征进行聚类,得到的每类聚类结果具有相似的谐波发射水平,即属于同一运行工况。
在一个工作周期内冶炼负荷具有不同的运行工况,如对于普通的交流电弧炉来说,其运行周期一般包括三个阶段:融化期、氧化期和还原期。不同阶段电弧特性不同,导致输入电弧炉的功率特性会产生不同的变化,相应的谐波发射特性也会有所差异。图2给出了某钢铁冶炼厂六月份有功功率曲线,图3给出了某钢铁冶炼厂六月份无功功率曲线。
CUSUM变点检测算法其主要思想是:当监测量的CUSUM明显偏于正常平稳状态的平均水平时,就意味着系统发生了变化,由此可判断系统出现了暂态过程。冶炼负荷不同运行工况下功率曲线的CUSUM明显不同,通过变点检测算法对功率曲线进行分段,然后对每段功率区间内的谐波电流特征进行聚类,得到的每类聚类结果具有相似的谐波发射水平,即属于同一运行工况。
步骤S103的具体步骤为:
S71、对功率特征集S中功率曲线进行平滑处理;
S72、分别计算有功功率曲线和无功功率曲线的CUSUM统计函数gk
Figure BDA0003335819850000131
Figure BDA0003335819850000132
公式中,μ0表示变点发生前的平均值,σ为外界引起的噪声,p表示有功功率,q表示无功功率,下标k表示第k个采样时刻,
Figure BDA0003335819850000133
分别表示第k个采样时刻的CUSUM统计函数值,
Figure BDA0003335819850000141
分别表示无功功率和有功功率CUSUM统计函数的初始值,S72中的公式表示只有当功率变化量大于噪声时,才有可能引起功率曲线发生大的突变;
当CUSUM统计函数gk都大于设置的阈值h,即gk>h时,意味着功率突变点被检测出来,由于检测可能存在延迟,将延迟因子记作d,则当0<gk≤h时,令延迟因子d=d+1,直至gk>h,此时突变时刻记为t=k-d,最终得到由D个突变时刻组成的功率曲线突变发生时刻序列T:
T=[t1,t2,…tD,tD+1]T
公式中,t1表示功率曲线的起始时刻,tD+1表示功率曲线的结束时刻;
S73、提取时间区间[tn,tn+1]内谐波特征子集X'中的谐波特征,得到D个谐波特征子矩阵Xn
Figure BDA0003335819850000142
n=1,2,…D
公式中,An表示时间区间[tn,tn+1]内各谐波特征的总个数;
S74、采用典型的k-means聚类方法对D个谐波特征子矩阵进行聚类,得到对应用户的运行工况数,并记录其时间区间,此时每个工况具有相似的谐波发射水平。
在本实施例中,步骤S73中,由于不同突变点之间的时间间隔可能不同,因此得到的D个谐波特征子矩阵列向量长度可能会不同,为了统一矩阵维度,采用牛顿插值法对数据特征进行向后补差,将其统一补充为A×k的谐波特征子矩阵Xn
A=max(length(Xn)),n=1,2,…D,
公式中,A表示谐波特征子矩阵列向量中最长列向量的维度,length(.)用于计算向量的长度。
在本实施例中,步骤S104中,根据经验可知,在不考虑相角关系的情况下,含有电弧和铁磁非线性设备的谐波源的特性可统一表述为:
Ih=Fh(V2,V3,…,VN,C),h=1,2,…N,
式中:Ih为h次谐波电流有效值,Fh为负荷吸收的第h次谐波电流有效值,V2、V3、…VN为各次谐波电压有效值,C为负荷的特征参数集合,它通常与谐波负荷不同运行状态相关。
由于本发明在步骤S103已经得到了该负荷的运行工况结果,可以基于该结果直接对不同运行工况分别建模,因此上式还可以直接简化为:
Ih=Fh(V2,V3,…,VN),h=1,2,…N
由上式可以看出,各次谐波电流的幅值与各次谐波电压的幅值的非线性映射关系就可以通过训练BP网络建立起来。通过利用不同运行工况下的实测数据进行参数辨识,可以得到适合不同工况场景下的谐波模型,其过程如下:
S91、训练数据的整理:
提取步骤S103聚类得到的不同运行工况下的谐波电压特征集V,以及谐波电流特征集I,
Figure BDA0003335819850000151
Figure BDA0003335819850000161
公式中,k表示谐波频次,j=1,2,…,A,表示采样点数,如Ikj表示k次谐波电流的第j个采样值;
在数据处理过程中可用matlab自带的premnmx()函数将这些数据归一化处理;
S92、BP神经网络模型的设计:
图4给出了BP神经网络模型中的单个神经元的基本结构。神经元表示的输入与输出的关系式为:
Figure BDA0003335819850000162
公式中,μi为第i个神经元的内部状态,xi为该神经元模型的输入信号,
Figure BDA0003335819850000164
为神经元连接的权值,si为某一外部输入的控制信号,θj为阈值,yi该神经元模型的输出信号,f(x)为神经元的激励函数;
其中,BP神经网络模型设计过程为:
S921、以谐波电压特征集V为输入,输入层的神经元节点数为谐波电压特征集V的列向量个数,即有k个节点;
S922、隐含层的设置为1层,隐含层中神经元数目的计算表达式如下:
Figure BDA0003335819850000163
公式中,k为输入层神经元个数,m为输出层神经元个数,a为[1,10]之间的常数;
S923、每次训练选择谐波电流特征集I一个特征作为输出,因此输出层神经元节点为1,传递函数采用S型对数函数;
S924、网络采用梯度下降法进行学习,通过反向传播不断调整网络的权值和阈值,以满足网络的误差平方和最小的要求,网络输出层的误差函数为:
Figure BDA0003335819850000171
公式中,yi表示神经网络的目标输出,di表示神经网络实际输出值;
S93、模型的训练与参数辨识:
利用不同工况下的训练数据对模型进行训练,以实现该工况场景下谐波模型的参数辨识,其中网络参数设置为:网络迭代次数epochs为5000次,期望误差goal为0.00001,学习速率lr为0.01;
S94、模型的性能评估:
利用训练好的谐波模型生成不同工况下的各次谐波电流幅值的预测结果,并计算其均方根误差εRMSE,用于评估谐波模型的计算精度,
Figure BDA0003335819850000172
公式中:Ih’为该模型的计算结果,Ih为实际测量结果。
在本实施例中,步骤(1)中,在数据处理过程中,用matlab自带的premnmx()函数将谐波电压特征集V和谐波电流特征集I归一化处理。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。

Claims (10)

1.一种多工况场景下的冶炼负荷谐波发射水平的建模方法,其特征在于,包括:
S1、获取冶炼负荷电能质量监测数据;
S2、利用主成分分析法对冶炼负荷电能质量监测数据的谐波特征进行筛选;
S3、根据筛选得到的谐波特征,进行冶炼负荷运行工况的检测;
S4、构建多工况场景下的BP神经网络模型,并采用实测数据对模型参数进行辨识;
S5:得到多工况场景下的冶炼负荷谐波发射水平的BP神经网络模型。
2.根据权利要求1所述的方法,其特征在于,步骤S1为:采用电能质量监测系统中时间间隔为3min的采样数据展开研究,包括有功功率(P)、无功功率(Q)、总谐波电压畸变率(THDu)、总谐波电流畸变率(THDi)、各次谐波电流有效值(Ih)、各次谐波电压有效值(Vh)。
3.根据权利要求2所述的方法,其特征在于,步骤S1包括以下步骤:
电能质量监测数据清洗:包括缺失数据处理、噪声数据处理、异常数据处理;
根据清洗后的电能质量监测数据,构建冶炼负荷功率特征集S和谐波特征集X,其中,
Figure FDA0003335819840000011
公式中,N表示总采样点数,S中p表示有功功率,q表示无功功率,Ihj(h=2,3,……,n,j=1,2,……,N)表示h次谐波电流的第j个采样值。
4.根据权利要求3所述的方法,其特征在于,所述缺失数据处理包括数据删除和数据填充;如果缺失数据超过90%,则删除数据的集合,否则采用3次牛顿插值法对缺失数据进行填充处理,填充处理的表达式为:
N3(xi)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)
f[x0]=f(x0)
Figure FDA0003335819840000021
Figure FDA0003335819840000022
公式中,N3(xi)表示当x=xi时,牛顿多项式的插值结果,f[.]表示均差,f[x0]为零阶均差,f[x0,x1]为一阶均差,f[x0,x1,x2]为二阶均差。
5.根据权利要求4所述的方法,其特征在于,所述噪声数据处理采用小波阈值去噪法;所述异常数据处理的方法为:通过人工检查的方式,将明显偏离实际测量值的数据用数据填充的方式替换。
6.根据权利要求5所述的方法,其特征在于,步骤S2的实现过程如下:
S61、对谐波电流特征集X进行零均值化处理,
Figure FDA0003335819840000023
公式中,Ihj(h=2,3,……,n,j=1,2,……,N)表示h次谐波电流的第j个采样值;
S62、计算零均值化谐波电流特征集X的协方差矩阵cov(X),
Figure FDA0003335819840000031
公式中,E[(X-E(X))(X-E(X))T]表示协方差矩阵,cov(In,In)表示两个元素之间的协方差,n表示谐波的频次;
S63、计算协方差矩阵cov(X)的特征值λi和特征向量μi
cov(X)μi=λiμi
每个特征值λi对应一个特征向量μi,共N1个特征值,将特征值λi按照从大到小的顺序进行排序,选取前k个特征值对应的特征向量,得到原始谐波电流特征降维后的投影特征矩阵,其中k的取值应满足如下表达式:
Figure FDA0003335819840000032
S64、利用投影矩阵求出降维后的谐波电流特征子集X',
Figure FDA0003335819840000033
公式中,μi表示特征向量,XT表示谐波特征集X的转置,[μ12,…μk]T表示特征向量矩阵,x′kN表示谐波电流特征子集X'的第k行第N列元素。
7.根据权利要求6所述的方法,其特征在于,步骤S3中,通过变点检测算法对功率曲线进行分段,然后对每段功率区间内的谐波电流特征进行聚类,得到的每类聚类结果具有相似的谐波发射水平,即属于同一运行工况,具体步骤为:
S71、对功率特征集S中功率曲线进行平滑处理;
S72、分别计算有功功率曲线和无功功率曲线的CUSUM统计函数gk
Figure FDA0003335819840000041
Figure FDA0003335819840000042
公式中,μ0表示变点发生前的平均值,σ为外界引起的噪声,p表示有功功率,q表示无功功率,下标k表示第k个采样时刻,
Figure FDA0003335819840000043
分别表示第k个采样时刻的CUSUM统计函数值,
Figure FDA0003335819840000044
分别表示无功功率和有功功率CUSUM统计函数的初始值,步骤S72中的公式表示只有当功率变化量大于噪声时,才有可能引起功率曲线发生大的突变;
当CUSUM统计函数gk都大于设置的阈值h,即gk>h时,意味着功率突变点被检测出来,由于检测可能存在延迟,将延迟因子记作d,则当0<gk≤h时,令延迟因子d=d+1,直至gk>h,此时突变时刻记为t=k-d,最终得到由D个突变时刻组成的功率曲线突变发生时刻序列T:
T=[t1,t2,…tD,tD+1]T
公式中,t1表示功率曲线的起始时刻,tD+1表示功率曲线的结束时刻;
S73、提取时间区间[tn,tn+1]内谐波特征子集X'中的谐波特征,得到D个谐波特征子矩阵Xn
Figure FDA0003335819840000045
公式中,An表示时间区间[tn,tn+1]内各谐波特征的总个数;
S74、采用典型的k-means聚类方法对D个谐波特征子矩阵进行聚类,得到对应用户的运行工况数,并记录其时间区间,此时每个工况具有相似的谐波发射水平。
8.根据权利要求7所述的方法,其特征在于,步骤S73中,由于不同突变点之间的时间间隔可能不同,因此得到的D个谐波特征子矩阵列向量长度可能会不同,为了统一矩阵维度,采用牛顿插值法对数据特征进行向后补差,将其统一补充为A×k的谐波特征子矩阵Xn
A=max(length(Xn)),n=1,2,…D,
公式中,A表示谐波特征子矩阵列向量中最长列向量的维度,length(.)用于计算向量的长度。
9.根据权利要求1所述的方法,其特征在于,步骤S4中,通过步骤S3得到的冶炼负荷的运行工况结果,得到
Ih=fh(V2,V3,…,VN),h=1,2,…N
公式中,Ih为h次谐波电流有效值,Fh为负荷吸收的第h次谐波电流有效值,V2、V3、…VN为各次谐波电压有效值;
其中,各次谐波电流的幅值与各次谐波电压的幅值的非线性映射关系通过训练BP网络建立,通过利用不同运行工况下的实测数据进行参数辨识,得到适合不同工况场景下的谐波模型,其过程如下:
S91、训练数据的整理:
提取步骤S3聚类得到的不同运行工况下的谐波电压特征集V,以及谐波电流特征集I,
Figure FDA0003335819840000051
Figure FDA0003335819840000061
公式中,k表示谐波频次,j=1,2,…,A,表示采样点数,如Ikj表示k次谐波电流的第j个采样值;
在数据处理过程中可用matlab自带的premnmx()函数将这些数据归一化处理;
S92、BP神经网络模型的设计:
神经元表示的输入与输出的关系式为:
Figure FDA0003335819840000062
公式中,μi为第i个神经元的内部状态,xi为该神经元模型的输入信号,
Figure FDA0003335819840000063
为神经元连接的权值,si为某一外部输入的控制信号,θj为阈值,yi该神经元模型的输出信号,f(x)为神经元的激励函数;
其中,BP神经网络模型设计过程为:
S921、以谐波电压特征集V为输入,输入层的神经元节点数为谐波电压特征集V的列向量个数,即有k个节点;
S922、隐含层的设置为1层,隐含层中神经元数目的计算表达式如下:
Figure FDA0003335819840000064
公式中,k为输入层神经元个数,m为输出层神经元个数,a为[1,10]之间的常数;
S923、每次训练选择谐波电流特征集I一个特征作为输出,因此输出层神经元节点为1,传递函数采用S型对数函数;
S924、网络采用梯度下降法进行学习,通过反向传播不断调整网络的权值和阈值,以满足网络的误差平方和最小的要求,网络输出层的误差函数为:
Figure FDA0003335819840000071
公式中,yi表示神经网络的目标输出,di表示神经网络实际输出值;
S93、模型的训练与参数辨识:
利用不同工况下的训练数据对模型进行训练,以实现该工况场景下谐波模型的参数辨识,其中网络参数设置为:网络迭代次数epochs为5000次,期望误差goal为0.00001,学习速率lr为0.01;
S94、模型的性能评估:
利用训练好的谐波模型生成不同工况下的各次谐波电流幅值的预测结果,并计算其均方根误差εRMSE,用于评估谐波模型的计算精度,
Figure FDA0003335819840000072
公式中:Ih'为该模型的计算结果,Ih为实际测量结果。
10.根据权利要求9所述的方法,其特征在于,步骤(1)中,在数据处理过程中,用matlab自带的premnmx()函数将谐波电压特征集V和谐波电流特征集I归一化处理。
CN202111293594.6A 2021-11-03 2021-11-03 一种多工况场景下的冶炼负荷谐波发射水平的建模方法 Pending CN114004162A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111293594.6A CN114004162A (zh) 2021-11-03 2021-11-03 一种多工况场景下的冶炼负荷谐波发射水平的建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111293594.6A CN114004162A (zh) 2021-11-03 2021-11-03 一种多工况场景下的冶炼负荷谐波发射水平的建模方法

Publications (1)

Publication Number Publication Date
CN114004162A true CN114004162A (zh) 2022-02-01

Family

ID=79926851

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111293594.6A Pending CN114004162A (zh) 2021-11-03 2021-11-03 一种多工况场景下的冶炼负荷谐波发射水平的建模方法

Country Status (1)

Country Link
CN (1) CN114004162A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114626207A (zh) * 2022-02-24 2022-06-14 四川大学 一种构建面向工业负荷的谐波发射水平的通用模型的方法
CN114880948A (zh) * 2022-06-02 2022-08-09 国网重庆市电力公司电力科学研究院 一种基于随机森林优化算法的谐波预测建模方法和系统
CN117748507A (zh) * 2024-02-06 2024-03-22 四川大学 基于高斯回归模型的配网谐波接入不确定性评估方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114626207A (zh) * 2022-02-24 2022-06-14 四川大学 一种构建面向工业负荷的谐波发射水平的通用模型的方法
CN114626207B (zh) * 2022-02-24 2022-10-11 四川大学 构建面向工业负荷谐波发射水平的通用概率模型的方法
CN114880948A (zh) * 2022-06-02 2022-08-09 国网重庆市电力公司电力科学研究院 一种基于随机森林优化算法的谐波预测建模方法和系统
CN117748507A (zh) * 2024-02-06 2024-03-22 四川大学 基于高斯回归模型的配网谐波接入不确定性评估方法
CN117748507B (zh) * 2024-02-06 2024-05-03 四川大学 基于高斯回归模型的配网谐波接入不确定性评估方法

Similar Documents

Publication Publication Date Title
CN114004162A (zh) 一种多工况场景下的冶炼负荷谐波发射水平的建模方法
CN108520357B (zh) 一种线损异常原因的判别方法、装置及服务器
CN112149873B (zh) 一种基于深度学习的低压台区线损合理区间预测方法
CN110174610B (zh) 一种基于卷积神经网络来获取交流接触器电寿命的方法
CN113554466B (zh) 一种短期用电量预测模型构建方法、预测方法和装置
CN111833583B (zh) 电力数据异常检测模型的训练方法、装置、设备和介质
CN113657661A (zh) 一种企业碳排放预测方法、装置、计算机设备和存储介质
CN107220907B (zh) 一种采用秩和比综合评价的谐波污染用户分级方法
CN113687176B (zh) 一种基于深度神经网络的用电异常检测方法、系统
CN109033513A (zh) 电力变压器故障诊断方法与电力变压器故障诊断装置
CN111931983A (zh) 一种降水量预测方法及系统
CN111008726A (zh) 一种电力负荷预测中类图片转换方法
CN107834551A (zh) 一种基于支持向量机的配电网低电压预测方法
CN112596016A (zh) 基于多个一维卷积神经网络集成的互感器故障诊断方法
CN116821832A (zh) 针对高压工商业用户用电负荷的异常数据辨识与修正方法
CN115423594A (zh) 企业财务风险的评估方法、装置、设备及存储介质
CN114548493A (zh) 一种电能表电流过载预测方法与系统
CN111814403B (zh) 一种配电主设备分布式状态传感器可靠性评估方法
CN113987910A (zh) 一种耦合神经网络与动态时间规划的居民负荷辨识方法及装置
CN117149249A (zh) 模型更新方法、系统、设备和存储介质
CN117150409A (zh) 一种用电异常检测方法
CN113434493A (zh) 一种基于Transformer的非侵入式负荷分解方法
CN117520809A (zh) 一种基于EEMD-KPCA-CNN-BiLSTM的变压器故障诊断方法
CN116400266A (zh) 基于数字孪生模型的变压器故障检测方法、装置及介质
CN116561569A (zh) 一种基于EO特征选择结合AdaBoost算法的工业电力负荷辨识方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination