CN114004127A - 二维主轴各向异性强磁场数值模拟方法、装置、设备及介质 - Google Patents

二维主轴各向异性强磁场数值模拟方法、装置、设备及介质 Download PDF

Info

Publication number
CN114004127A
CN114004127A CN202111303885.9A CN202111303885A CN114004127A CN 114004127 A CN114004127 A CN 114004127A CN 202111303885 A CN202111303885 A CN 202111303885A CN 114004127 A CN114004127 A CN 114004127A
Authority
CN
China
Prior art keywords
domain
magnetic
abnormal
field
spatial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111303885.9A
Other languages
English (en)
Inventor
冉应强
戴世坤
陈轻蕊
凌嘉宣
张莹
朱德祥
贾金荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202111303885.9A priority Critical patent/CN114004127A/zh
Publication of CN114004127A publication Critical patent/CN114004127A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/13Differential equations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Operations Research (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

二维主轴各向异性强磁场数值模拟方法、装置、设备及介质对于沿y轴方向无限延伸的异常体构建异常体模型并对其剖分,考虑地下地质体磁化率主轴各向异性给其磁化率张量赋值;根据磁化率张量、空间域背景场磁场强度、空间域异常场磁场强度,得到空间域磁化强度;然后将空间域异常场磁位和空间域磁化强度满足的二维偏微分方程转为空间波数混合域一维常微分方程,将空间波数混合域异常场磁位满足的边值问题模型转化为等价的变分问题模型;通过求解变分问题模型,得到空间波数混合域异常场磁位、磁场强度后将其分别转换为空间域异常场磁位、磁场强度,迭代计算直至收敛。本发明考虑到地下地质体磁化率主轴各向异性,与实际地质情况更符合。

Description

二维主轴各向异性强磁场数值模拟方法、装置、设备及介质
技术领域
本发明属于强磁体数值模拟技术领域,特别涉及一种二维主轴各向异性强磁场数值模拟方法、装置、设备及介质。
背景技术
当磁性体磁性较强时,会发生磁化,在磁介质表面或者内部不均匀处产生磁荷,磁荷会在磁介质内部产生磁场,该磁场称为自退磁场。在磁测资料的处理和解释中,通常假设退磁场忽略不计,假设成立的前提是磁性体磁化率小于0.1SI,而当磁化率逐渐增大时,退磁场越来越强,使磁化方向偏离外部地磁场方向,改变了磁异常的幅值和形态,从而损坏磁测数据的处理和解释工作。
理论上,复杂形体重磁异常正演可以分为三度体和二度体,解释人员可以使用二维模型、2.5维模型或者三维模型来模拟不同复杂程度的场源。实际情况下,所有的地质体都是三维的,磁异常正演应该都以三维模型为基础,但是三维模型的计算量往往都非常大。在实际的重磁勘探过程中,有很多线性地质体,比如断层、接触带等,这类地质体走向方向的尺度远比垂直其走向方向的尺度大,那么它们的实际场源分布就可以用走向方向无限延伸的二度体代替,不仅可以大大减少计算时间,相应的反演算法也比较容易实现。
然而目前任意截面形状、任意物性分布情况下的二度体正演方法,计算效率和计算精度仍然有待提高,所以研究更高效、更高精度的二维强磁场数值模拟具有十分重要的意义。
发明内容
在自退磁场的影响下,强磁性体的正演变得十分困难。为了解决这个问题,本领域的技术人员提出了很多不同的数值计算方法,但是也存在着计算效率较低、精度不高的问题。本发明旨在提出一种二维主轴各向异性强磁场数值模拟方法、装置、设备及介质,其适用于二维强磁性介质的高效、高精度的数值模拟计算。
为实现上述技术目的,本发明提出的技术方案为:
一方面,本发明提供一种二维主轴各向异性强磁场数值模拟方法,包括:
对于沿y轴方向无限延伸的异常体,在xoz平面确定目标区域,所述异常体xoz方向的整个截面包含在所述目标区域中,对目标区域进行网格剖分,得到多个长方形单元;考虑主轴各向异性,对各长方形单元顶点处的磁化率张量进行赋值;
根据磁化率张量、空间域背景场磁场强度、空间域异常场磁场强度,得到空间域磁化强度;
利用一维傅里叶变换将空间域异常场磁位和空间域磁化强度满足的二维偏微分方程转为空间波数混合域一维常微分方程;
基于空间波数混合域一维常微分方程,并结合设定的空间波数混合域异常场磁位需满足的边界条件,将空间波数混合域异常场磁位满足的边值问题模型转化为等价的变分问题模型;
求解变分问题模型,得到空间波数混合域异常场磁位;
基于空间波数混合域异常场磁位,求得空间波数混合域异常场磁场强度;
通过反傅里叶变换将空间波数混合域异常场磁位以及空间波数混合域异常场磁场强度转换为空间域异常场磁位以及空间域异常场磁场强度;
判断当前是否满足迭代终止条件,如满足则输出当前计算得到的空间域异常场磁位以及空间域异常场磁场强度。
本发明中,磁化率张量用x方向、y方向、z方向的三个主磁化率分量χxx、χyy、χzz和一个欧拉角θ来表示,那么磁化率张量为:
Figure BDA0003339403850000021
式中,D为坐标变换张量,且
Figure BDA0003339403850000031
Figure BDA0003339403850000032
由于本发明考虑主轴各向异性时,欧拉角为零,那么
Figure BDA0003339403850000033
根据地下磁化率模型对各长方体单元顶点处的磁化率张量的各分量赋值,不同长方体单元顶点处的的磁化率张量的各分量赋值不同。
另一方面,本发明提供一种二维主轴各向异性强磁场数值模拟装置,包括:
第一模块,用于对沿y轴方向无限延伸的异常体,在xoz平面确定目标区域,所述异常体xoz方向的整个截面包含在所述目标区域中,对目标区域进行网格剖分,得到多个长方形单元;考虑主轴各向异性,对各长方形单元顶点处的磁化率张量进行赋值;
第二模块,用于根据磁化率张量、空间域背景场磁场强度、空间域异常场磁场强度,得到空间域磁化强度;
第三模块,利用一维傅里叶变换将空间域异常场磁位和空间域磁化强度满足的二维偏微分方程转为空间波数混合域一维常微分方程;
第四模块,基于空间波数混合域一维常微分方程,并结合设定的空间波数混合域异常场磁位需满足的边界条件,将空间波数混合域异常场磁位满足的边值问题模型转化为等价的变分问题模型;
第五模块,用于求解变分问题模型,得到空间波数混合域异常场磁位;
第六模块,基于空间波数混合域异常场磁位,求得空间波数混合域异常场磁场强度;
第七模块,通过反傅里叶变换将空间波数混合域异常场磁位以及空间波数混合域异常场磁场强度转换为空间域异常场磁位以及空间域异常场磁场强度;
第八模块,判断当前是否满足迭代终止条件,如满足则输出当前计算得到的空间域异常场磁位以及空间域异常场磁场强度。
另一方面,本发明提供一种计算机设备,包括存储器和处理器,存储器存储有计算机程序,处理器执行计算机程序时实现以下步骤:
对于沿y轴方向无限延伸的异常体,在xoz平面确定目标区域,所述异常体xoz方向的整个截面包含在所述目标区域中,对目标区域进行网格剖分,得到多个长方形单元;考虑主轴各向异性,对各长方形单元顶点处的磁化率张量进行赋值;
根据磁化率张量、空间域背景场磁场强度、空间域异常场磁场强度,得到空间域磁化强度;
利用一维傅里叶变换将空间域异常场磁位和空间域磁化强度满足的二维偏微分方程转为空间波数混合域一维常微分方程;
基于空间波数混合域一维常微分方程,并结合设定的空间波数混合域异常场磁位需满足的边界条件,将空间波数混合域异常场磁位满足的边值问题模型转化为等价的变分问题模型;
求解变分问题模型,得到空间波数混合域异常场磁位;
基于空间波数混合域异常场磁位,求得空间波数混合域异常场磁场强度;
通过反傅里叶变换将空间波数混合域异常场磁位以及空间波数混合域异常场磁场强度转换为空间域异常场磁位以及空间域异常场磁场强度;
判断当前是否满足迭代终止条件,如满足则输出当前计算得到的空间域异常场磁位以及空间域异常场磁场强度。
再一方面,本发明还提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
对于沿y轴方向无限延伸的异常体,在xoz平面确定目标区域,所述异常体xoz方向的整个截面包含在所述目标区域中,对目标区域进行网格剖分,得到多个长方形单元;考虑主轴各向异性,对各长方形单元顶点处的磁化率张量进行赋值;
根据磁化率张量、空间域背景场磁场强度、空间域异常场磁场强度,得到空间域磁化强度;
利用一维傅里叶变换将空间域异常场磁位和空间域磁化强度满足的二维偏微分方程转为空间波数混合域一维常微分方程;
基于空间波数混合域一维常微分方程,并结合设定的空间波数混合域异常场磁位需满足的边界条件,将空间波数混合域异常场磁位满足的边值问题模型转化为等价的变分问题模型;
求解变分问题模型,得到空间波数混合域异常场磁位;
基于空间波数混合域异常场磁位,求得空间波数混合域异常场磁场强度;
通过反傅里叶变换将空间波数混合域异常场磁位以及空间波数混合域异常场磁场强度转换为空间域异常场磁位以及空间域异常场磁场强度;
判断当前是否满足迭代终止条件,如满足则输出当前计算得到的空间域异常场磁位以及空间域异常场磁场强度。
与现有技术相比,本发明的优点在于:
1、考虑到自退磁效应,能够更加准确地对强磁性介质进行数值模拟。
2、考虑到地下地质体磁化率主轴各向异性,与实际地质情况更符合。
3、通过傅里叶变换将空间域磁位满足的二维偏微分方程转化为不同波数相互独立的一维常微分方程,采用有限单元法求解不同波数满足的常微分方程,提高了计算效率和计算精度。
附图说明
图1是本发明一实施例中流程图;
图2是本发明一实施例中的目标区域以及异常体的示意图;
图3是本发明一实施例中空间波数域正演与COMSOL正演结果图,其中(1)为空间波数域正演与COMSOL正演结果中异常场磁感应强度其x分量的结果图,(2)为空间波数域正演与COMSOL正演结果中异常场磁感应强度其x分量的相对误差,(3)为空间波数域正演与COMSOL正演结果中异常场磁感应强度其y分量的结果图,(4)为空间波数域正演与COMSOL正演结果中异常场磁感应强度其y分量的相对误差;
图4是本发明一实施例中计算机设备的内部结构图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面将以附图及详细叙述清楚说明本发明所揭示内容的精神,任何所属技术领域技术人员在了解本发明内容的实施例后,当可由本发明内容所教示的技术,加以改变及修饰,其并不脱离本发明内容的精神与范围。本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。
参照图1,本发明一实施例中,提供一种二维主轴各向异性强磁场数值模拟方法,包括:
(S1)对于沿y轴方向无限延伸的异常体,在xoz平面确定目标区域,所述异常体xoz方向的整个截面包含在所述目标区域中,对目标区域进行网格剖分,得到多个长方形单元;考虑主轴各向异性,对各长方形单元顶点处的磁化率张量进行赋值;
(S2)根据磁化率张量、空间域背景场磁场强度、空间域异常场磁场强度,得到空间域磁化强度;
(S3)利用一维傅里叶变换将空间域异常场磁位和空间域磁化强度满足的二维偏微分方程转为空间波数混合域一维常微分方程;
(S4)基于空间波数混合域一维常微分方程,并结合设定的空间波数混合域异常场磁位需满足的边界条件,将空间波数混合域异常场磁位满足的边值问题模型转化为等价的变分问题模型;
(S5)求解变分问题模型,得到空间波数混合域异常场磁位;
(S6)基于空间波数混合域异常场磁位,求得空间波数混合域异常场磁场强度;
(S7)通过反傅里叶变换将空间波数混合域异常场磁位以及空间波数混合域异常场磁场强度转换为空间域异常场磁位以及空间域异常场磁场强度;
(S8)判断当前是否满足迭代终止条件,如满足则输出当前计算得到的空间域异常场磁位以及空间域异常场磁场强度。
本发明中步骤(S1)中沿y轴方向无限延伸的异常体为强磁性介质,其xoz方向的整个截面的形状、大小均不限,可以是圆柱形、长方形等其他规则或者不规则的形状。异常体磁化率分布不限。
在本发明的步骤(S1)中,磁化率张量单位为SI,磁化率张量用x方向、y方向、z方向的三个主磁化率分量χxx、χyy、χzz和一个欧拉角θ来表示,那么磁化率张量为:
Figure BDA0003339403850000071
式中,D为坐标变换张量,且
Figure BDA0003339403850000072
Figure BDA0003339403850000073
本发明考虑主轴各向异性时,欧拉角为零,那么
Figure BDA0003339403850000074
根据地下磁化率模型对各长方体单元顶点处的磁化率张量的各分量赋值,不同长方体单元顶点处的的磁化率张量的各分量赋值不同。
本发明另一实施例中,步骤(S2)根据磁化率张量、空间域背景场磁场强度、空间域异常场磁场强度,得到空间域磁化强度,包括:
(S2.1)根据地球主磁场模型IGRF,计算各长方形单元顶点处的地球主磁场强度,将其作为空间域背景场磁场强度H0;即为数值模拟中的背景场,即无异常时的磁场,单位为A/m。
(S2.2)空间域磁化强度M表示为:
Figure BDA0003339403850000081
其中Ha表示空间域异常场磁场强度,H表示空间域总磁场强度,H=H0+Ha
本发明另一实施例中,步骤(S3)中,空间域异常场磁位和空间域磁化强度满足的二维偏微分方程为:
Figure BDA0003339403850000082
对所述二维偏微分方程进行一维傅里叶变换,得到空间波数混合域一维常微分方程:
Figure BDA0003339403850000083
其中
Figure BDA0003339403850000084
为梯度算子,梯度算子
Figure BDA0003339403850000085
ex和ez分别为x和z方向上的单位向量,U表示空间域异常场磁位,波数
Figure BDA0003339403850000086
kx为x方向上的偏移波数,
Figure BDA0003339403850000087
表示空间波数混合域异常场磁位,
Figure BDA0003339403850000088
分别为x和z方向上的空间波数混合域磁化强度,i为虚数单位。
可以理解,在本发明的步骤(S3)中,可以参照本领域中的已有方法对x方向上的偏移波数kx进行设定。
在本发明另一实施例中,x方向上的偏移波数kx通过以下步骤获得:
给定x方向的高斯点个数Nx,区间[-1,1]上高斯点ta以及高斯系数Aa,其中,a=1,2,...,Nx
x方向上的偏移波数kx,如下:
Figure BDA0003339403850000091
其中,
Figure BDA0003339403850000092
Δkx表示x方向上的基波数,NNx表示x方向上长方形单元的剖分个数,Δx为x方向上长方形单元的单元长度。
本发明的步骤(S4)中,空间波数混合域异常场磁位需满足的边界条件,包括上边界条件和下边界条件,在笛卡尔坐标系下,取Z轴垂直向下为正向,取水平地面为上边界Zmin,取地下离异常体足够远处为下边界Zmax。为了得到控制方程的定解,需要给出合适的边界条件,本领域技术人员可以根据实际清楚给出合适的边界条件。
在本发明另一实施例中,空间波数混合域异常场磁位需满足的边界条件,如下:
上边界条件为:
Figure BDA0003339403850000093
下边界条件为:
Figure BDA0003339403850000094
联立可得空间波数混合域异常场磁位满足的边值问题模型,如下:
Figure BDA0003339403850000101
运用变分原理,将空间波数混合域异常场磁位满足的边值问题模型转化为等价的变分问题模型:
Figure BDA0003339403850000102
空间域异常场磁场强度,H表示空间域总磁场强度
本发明的步骤(S5)中,通过有限单元法求解变分问题模型,得到空间波数混合域异常场磁位
Figure BDA0003339403850000103
具体地,采用基于二次插值的一维有限单元法求解,能够保了计算效率和计算精度,且可以利用追赶法实现对角线性方程组的快速求解。
根据空间波数混合域异常场磁位
Figure BDA0003339403850000104
求解空间波数混合域异常场磁场强度
Figure BDA0003339403850000105
通过反傅里叶变换将空间波数混合域异常场磁位
Figure BDA0003339403850000106
以及空间波数混合域异常场磁场强度
Figure BDA0003339403850000107
转换为空间域异常场磁位U以及空间域异常场磁场强度Ha
空间域总磁场强度H为空间域背景场磁场强度与空间域异常场磁场强度之和,即H=H0+Ha。本发明在初次迭代时,设初次迭代时的空间域异常场磁场强度Ha为0,即初次迭代时的空间域总磁场强度H即为空间域背景场磁场强度H0,从而将一维偏微分方程变为一维常微分方程求解,得到第一个空间域异常场磁场强度
Figure BDA0003339403850000111
(上标1代表第1次迭代,
Figure BDA0003339403850000112
即第1次迭代得到的空间域异常场磁场强度),
Figure BDA0003339403850000113
和H0之和即为第一次迭代后得到的空间域总磁场强度H1。第一次迭代后得到的空间域总磁场强度H1作为下一次迭代时的空间域总磁场强度进行下一次求解,以此规律不断迭代,直至收敛。
可以理解,预设的迭代终止条件是指预先设置的模型计算约束条件,用于约束整个模型进行性能计算的过程趋向收敛,以使模型能够输出满足条件的结果。本发明中可以将(S8)中的迭代终止条件设置为:
Figure BDA0003339403850000114
其中Hj表示第j次迭代计算得到的空间域总磁场强度,Hj+1表示第j+1次计算得到的空间域总磁场强度,
Figure BDA0003339403850000115
初次迭代时,空间域背景场磁场强度H0作为初次迭代的空间域总磁场强度H0
当满足以上迭代收敛条件时,迭代停止。
当然,实际应用中,本领域技术人员也可基于现有技术、本领域的惯用技术手段或者公知常识,设定其他的迭代终止条件,不局限于本申请上述优选实施例中所述设置的迭代终止条件。
最后由异常场磁感应强度Ba(单位为T)与空间域异常场磁场强度Ha的关系Ba=μHa,可求得异常场磁感应强度Ba,进而得到异常场磁感应强度Ba的两个分量Bax,Baz,μ为介质的绝对磁导率,单位为H/m。绝对磁导率μ与
Figure BDA0003339403850000116
之间的关系
Figure BDA0003339403850000117
μ0为真空中磁导率,μ0=4π×10-7H/m。
下面对本发明提供的二维主轴各向异性强磁场数值模拟方法的正确性、精度和效率进行验证。
以下操作均利用Fortran95语言编程计算实现,电脑配置为:Intel Core i5-6300HQ CPU,主频为2.30GHz,内存为16GB。
设计沿y轴无限延伸的二维棱柱体模型如图2所示。背景磁场为H0=50000nT,异常体磁化率
Figure BDA0003339403850000121
磁倾角α=45°,磁偏角β=5°。研究区域为:x方向[-3000m,3000m],z方向[0,1000m];网格数为600×200,水平采样间隔为10m,垂向采样间隔为5m;异常体截面为正方形,边长为400m,顶部距离地面300m。采用本发明方法,在单线程的情况下,达到收敛条件需迭代7次,用时2.902s。为了验证本发明的正确性,使用COMSOL软件建立相同模型计算,分别得到空间波数域正演与COMSOL正演结果图如图3所示,其中(1)为空间波数域正演与COMSOL正演结果中异常场磁感应强度其x分量的结果图,(2)为空间波数域正演与COMSOL正演结果中异常场磁感应强度其x分量的相对误差,(3)为空间波数域正演与COMSOL正演结果中异常场磁感应强度其y分量的结果图,(4)为空间波数域正演与COMSOL正演结果中异常场磁感应强度其y分量的相对误差。
本发明考虑了自退磁效应和磁化率主轴各向异性的影响,对于一些二维强磁性体磁异常的刻画更加准确;而且兼顾数值模拟的精度和效率,充分利用了空间域和波数域方法的优势,将空间域磁位满足的二维偏微分方程沿水平方向进行一维傅里叶变换,将其转换成不同波数相互独立的一维常微分方程,运用有限单元法,单元内部采用形函数二次插值,从而对微分方程进行迭代求解,大大提高了计算精度和计算效率,本发明为磁测数据的处理、解释以及磁场正反演奠定了基础。
本发明一实施例中提供发明提供一种二维主轴各向异性强磁场数值模拟方法,包括:
第一模块,用于对沿y轴方向无限延伸的异常体,在xoz平面确定目标区域,所述异常体xoz方向的整个截面包含在所述目标区域中,对目标区域进行网格剖分,得到多个长方形单元;考虑主轴各向异性,对各长方形单元顶点处的磁化率张量进行赋值;
第二模块,用于根据磁化率张量、空间域背景场磁场强度、空间域异常场磁场强度,得到空间域磁化强度;
第三模块,利用一维傅里叶变换将空间域异常场磁位和空间域磁化强度满足的二维偏微分方程转为空间波数混合域一维常微分方程;
第四模块,基于空间波数混合域一维常微分方程,并结合设定的空间波数混合域异常场磁位需满足的边界条件,将空间波数混合域异常场磁位满足的边值问题模型转化为等价的变分问题模型;
第五模块,用于求解变分问题模型,得到空间波数混合域异常场磁位;
第六模块,基于空间波数混合域异常场磁位,求得空间波数混合域异常场磁场强度;
第七模块,通过反傅里叶变换将空间波数混合域异常场磁位以及空间波数混合域异常场磁场强度转换为空间域异常场磁位以及空间域异常场磁场强度;
第八模块,判断当前是否满足迭代终止条件,如满足则输出当前计算得到的空间域异常场磁位以及空间域异常场磁场强度。
上述各模块功能的实现方法,可以采用前述各实施例中相同的方法实现,在此不再赘述。
在本一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图4所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口和数据库。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储样本数据。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现上述二维主轴各向异性强磁场数值模拟方法。
本领域技术人员可以理解,图4中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,该存储器存储有计算机程序,该处理器执行计算机程序时实现上述实施例中二维主轴各向异性强磁场数值模拟方法的步骤。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述实施例中二维主轴各向异性强磁场数值模拟方法的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

1.二维主轴各向异性强磁场数值模拟方法,其特征在于,包括:
对于沿y轴方向无限延伸的异常体,在xoz平面确定目标区域,所述异常体xoz方向的整个截面包含在所述目标区域中,对目标区域进行网格剖分,得到多个长方形单元;考虑主轴各向异性,对各长方形单元顶点处的磁化率张量进行赋值;
根据磁化率张量、空间域背景场磁场强度、空间域异常场磁场强度,得到空间域磁化强度;
利用一维傅里叶变换将空间域异常场磁位和空间域磁化强度满足的二维偏微分方程转为空间波数混合域一维常微分方程;
基于空间波数混合域一维常微分方程,并结合设定的空间波数混合域异常场磁位需满足的边界条件,将空间波数混合域异常场磁位满足的边值问题模型转化为等价的变分问题模型;
求解变分问题模型,得到空间波数混合域异常场磁位;
基于空间波数混合域异常场磁位,求得空间波数混合域异常场磁场强度;
通过反傅里叶变换将空间波数混合域异常场磁位以及空间波数混合域异常场磁场强度转换为空间域异常场磁位以及空间域异常场磁场强度;
判断当前是否满足迭代终止条件,如满足则输出当前计算得到的空间域异常场磁位以及空间域异常场磁场强度。
2.根据权利要求1所述的二维主轴各向异性强磁场数值模拟方法,其特征在于,磁化率张量用x方向、y方向、z方向的三个主磁化率分量χxx、χyy、χzz和一个欧拉角θ来表示,为:
Figure FDA0003339403840000011
式中,D为坐标变换张量,且
Figure FDA0003339403840000021
Figure FDA0003339403840000022
由于考虑主轴各向异性时,欧拉角为零,那么
Figure FDA0003339403840000023
根据地下磁化率模型对各长方体单元顶点处的磁化率张量的各分量赋值,不同长方体单元顶点处的的磁化率张量的各分量赋值不同。
3.根据权利要求2所述的二维主轴各向异性强磁场数值模拟方法,其特征在于,根据地球主磁场模型IGRF,计算各长方形单元顶点处的地球主磁场强度,将其作为空间域背景场磁场强度H0
空间域磁化强度M表示为:
Figure FDA0003339403840000024
其中Ha表示空间域异常场磁场强度,H表示空间域总磁场强度,H=H0+Ha
4.根据权利要求3所述的二维主轴各向异性强磁场数值模拟方法,其特征在于,空间域异常场磁位和空间域磁化强度满足的二维偏微分方程为:
Figure FDA0003339403840000025
对所述二维偏微分方程进行一维傅里叶变换,得到空间波数混合域一维常微分方程:
Figure FDA0003339403840000026
其中
Figure FDA0003339403840000031
为梯度算子,U表示空间域异常场磁位,波数
Figure FDA0003339403840000032
kx为x方向上的偏移波数,
Figure FDA0003339403840000033
表示空间波数混合域异常场磁位,
Figure FDA0003339403840000034
分别为x和z方向上的空间波数混合域磁化强度,i为虚数单位。
5.根据权利要求4所述的二维主轴各向异性强磁场数值模拟方法,其特征在于,x方向上的偏移波数kx通过以下步骤获得:
给定x方向的高斯点个数Nx,区间[-1,1]上高斯点ta以及高斯系数Aa,其中,a=1,2,...,Nx
x方向上的偏移波数kx,如下:
Figure FDA0003339403840000035
其中,
Figure FDA00033394038400000310
Δkx表示x方向上的基波数,NNx表示x方向上长方形单元的剖分个数,Δx为x方向上长方形单元的单元长度。
6.根据权利要求4所述的二维主轴各向异性强磁场数值模拟方法,其特征在于,空间波数混合域异常场磁位需满足的边界条件,包括上边界条件和下边界条件,在笛卡尔坐标系下,取Z轴垂直向下为正向,取水平地面为上边界Zmin,取地下离异常体足够远处为下边界Zmax
上边界条件为:
Figure FDA0003339403840000038
下边界条件为:
Figure FDA0003339403840000039
联立可得空间波数混合域异常场磁位满足的边值问题模型,如下:
Figure FDA0003339403840000041
运用变分原理,将空间波数混合域异常场磁位满足的边值问题模型转化为等价的变分问题模型:
Figure FDA0003339403840000042
7.根据权利要求6所述的二维主轴各向异性强磁场数值模拟方法,其特征在于,通过有限单元法求解变分问题模型,得到空间波数混合域异常场磁位
Figure FDA0003339403840000043
空间波数混合域异常场磁场强度
Figure FDA0003339403840000044
8.根据权利要求1至7中任一项所述的二维主轴各向异性强磁场数值模拟方法,其特征在于,迭代终止条件设置为:
Figure FDA0003339403840000045
其中Hj表示第j次迭代计算得到的空间域总磁场强度,Hj+1表示第j+1次计算得到的空间域总磁场强度,
Figure FDA0003339403840000046
初次迭代时,空间域背景场磁场强度H0作为初次迭代的空间域总磁场强度H0
9.一种计算机设备,包括存储器和处理器,存储器存储有计算机程序,其特征在于,处理器执行计算机程序时实现权利要求1至7中任一项所述的二维主轴各向异性强磁场数值模拟方法的步骤。
10.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,计算机程序被处理器执行时实现权利要求1至7中任一项所述的二维主轴各向异性强磁场数值模拟方法的步骤。
CN202111303885.9A 2021-11-05 2021-11-05 二维主轴各向异性强磁场数值模拟方法、装置、设备及介质 Pending CN114004127A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111303885.9A CN114004127A (zh) 2021-11-05 2021-11-05 二维主轴各向异性强磁场数值模拟方法、装置、设备及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111303885.9A CN114004127A (zh) 2021-11-05 2021-11-05 二维主轴各向异性强磁场数值模拟方法、装置、设备及介质

Publications (1)

Publication Number Publication Date
CN114004127A true CN114004127A (zh) 2022-02-01

Family

ID=79927763

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111303885.9A Pending CN114004127A (zh) 2021-11-05 2021-11-05 二维主轴各向异性强磁场数值模拟方法、装置、设备及介质

Country Status (1)

Country Link
CN (1) CN114004127A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115292973A (zh) * 2022-10-09 2022-11-04 中南大学 一种任意采样的空间波数域三维磁场数值模拟方法及系统
CN115795231A (zh) * 2022-10-09 2023-03-14 中南大学 一种空间波数混合域三维强磁场迭代方法及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115292973A (zh) * 2022-10-09 2022-11-04 中南大学 一种任意采样的空间波数域三维磁场数值模拟方法及系统
CN115795231A (zh) * 2022-10-09 2023-03-14 中南大学 一种空间波数混合域三维强磁场迭代方法及系统
CN115795231B (zh) * 2022-10-09 2023-08-04 中南大学 一种空间波数混合域三维强磁场迭代方法及系统

Similar Documents

Publication Publication Date Title
CN114021408A (zh) 二维强磁场数值模拟方法、装置、设备及介质
CN113962077B (zh) 三维各向异性强磁场数值模拟方法、装置、设备及介质
CN114004127A (zh) 二维主轴各向异性强磁场数值模拟方法、装置、设备及介质
Persova et al. Finite element solution to 3-D airborne time-domain electromagnetic problems in complex geological media using non-conforming hexahedral meshes
CN113656750B (zh) 基于空间波数域的强磁介质的磁感应强度计算方法
CN115292973B (zh) 一种任意采样的空间波数域三维磁场数值模拟方法及系统
CN112287534A (zh) 基于nufft的二维磁异常快速正演模拟方法和装置
CN109254327B (zh) 三维强磁性体的勘探方法及勘探系统
Sánchez-Vizuet et al. A hybridizable discontinuous Galerkin solver for the Grad–Shafranov equation
CN110346835A (zh) 大地电磁的正演方法、正演系统、存储介质及电子设备
Ouyang et al. Iterative magnetic forward modeling for high susceptibility based on integral equation and Gauss-fast Fourier transform
Li On convergence of the immersed boundary method for elliptic interface problems
Denis et al. The approximation of anomalous magnetic field by array of magnetized rods
Hall et al. The application of isogeometric analysis to the neutron diffusion equation for a pincell problem with an analytic benchmark
Liu et al. Recovery of high frequency wave fields from phase space–based measurements
Gallinato et al. Superconvergent second order Cartesian method for solving free boundary problem for invadopodia formation
Grajewski et al. Mathematical and numerical analysis of a robust and efficient grid deformation method in the finite element context
CN113076678B (zh) 一种频率域二度体重力异常快速数值模拟方法和装置
CN113627027B (zh) 非平凡各向异性介质电磁场数值模拟方法及系统
Eppler et al. Fast wavelet BEM for 3d electromagnetic shaping
Liu et al. A parallel method of NURBS inverse evaluation for 3D CAD model quality testing
Wang et al. Research on error estimations of the interpolating boundary element free-method for two-dimensional potential problems
CN113806686B (zh) 大规模复杂地质体重力梯度快速计算方法、装置和设备
CN113656976B (zh) 一种二维磁梯度张量快速数值模拟方法、装置和设备
Chen et al. Fast and High Precision Numerical Simulation of DC 2.5 D under Multi-source Condition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination