CN113999354B - Amphiphilic block polymer nanoparticles with different morphologies and their preparation methods and applications - Google Patents
Amphiphilic block polymer nanoparticles with different morphologies and their preparation methods and applications Download PDFInfo
- Publication number
- CN113999354B CN113999354B CN202111485621.XA CN202111485621A CN113999354B CN 113999354 B CN113999354 B CN 113999354B CN 202111485621 A CN202111485621 A CN 202111485621A CN 113999354 B CN113999354 B CN 113999354B
- Authority
- CN
- China
- Prior art keywords
- amphiphilic block
- block polymer
- polymer nanoparticles
- different morphologies
- monomer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 89
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 68
- 238000002360 preparation method Methods 0.000 title claims abstract description 19
- 239000000178 monomer Substances 0.000 claims abstract description 59
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 25
- QTKPMCIBUROOGY-UHFFFAOYSA-N 2,2,2-trifluoroethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(F)(F)F QTKPMCIBUROOGY-UHFFFAOYSA-N 0.000 claims abstract description 13
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims abstract description 7
- AOJOEFVRHOZDFN-UHFFFAOYSA-N benzyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC1=CC=CC=C1 AOJOEFVRHOZDFN-UHFFFAOYSA-N 0.000 claims abstract description 6
- 230000006911 nucleation Effects 0.000 claims abstract 3
- 238000010899 nucleation Methods 0.000 claims abstract 3
- 239000002841 Lewis acid Substances 0.000 claims description 23
- 150000007517 lewis acids Chemical class 0.000 claims description 23
- 239000002879 Lewis base Substances 0.000 claims description 18
- 150000007527 lewis bases Chemical class 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 13
- DPBJAVGHACCNRL-UHFFFAOYSA-N 2-(dimethylamino)ethyl prop-2-enoate Chemical compound CN(C)CCOC(=O)C=C DPBJAVGHACCNRL-UHFFFAOYSA-N 0.000 claims description 9
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 claims description 8
- 239000003849 aromatic solvent Substances 0.000 claims description 6
- 239000003831 antifriction material Substances 0.000 claims description 5
- 239000003995 emulsifying agent Substances 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- NIJWSVFNELSKMF-UHFFFAOYSA-N (2,3,4,5,6-pentafluorophenyl) 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1=C(F)C(F)=C(F)C(F)=C1F NIJWSVFNELSKMF-UHFFFAOYSA-N 0.000 claims description 4
- VIEHKBXCWMMOOU-UHFFFAOYSA-N 2,2,3,3,4,4,4-heptafluorobutyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(F)(F)C(F)(F)C(F)(F)F VIEHKBXCWMMOOU-UHFFFAOYSA-N 0.000 claims description 4
- YJKHMSPWWGBKTN-UHFFFAOYSA-N 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoroheptyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)F YJKHMSPWWGBKTN-UHFFFAOYSA-N 0.000 claims description 4
- QHVBLSNVXDSMEB-UHFFFAOYSA-N 2-(diethylamino)ethyl prop-2-enoate Chemical compound CCN(CC)CCOC(=O)C=C QHVBLSNVXDSMEB-UHFFFAOYSA-N 0.000 claims description 4
- HFCUBKYHMMPGBY-UHFFFAOYSA-N 2-methoxyethyl prop-2-enoate Chemical compound COCCOC(=O)C=C HFCUBKYHMMPGBY-UHFFFAOYSA-N 0.000 claims description 4
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 claims description 4
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 claims description 4
- QIWKUEJZZCOPFV-UHFFFAOYSA-N phenyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1=CC=CC=C1 QIWKUEJZZCOPFV-UHFFFAOYSA-N 0.000 claims description 4
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 claims description 3
- 238000012377 drug delivery Methods 0.000 claims description 3
- 239000003623 enhancer Substances 0.000 claims description 3
- ZNJXRXXJPIFFAO-UHFFFAOYSA-N 2,2,3,3,4,4,5,5-octafluoropentyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(F)(F)C(F)(F)C(F)(F)C(F)F ZNJXRXXJPIFFAO-UHFFFAOYSA-N 0.000 claims description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims 1
- 239000012295 chemical reaction liquid Substances 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 238000009826 distribution Methods 0.000 abstract description 9
- 239000003054 catalyst Substances 0.000 abstract description 7
- 238000005580 one pot reaction Methods 0.000 abstract description 5
- 230000008901 benefit Effects 0.000 abstract description 2
- 230000003197 catalytic effect Effects 0.000 abstract description 2
- 238000003780 insertion Methods 0.000 abstract description 2
- 230000037431 insertion Effects 0.000 abstract description 2
- 230000000052 comparative effect Effects 0.000 description 20
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 238000005227 gel permeation chromatography Methods 0.000 description 14
- 230000000087 stabilizing effect Effects 0.000 description 13
- 238000012360 testing method Methods 0.000 description 11
- 229920001519 homopolymer Polymers 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 229920000469 amphiphilic block copolymer Polymers 0.000 description 5
- 238000002296 dynamic light scattering Methods 0.000 description 5
- 238000001338 self-assembly Methods 0.000 description 5
- 238000003917 TEM image Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000007152 ring opening metathesis polymerisation reaction Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 238000010551 living anionic polymerization reaction Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000010526 radical polymerization reaction Methods 0.000 description 3
- 229920005604 random copolymer Polymers 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- RSVZYSKAPMBSMY-UHFFFAOYSA-N 2,2,3,3-tetrafluoropropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(F)(F)C(F)F RSVZYSKAPMBSMY-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000010560 atom transfer radical polymerization reaction Methods 0.000 description 2
- 230000002902 bimodal effect Effects 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000000914 diffusion-ordered spectroscopy Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 238000012705 nitroxide-mediated radical polymerization Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000012744 reinforcing agent Substances 0.000 description 2
- NPSJHQMIVNJLNN-UHFFFAOYSA-N 2-ethylhexyl 4-nitrobenzoate Chemical compound CCCCC(CC)COC(=O)C1=CC=C([N+]([O-])=O)C=C1 NPSJHQMIVNJLNN-UHFFFAOYSA-N 0.000 description 1
- 239000004808 2-ethylhexylester Substances 0.000 description 1
- 238000005084 2D-nuclear magnetic resonance Methods 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229940078552 o-xylene Drugs 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000012712 reversible addition−fragmentation chain-transfer polymerization Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- RXJKFRMDXUJTEX-UHFFFAOYSA-N triethylphosphine Chemical compound CCP(CC)CC RXJKFRMDXUJTEX-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F297/00—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Graft Or Block Polymers (AREA)
Abstract
Description
技术领域technical field
本发明涉及聚合物技术领域,具体涉及具有不同形貌的两亲性嵌段聚合物纳米粒子及其制备方法和应用。The invention relates to the technical field of polymers, in particular to amphiphilic block polymer nanoparticles with different morphologies and a preparation method and application thereof.
背景技术Background technique
两亲性嵌段共聚物在溶液中的自组装是一种强大的合成聚合物纳米材料的方法,传统的溶液自组装需要首先合成嵌段聚合物并提纯,然后将其分散在选择性溶剂中,利用选择性溶剂对于两亲性嵌段聚合物中各嵌段溶解性差异以及各嵌段的相对比例的差异,从而得到球、囊泡等组装体,但这种方法要求极低的组装浓度(<1%)以及复杂的“聚合物合成+后聚合组装”过程,这些缺点大大限制了其在工业中的实际应用。The self-assembly of amphiphilic block copolymers in solution is a powerful method to synthesize polymeric nanomaterials. Conventional solution self-assembly requires the first synthesis and purification of block polymers, followed by their dispersion in selective solvents. , using the selective solvent for the solubility difference of each block in the amphiphilic block polymer and the difference in the relative proportion of each block to obtain assemblies such as spheres and vesicles, but this method requires extremely low assembly concentration (<1%) and the complicated "polymer synthesis + post-polymerization assembly" process, these shortcomings greatly limit its practical application in industry.
聚合诱导自组装(PISA)方法的出现则有效地避免了上述问题。PISA是在两亲性嵌段共聚物聚合的同时自组装出各种不同的形貌,PISA最大的优点是可以在很高的浓度下聚合组装,可重复性强,操作简单,在工业上应用广泛。各种活性/可控聚合技术的出现为PISA的快速发展提供了条件,例如自由基聚合(可逆加成-断裂链转移聚合(RAFT)、原子转移自由基聚合(ATRP)和氮氧化物介导的聚合(NMP))、开环易位聚合(ROMP)以及活性阴离子聚合等。在这些聚合方法中,自由基聚合通常需要“两锅两步”合成,即在第一锅中先合成大分子引发剂,分离提纯之后在第二锅中在大分子引发剂后发生链增长合成两亲性嵌段聚合物的同时自组装,这种方法通常耗时长且通常需要加热,耗能高;ROMP和活性阴离子聚合则通常通过“一锅两步”法合成,即在一锅内加入催化剂和亲溶剂链段单体,当第一种单体聚合完之后不淬灭直接加入第二种单体聚合,在合成两亲性嵌段共聚物的同时自组装出各种不同形貌;相对于自由基聚合,ROMP和活性阴离子聚合方法相对要简单一些,但是也需要连续加料。The emergence of the polymerization-induced self-assembly (PISA) method effectively avoids the above problems. PISA self-assembles various morphologies during the polymerization of amphiphilic block copolymers. The biggest advantage of PISA is that it can be polymerized and assembled at a high concentration, with strong repeatability, simple operation, and industrial application. widely. The emergence of various living/controlled polymerization technologies has provided conditions for the rapid development of PISA, such as radical polymerization (reversible addition-fragmentation chain transfer polymerization (RAFT), atom transfer radical polymerization (ATRP), and nitroxide-mediated polymerization (NMP)), ring-opening metathesis polymerization (ROMP), and living anionic polymerization. In these polymerization methods, free radical polymerization usually requires a "two-pot, two-step" synthesis, that is, the macroinitiator is synthesized in the first pot, and the chain-growth synthesis occurs after the macroinitiator in the second pot after separation and purification. Simultaneous self-assembly of amphiphilic block polymers, which is usually time-consuming and usually requires heating and high energy consumption; ROMP and living anionic polymerization are usually synthesized by a "one-pot two-step" method, that is, adding in one pot The catalyst and the solvophilic segment monomer, when the first monomer is polymerized, are directly added to the second monomer without quenching, and various morphologies are self-assembled while synthesizing the amphiphilic block copolymer; relatively For free radical polymerization, ROMP and living anionic polymerization methods are relatively simple, but also require continuous feed.
袁金颖等(参见Huo M,D Li,Song G,et al.Semi-Fluorinated Methacrylates:AClass of Versatile Monomers for Polymerization-Induced Self-Assembly[J].Macromolecular Rapid Communications,2018:1700840.)公开了通过自由基聚合制备得到具有可调尺寸和形态的聚合物组装体,其聚合3小时、5小时后得到蠕虫状胶束和片状(单体转化率为50.2%),聚合7小时后得到囊泡形态聚合物,反应路线如式(1)。但是上述方法需要通过“两锅两步”才能制备得到,工艺复杂。。Yuan Jinying et al. (see Huo M, D Li, Song G, et al. Semi-Fluorinated Methacrylates: AClass of Versatile Monomers for Polymerization-Induced Self-Assembly [J]. Macromolecular Rapid Communications, 2018: 1700840.) disclosed that the Polymer assemblies with adjustable size and morphology were prepared by polymerization, and worm-like micelles and sheets were obtained after 3 hours and 5 hours of polymerization (monomer conversion rate was 50.2%), and vesicle morphology was obtained after 7 hours of polymerization. The reaction scheme is shown in formula (1). However, the above method needs to be prepared through "two pots and two steps", and the process is complicated. .
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明的目的在于提供一种具有不同形貌的两亲性嵌段聚合物纳米粒子及其制备方法和应用。本发明提供的制备方法“一锅一步”即可高效合成具有不同形貌的两亲性嵌段聚合物纳米粒子,工艺简单。In view of this, the purpose of the present invention is to provide an amphiphilic block polymer nanoparticle with different morphologies and a preparation method and application thereof. The preparation method provided by the invention can efficiently synthesize amphiphilic block polymer nanoparticles with different morphologies in one pot and one step, and the process is simple.
为了实现上述发明目的,本发明提供以下技术方案:In order to achieve the above-mentioned purpose of the invention, the present invention provides the following technical solutions:
本发明提供了一种具有不同形貌的两亲性嵌段聚合物纳米粒子的制备方法,包括以下步骤:The invention provides a preparation method of amphiphilic block polymer nanoparticles with different morphologies, comprising the following steps:
将稳定链段单体、成核链段单体、路易斯酸、路易斯碱和芳香类溶剂混合,将所得混合反应液进行聚合反应,得到具有不同形貌的两亲性嵌段聚合物纳米粒子;The stabilizing segment monomer, the nucleating segment monomer, the Lewis acid, the Lewis base and the aromatic solvent are mixed, and the obtained mixed reaction solution is subjected to a polymerization reaction to obtain amphiphilic block polymer nanoparticles with different morphologies;
所述稳定链段单体为丙烯酸酯类单体;The stable segment monomer is an acrylate monomer;
所述成核链段单体包括甲基丙烯酸三氟乙酯、2,2,3,3-四氟丙基甲基丙烯酸酯、甲基丙烯酸八氟戊酯、甲基丙烯酸七氟丁酯、十二氟庚基甲基丙烯酸酯、甲基丙烯酸苯酯、甲基丙烯酸五氟苯酯或甲基丙烯酸苄基酯。The nucleating segment monomers include trifluoroethyl methacrylate, 2,2,3,3-tetrafluoropropyl methacrylate, octafluoropentyl methacrylate, heptafluorobutyl methacrylate, Dodecafluoroheptyl methacrylate, phenyl methacrylate, pentafluorophenyl methacrylate or benzyl methacrylate.
优选的,所述丙烯酸酯类单体包括丙烯酸二甲氨基乙酯、丙烯酸二乙氨基乙酯、丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸-2-甲氧乙基酯或丙烯酸2-乙基己酯。Preferably, the acrylate monomers include dimethylaminoethyl acrylate, diethylaminoethyl acrylate, methyl acrylate, ethyl acrylate, butyl acrylate, 2-methoxyethyl acrylate or 2- Ethylhexyl ester.
优选的,所述稳定链段单体和成核链段单体的摩尔比为1:1~5.5。Preferably, the molar ratio of the stabilizing segment monomer and the nucleating segment monomer is 1:1 to 5.5.
优选的,所述路易斯碱为氮杂环烯烃,所述氮杂环烯烃为 Preferably, the Lewis base is an azacycloalkene, and the azacycloalkene is
优选的,所述路易斯酸为BHTAliBu2。Preferably, the Lewis acid is BHTAl i Bu 2 .
优选的,所述路易斯碱、路易斯酸和稳定链段单体的摩尔比为1:2~10:50~100。Preferably, the molar ratio of the Lewis base, the Lewis acid and the stabilizing segment monomer is 1:2-10:50-100.
优选的,所述聚合反应的温度为0~100℃,时间为18~163min。Preferably, the temperature of the polymerization reaction is 0-100° C., and the time is 18-163 min.
优选的,所述混合反应液的固含量为5~20%。Preferably, the solid content of the mixed reaction solution is 5-20%.
本发明提供了上述技术方案所述制备方法得到的具有不同形貌的两亲性嵌段聚合物纳米粒子,所述不同形貌包括球形、蠕虫和囊泡中的一种或几种。The present invention provides amphiphilic block polymer nanoparticles with different morphologies obtained by the preparation method described in the above technical solution, and the different morphologies include one or more of spherical, worm and vesicle.
本发明提供了上述技术方案所述的具有不同形貌的两亲性嵌段聚合物纳米粒子作为抗摩擦剂、乳化剂、增强剂、药物传输载体或纳米反应器的应用。The present invention provides the application of the amphiphilic block polymer nanoparticles with different morphologies described in the above technical solutions as anti-friction agents, emulsifiers, enhancers, drug delivery carriers or nano-reactors.
本发明提供了一种具有不同形貌的两亲性嵌段聚合物纳米粒子的制备方法,包括以下步骤:将稳定链段单体、成核链段单体、路易斯酸、路易斯碱和芳香类溶剂混合,将所得混合反应液进行聚合反应,得到具有不同形貌的两亲性嵌段聚合物纳米粒子;所述聚合反应的时间为18~163min;所述稳定链段单体为丙烯酸酯类单体;所述成核链段单体包括甲基丙烯酸三氟乙酯。本发明提供的制备方法利用的路易斯酸碱对作为催化剂通过“一锅一步”法即可合成高度不对称的具有不同形貌的两亲性嵌段聚合物纳米粒子,工艺简单;路易斯(Lewis)酸碱对催化剂对丙烯酸酯类单体、甲基丙烯酸三氟乙酯和甲基丙烯酸苄基酯的催化活性高,能够显著缩短聚合反应的时间,聚合反应时间短,而且制备得到的具有不同形貌的两亲性嵌段聚合物纳米粒子的结构明确,单体插错少,聚合控制性好,分子量分布窄。而且,本发明提供的制备方法操作简单,适宜工业化生产。The invention provides a preparation method of amphiphilic block polymer nanoparticles with different morphologies, comprising the following steps: stabilizing segment monomers, nucleating segment monomers, Lewis acids, Lewis bases and aromatics The solvent is mixed, and the obtained mixed reaction solution is subjected to a polymerization reaction to obtain amphiphilic block polymer nanoparticles with different morphologies; the polymerization reaction time is 18-163 min; the stable segment monomer is acrylate Monomer; the nucleating segment monomer includes trifluoroethyl methacrylate. The preparation method provided by the present invention utilizes the Lewis acid-base pair as a catalyst to synthesize highly asymmetric amphiphilic block polymer nanoparticles with different morphologies through a "one-pot, one-step" method, and the process is simple; Lewis (Lewis) The acid-base pair catalyst has high catalytic activity for acrylate monomers, trifluoroethyl methacrylate and benzyl methacrylate, which can significantly shorten the polymerization reaction time, the polymerization reaction time is short, and the prepared products have different shapes. The amphiphilic block polymer nanoparticles with morphological appearance have clear structure, few monomer intercalation errors, good polymerization controllability and narrow molecular weight distribution. Moreover, the preparation method provided by the present invention is simple to operate and suitable for industrial production.
进一步的,通过控制两种稳定链段单体和成核链段单体的用量比,能够可控的制备得到球形貌、蠕虫形貌和囊泡形貌的具有不同形貌的两亲性嵌段聚合物纳米粒子。Further, by controlling the dosage ratio of the two stabilizing segment monomers and the nucleating segment monomers, it is possible to controllably prepare amphiphiles with different morphologies of spherical, worm and vesicle morphologies. Block polymer nanoparticles.
进一步的,本发明提供的制备方法在室温条件下进行聚合反应,反应条件温和,无需加热,耗能低。Further, the preparation method provided by the present invention carries out the polymerization reaction at room temperature, the reaction conditions are mild, no heating is required, and the energy consumption is low.
本发明提供了上述技术方案所述制备方法得到的具有不同形貌的两亲性嵌段聚合物纳米粒子,所述不同形貌包括球形、蠕虫和囊泡中的一种或几种。本发明提供的具有不同形貌的两亲性嵌段聚合物纳米粒子的结构明确,单体插错少,聚合控制性好,分子量分布窄。The present invention provides amphiphilic block polymer nanoparticles with different morphologies obtained by the preparation method described in the above technical solution, and the different morphologies include one or more of spherical, worm and vesicle. The amphiphilic block polymer nano-particles with different morphologies provided by the present invention have clear structures, few monomer insertion errors, good polymerization controllability and narrow molecular weight distribution.
附图说明Description of drawings
图1为实施例1~4制备的具有不同形貌的两亲性嵌段聚合物纳米粒子的GPC曲线图;Fig. 1 is the GPC curve diagram of the amphiphilic block polymer nanoparticles with different morphologies prepared in Examples 1-4;
图2为对比例3制备的具有不同形貌的两亲性嵌段聚合物纳米粒子的GPC曲线图;Fig. 2 is the GPC curve diagram of amphiphilic block polymer nanoparticles with different morphologies prepared in Comparative Example 3;
图3为对比例5制备的聚合物的GPC曲线图;Fig. 3 is the GPC curve diagram of the polymer prepared by Comparative Example 5;
图4为对比例6制备的聚合物的GPC曲线图;Fig. 4 is the GPC curve diagram of the polymer prepared by Comparative Example 6;
图5为对比例4制备得PDMAEA均聚物的氢谱图;Fig. 5 is the hydrogen spectrogram of PDMAEA homopolymer prepared by comparative example 4;
图6为实施例1制备具有不同形貌的两亲性嵌段聚合物纳米粒子的DOSY图;6 is a DOSY diagram of preparing amphiphilic block polymer nanoparticles with different morphologies in Example 1;
图7为实施例1和对比例1~2制备的聚合物的13C NMR谱图;Figure 7 is the 13 C NMR spectrum of the polymers prepared in Example 1 and Comparative Examples 1-2;
图8为实施例1制备的具有不同形貌的两亲性嵌段聚合物纳米粒子的DSC图;Fig. 8 is the DSC chart of the amphiphilic block polymer nanoparticles with different morphologies prepared in Example 1;
图9为实施例1~4制备的具有不同形貌的两亲性嵌段聚合物纳米粒子的TEM图;9 is a TEM image of the amphiphilic block polymer nanoparticles with different morphologies prepared in Examples 1-4;
图10为实施例1~2和实施例4制备的具有不同形貌的两亲性嵌段聚合物纳米粒子的DLS图;10 is the DLS images of the amphiphilic block polymer nanoparticles with different morphologies prepared in Examples 1-2 and Example 4;
图11为实施例5~7制备的具有不同形貌的两亲性嵌段聚合物纳米粒子的TEM图。FIG. 11 is the TEM images of the amphiphilic block polymer nanoparticles with different morphologies prepared in Examples 5-7.
具体实施方式Detailed ways
本发明提供了一种具有不同形貌的两亲性嵌段聚合物纳米粒子的制备方法,包括以下步骤:The invention provides a preparation method of amphiphilic block polymer nanoparticles with different morphologies, comprising the following steps:
将稳定链段单体、成核链段单体、路易斯酸、路易斯碱和芳香类溶剂混合,将所得混合反应液进行聚合反应,得到具有不同形貌的两亲性嵌段聚合物纳米粒子。The stabilizing segment monomer, the nucleating segment monomer, the Lewis acid, the Lewis base and the aromatic solvent are mixed, and the obtained mixed reaction solution is subjected to a polymerization reaction to obtain amphiphilic block polymer nanoparticles with different morphologies.
在本发明中,若无特殊说明,所有的原料组分均为本领域技术人员熟知的市售商品。In the present invention, unless otherwise specified, all raw material components are commercially available commodities well known to those skilled in the art.
在本发明中,所述稳定链段单体为丙烯酸酯类单体,优选包括丙烯酸二甲氨基乙酯(DMAEA)、丙烯酸二乙氨基乙酯(DEAEA)、丙烯酸甲酯(MA)丙烯酸乙酯(EA)、丙烯酸丁酯(BA)、丙烯酸-2-甲氧乙基酯(MEA)或丙烯酸2-乙基己酯(2-EHA)。在本发明中,所述成核链段单体包括甲基丙烯酸三氟乙酯(TFEMA)、2,2,3,3-四氟丙基甲基丙烯酸酯(TFPMA)、甲基丙烯酸八氟戊酯(OFPMA)、甲基丙烯酸七氟丁酯(HFBMA)、十二氟庚基甲基丙烯酸酯(DFHMA)、甲基丙烯酸苯酯(PMA)、甲基丙烯酸五氟苯酯(PFMA)或甲基丙烯酸苄基酯(BnMA)。在本发明中,所述稳定链段单体和成核链段单体的摩尔比优选为1:1~5.5,更优选为75:265~400或100:100~500。In the present invention, the stable segment monomer is an acrylate monomer, preferably including dimethylaminoethyl acrylate (DMAEA), diethylaminoethyl acrylate (DEAEA), methyl acrylate (MA) ethyl acrylate (EA), butyl acrylate (BA), 2-methoxyethyl acrylate (MEA) or 2-ethylhexyl acrylate (2-EHA). In the present invention, the nucleating segment monomers include trifluoroethyl methacrylate (TFEMA), 2,2,3,3-tetrafluoropropyl methacrylate (TFPMA), octafluoromethacrylate Amyl (OFPMA), Heptafluorobutyl Methacrylate (HFBMA), Dodecafluoroheptyl Methacrylate (DFHMA), Phenyl Methacrylate (PMA), Pentafluorophenyl Methacrylate (PFMA) or Benzyl methacrylate (BnMA). In the present invention, the molar ratio of the stabilizing segment monomer and the nucleating segment monomer is preferably 1:1-5.5, more preferably 75:265-400 or 100:100-500.
在本发明中,所述路易斯碱优选为氮杂环烯烃,所述氮杂环烯烃优选为在本发明中,所述路易斯酸优选为BHTAliBu2。In the present invention, the Lewis base is preferably an azacycloalkene, and the azacycloalkene is preferably In the present invention, the Lewis acid is preferably BHTAl i Bu 2 .
在本发明中,所述芳香类溶剂优选包括甲苯、邻二甲苯和均三甲苯中的一种或几种。在本发明中,所述混合反应液的固含量优选为5~20%,更优选为5~15%,最优选为10~15%,所述固含量为稳定链段单体、成核链段单体、路易斯酸和路易斯碱的总质量占稳定链段单体、成核链段单体、路易斯酸、路易斯碱和芳香类溶剂总质量的比例。In the present invention, the aromatic solvent preferably includes one or more of toluene, o-xylene and mesitylene. In the present invention, the solid content of the mixed reaction solution is preferably 5-20%, more preferably 5-15%, and most preferably 10-15%, and the solid content is stabilizing segment monomers, nucleating chains The total mass of segment monomer, Lewis acid and Lewis base accounts for the proportion of the total mass of stabilizing segment monomer, nucleating segment monomer, Lewis acid, Lewis base and aromatic solvent.
在本发明中,所述路易斯碱和路易斯酸和稳定链段单体的摩尔比优选为1:2~10:50~100,更优选为1:2~5:60~80。本发明对于所述混合的方式没有特殊限定,能够将原料混合均匀即可;所述混合的温度优选为室温;所述混合的顺序优选为将稳定链段单体和成核链段单体加入到芳香类溶剂中,加入路易斯酸预混后加入路易斯碱;所述预混的时间优选为2~10min,更优选为2~5min。In the present invention, the molar ratio of the Lewis base to the Lewis acid and the stable segment monomer is preferably 1:2-10:50-100, more preferably 1:2-5:60-80. The present invention does not specifically limit the mixing method, as long as the raw materials can be mixed uniformly; the mixing temperature is preferably room temperature; the mixing sequence is preferably adding the stabilizing segment monomer and the nucleating segment monomer to the To the aromatic solvent, add Lewis acid to premix and then add Lewis base; the premixing time is preferably 2-10 min, more preferably 2-5 min.
在本发明中,所述聚合反应的温度优选为0~100℃,更优选为10~90℃,进一步优选为20℃、30℃、40℃、50℃、60℃、70℃或80℃;所述聚合反应的时间优选为18~163min,更优选为20~120min,进一步优选为30min、40min、50min、60min、70min、80min、90min、100min或110min;在本发明的实施例中,所述聚合反应的时间优选通过测试聚合反应体系的氢谱(1HNMR)确定,当所述聚合反应体系中不含稳定链段单体和成核链段单体(即两种单体转化率为100%)时所述聚合反应完毕;所述聚合反应优选在手套箱中进行。在本发明中,所述聚合反应过程中稳定链段单体和成核链段单体在路易斯酸碱对的催化作用下发生迈克尔加成型的聚合反应同时进行自组装,得到具有不同形貌的两亲性嵌段聚合物纳米粒子。In the present invention, the temperature of the polymerization reaction is preferably 0-100°C, more preferably 10-90°C, further preferably 20°C, 30°C, 40°C, 50°C, 60°C, 70°C or 80°C; The time of the polymerization reaction is preferably 18 to 163 min, more preferably 20 to 120 min, further preferably 30 min, 40 min, 50 min, 60 min, 70 min, 80 min, 90 min, 100 min or 110 min; in the embodiment of the present invention, the The time of the polymerization reaction is preferably determined by testing the hydrogen spectrum ( 1 HNMR) of the polymerization reaction system. %), the polymerization reaction is completed; the polymerization reaction is preferably carried out in a glove box. In the present invention, during the polymerization reaction, the stabilizing segment monomer and the nucleating segment monomer undergo a Michael addition-type polymerization reaction under the catalysis of the Lewis acid-base pair and self-assemble at the same time to obtain a polymer with different morphologies. Amphiphilic block polymer nanoparticles.
本发明提供了上述技术方案所述制备方法得到的具有不同形貌的两亲性嵌段聚合物纳米粒子,所述不同形貌包括球形、蠕虫和囊泡中的一种或几种。在本发明中,所述具有不同形貌的两亲性嵌段聚合物纳米粒子中稳定链段单体和成核链段单体的聚合度比优选为1:1~5.5,更优选为75:265~400或100:100~500,具体的,当所述具有不同形貌的两亲性嵌段聚合物纳米粒子中稳定链段聚合度为75时,所述成核链段聚合物段的聚合度为265~400;当所述稳定链聚合物段的聚合度为100时,所述成核链段聚合物段的聚合度为100~500,更优选为200~500,最优选为265~400。The present invention provides amphiphilic block polymer nanoparticles with different morphologies obtained by the preparation method described in the above technical solution, and the different morphologies include one or more of spherical, worm and vesicle. In the present invention, the polymerization degree ratio of the stabilizing segment monomer and the nucleating segment monomer in the amphiphilic block polymer nanoparticles with different morphologies is preferably 1:1 to 5.5, more preferably 75 : 265-400 or 100: 100-500, specifically, when the polymerization degree of the stable segment in the amphiphilic block polymer nanoparticles with different morphologies is 75, the nucleating segment polymer segment When the polymerization degree of the stabilizing chain polymer segment is 100, the polymerization degree of the nucleating segment polymer segment is 100-500, more preferably 200-500, most preferably 265 to 400.
在本发明中,所述具有不同形貌的两亲性嵌段聚合物纳米粒子的粒径优选为50~290nm,更优选为50~200nm,进一步优选为50~150nm。In the present invention, the particle size of the amphiphilic block polymer nanoparticles with different morphologies is preferably 50-290 nm, more preferably 50-200 nm, further preferably 50-150 nm.
本发明提供了上述技术方案所述的具有不同形貌的两亲性嵌段聚合物纳米粒子作为抗摩擦剂、乳化剂、增强剂、药物传输载体或纳米反应器的应用。在本发明中,所述抗摩擦剂优选为汽车发动机机油的抗摩擦剂;所述乳化剂优选为Pickering乳化剂;所述增强剂优选为环氧树脂或涂料的增强剂。The present invention provides the application of the amphiphilic block polymer nanoparticles with different morphologies described in the above technical solutions as anti-friction agents, emulsifiers, enhancers, drug delivery carriers or nano-reactors. In the present invention, the anti-friction agent is preferably an anti-friction agent for automobile engine oil; the emulsifier is preferably a Pickering emulsifier; the reinforcing agent is preferably an epoxy resin or a paint reinforcing agent.
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below with reference to the embodiments of the present invention. Obviously, the described embodiments are only some, but not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
实施例1Example 1
在室温条件下,将DMAEA和TFEMA同时加入到甲苯中,加入Lewis酸预混2min,然后加入Lewis碱,将所得混合反应液进行聚合反应18min,得到两亲性嵌段聚合物纳米粒子溶液,确定溶液中两亲性嵌段聚合物纳米粒子的形貌后,在两亲性嵌段聚合物纳米粒子溶液中加入正己烷进行淬灭后过滤,利用正己烷将所得固体产物洗涤3次后抽干,得到两亲性嵌段聚合物纳米粒子(记为PDMAEA75-b-PTFEMA265,其中,75和265表示聚合度),然后进行后续的表征和测试。At room temperature, DMAEA and TFEMA were added into toluene at the same time, Lewis acid was added for premixing for 2 min, then Lewis base was added, and the obtained mixed reaction solution was subjected to polymerization reaction for 18 min to obtain an amphiphilic block polymer nanoparticle solution. After the morphology of the amphiphilic block polymer nanoparticles in the solution, n-hexane was added to the solution of the amphiphilic block polymer nanoparticles for quenching and then filtered. The obtained solid product was washed 3 times with n-hexane and then drained. , obtain amphiphilic block polymer nanoparticles (denoted as PDMAEA 75 -b-PTFEMA 265 , where 75 and 265 represent the degree of polymerization), and then carry out subsequent characterization and testing.
其中,Lewis碱为Lewis酸为BHTAliBu2;混合反应液的固含量为15%;Lewis碱:Lewis酸:DMAEA:TFEMA的摩尔比=1:2:75:265。Among them, Lewis base is The Lewis acid was BHTAl i Bu 2 ; the solid content of the mixed reaction solution was 15%; the molar ratio of Lewis base: Lewis acid: DMAEA: TFEMA=1:2:75:265.
实施例2~7Examples 2 to 7
按照实施例1的方法制备两亲性嵌段聚合物纳米粒子,制备条件如表1所示:The amphiphilic block polymer nanoparticles were prepared according to the method of Example 1, and the preparation conditions were shown in Table 1:
表1 实施例1~7的制备条件Table 1 Preparation conditions of Examples 1 to 7
对比例1Comparative Example 1
按照按照实施例1的方法制备,与实施例1的区别在于,不加入DMAEA,得到甲基丙烯酸三氟乙酯均聚物(PTFEMA)。It was prepared according to the method of Example 1, and the difference from Example 1 was that DMAEA was not added to obtain trifluoroethyl methacrylate homopolymer (PTFEMA).
对比例2Comparative Example 2
按照按照实施例1的方法制备,与实施例1的区别在于,不加入TFEMA,得到丙烯酸二甲氨基乙酯均聚物(PDMAEA)。It was prepared according to the method of Example 1, and the difference from Example 1 was that TFEMA was not added to obtain dimethylaminoethyl acrylate homopolymer (PDMAEA).
对比例3Comparative Example 3
按照实施例1的方法制备具有不同形貌的两亲性嵌段聚合物纳米粒子,与实施例1的区别在于,Lewis酸为(BHT)2AlMe,得到两亲性嵌段共聚物。Amphiphilic block polymer nanoparticles with different morphologies were prepared according to the method of Example 1. The difference from Example 1 was that the Lewis acid was (BHT) 2 AlMe to obtain an amphiphilic block copolymer.
对比例4Comparative Example 4
按照实施例1的方法制备具有不同形貌的两亲性嵌段聚合物纳米粒子,与实施例1的区别在于,Lewis酸为(BHT)2AliBu,得到PDMAEA均聚物。Amphiphilic block polymer nanoparticles with different morphologies were prepared according to the method of Example 1. The difference from Example 1 was that the Lewis acid was (BHT) 2 Al i Bu to obtain a PDMAEA homopolymer.
对比例5Comparative Example 5
按照实施例1的方法制备具有不同形貌的两亲性嵌段聚合物纳米粒子,与实施例1的区别在于,Lewis酸为BHTAliBu2,Lewis碱为PEt3。Amphiphilic block polymer nanoparticles with different morphologies were prepared according to the method of Example 1. The difference from Example 1 was that the Lewis acid was BHTAl i Bu 2 and the Lewis base was PEt 3 .
对比例6Comparative Example 6
按照实施例1的方法制备具有不同形貌的两亲性嵌段聚合物纳米粒子,与实施例1的区别在于,Lewis酸为BHTAliBu2,Lewis碱为 Amphiphilic block polymer nanoparticles with different morphologies were prepared according to the method of Example 1. The difference from Example 1 is that the Lewis acid is BHTAl i Bu 2 and the Lewis base is
测试例test case
(1)凝胶渗透色谱(GPC)(1) Gel permeation chromatography (GPC)
分别将实施例1~4和对比例3制备的聚合物纳米粒子溶解于DMF溶剂中,得到浓度为2mg/mL的聚合物溶液,然后测试聚合物溶液的GPC,不同聚合度的两亲性嵌段聚合物纳米粒子的分子量和分子量分布测试结果如图1~4所示.The polymer nanoparticles prepared in Examples 1 to 4 and Comparative Example 3 were respectively dissolved in DMF solvent to obtain a polymer solution with a concentration of 2 mg/mL, and then the GPC of the polymer solution was tested, and the amphiphilic intercalation of different degrees of polymerization. The molecular weight and molecular weight distribution test results of segmented polymer nanoparticles are shown in Figures 1-4.
图1为实施例1~4制备的具有不同形貌的两亲性嵌段聚合物纳米粒子的凝胶渗透色谱(GPC),由图1可知,随着TFEMA单体比例的增加,具有不同形貌的两亲性嵌段聚合物纳米粒子的分子量逐渐增加,因此,本发明制备得到的具有不同形貌的两亲性嵌段聚合物纳米粒子为共聚物。Figure 1 shows the gel permeation chromatography (GPC) of the amphiphilic block polymer nanoparticles with different morphologies prepared in Examples 1-4. It can be seen from The molecular weight of the amphiphilic block polymer nanoparticles with different morphologies gradually increases. Therefore, the amphiphilic block polymer nanoparticles with different morphologies prepared by the present invention are copolymers.
图2为对比例3制备的两亲性嵌段共聚物纳米粒子的凝胶渗透色谱(GPC),由图2可知,当采用(BHT)2AlMe代替BHTAliBu2作为Lewis酸时,GPC曲线表现出双峰分布和宽峰分布。Figure 2 is the gel permeation chromatography (GPC) of the amphiphilic block copolymer nanoparticles prepared in Comparative Example 3. It can be seen from Figure 2 that when (BHT) 2 AlMe is used instead of BHTAl i Bu 2 as Lewis acid, the GPC curve A bimodal distribution and a broad peak distribution are exhibited.
图3为对比例5制备的聚合物的GPC曲线图,由图3可知,以PEt3+BHTAliBu2作为催化剂的引发效率较低,得到的聚合物的分子量偏高,而且分子量分布较宽,这对于两亲性嵌段聚合物纳米粒子的调控形貌是不利的。Fig. 3 is the GPC curve diagram of the polymer prepared in Comparative Example 5. It can be seen from Fig. 3 that the initiation efficiency of using PEt3+BHTAl i Bu 2 as the catalyst is low, the molecular weight of the obtained polymer is high, and the molecular weight distribution is wide, This is unfavorable for the modulated morphology of amphiphilic block polymer nanoparticles.
图4为对比例6制备的聚合物的GPC曲线图,由图4可知,对比例6制备的聚合物具有双峰分布,除了共聚物的峰,还有一个TFEMA均聚物的峰,而PTFEMA在甲苯溶液中是不溶的,因此用BHTAliBu2+作为催化剂得到的聚合体系是不稳定的,会有沉淀产生,上述催化剂不适合用来调节两亲性嵌段聚合物纳米粒子的形貌。Figure 4 is a GPC curve diagram of the polymer prepared in Comparative Example 6. It can be seen from Figure 4 that the polymer prepared in Comparative Example 6 has a bimodal distribution. In addition to the peak of the copolymer, there is also a peak of TFEMA homopolymer, and PTFEMA It is insoluble in toluene solution, so use BHTAl i Bu 2 + The polymerization system obtained as a catalyst is unstable, and precipitation occurs, and the above catalyst is not suitable for adjusting the morphology of amphiphilic block polymer nanoparticles.
图5为对比例4制备得PDMAEA均聚物的氢谱图,由图5可知,对比例4制备得聚合物的1HNMR只表现出PDMAEA的峰,说明当采用(BHT)2AliBu作为Lewis酸时,只能聚合DMAEA单体,不能聚合TFEMA单体。因此,当采用(BHT)2AlMe和(BHT)2AliBu这两种Lewis酸时对聚合反应的控制性很差。Figure 5 is the hydrogen spectrum of the PDMAEA homopolymer prepared in Comparative Example 4. It can be seen from Figure 5 that the 1 HNMR of the polymer prepared in Comparative Example 4 only showed the peak of PDMAEA, indicating that when (BHT) 2 Al i Bu was used as the When Lewis acid is used, only DMAEA monomer can be polymerized, but TFEMA monomer cannot be polymerized. Therefore, the control of the polymerization reaction is poor when two Lewis acids, (BHT) 2 AlMe and (BHT) 2 Al i Bu are used.
(2)二维扩散排序谱(DOSY)(2) Two-dimensional Diffusion Sorting Spectrum (DOSY)
将10mg实施例1制备两亲性嵌段聚合物纳米粒子溶解于550μL的氘代氯仿中,在室温条件下测500M 2D NMR。测试结果如图6所示,由图6可知,谱图上所有的点都在一条直线上,说明,本发明制备的两亲性嵌段聚合物纳米粒子有相同的扩散系数,是一条共聚物链,而不是两种均聚物的混合物。10 mg of the amphiphilic block polymer nanoparticles prepared in Example 1 were dissolved in 550 μL of deuterated chloroform, and 500M 2D NMR was measured at room temperature. The test results are shown in Figure 6. It can be seen from Figure 6 that all the points on the spectrum are on a straight line, indicating that the amphiphilic block polymer nanoparticles prepared by the present invention have the same diffusion coefficient and are a copolymer. chain, rather than a mixture of two homopolymers.
(3)13C NMR(3) 13 C NMR
图7为实施例1和对比例1~2制备的聚合物的13C NMR谱图,由图7可知,两亲性嵌段聚合物纳米粒子的羰基区域的峰的位置和峰形和对比例1~2制备的均聚物是比较一致的,说明,本发明制备的两亲性嵌段聚合物纳米粒子是嵌段共聚物,而不是随机共聚物。Fig. 7 is the 13 C NMR spectra of the polymers prepared in Example 1 and Comparative Examples 1-2. As can be seen from Fig. 7, the position and shape of the peaks in the carbonyl region of the amphiphilic block polymer nanoparticles and the comparative examples The homopolymers prepared in 1-2 are relatively consistent, indicating that the amphiphilic block polymer nanoparticles prepared in the present invention are block copolymers, not random copolymers.
(4)DSC(4) DSC
图8为实施例1制备的两亲性嵌段聚合物纳米粒子的DSC图。由图8可知,本发明制备的两亲性嵌段聚合物纳米粒子有两个玻璃化转变温度Tg,分别对应于PDMAEA和PTFEMA,随机共聚物的DSC测试只会有一个Tg,说明,本发明实施例1制备得到的是嵌段共聚物,而不是随机共聚物。FIG. 8 is the DSC chart of the amphiphilic block polymer nanoparticles prepared in Example 1. FIG. It can be seen from FIG. 8 that the amphiphilic block polymer nanoparticles prepared by the present invention have two glass transition temperatures T g , corresponding to PDMAEA and PTFEMA respectively, and there is only one T g in the DSC test of the random copolymer, indicating that, The block copolymer prepared in Example 1 of the present invention is not a random copolymer.
(5)形貌表征(5) Morphology Characterization
TEM测试:将聚合反应后的反应液用甲苯稀释100倍,得到稀释液,取10μL稀释液滴到测试TEM用的碳支持膜铜网上,室温挥发过夜,然后测试TEM,通过TEM可以看到不同的组装形貌。TEM test: Dilute the reaction solution after the polymerization reaction by 100 times with toluene to obtain a diluent, take 10 μL of the diluted droplet onto the carbon-supported film copper mesh used for testing TEM, volatilize overnight at room temperature, and then test the TEM, and the difference can be seen through TEM. assembly shape.
动态光散射(DLS)测试:将聚合反应后的反应液用甲苯稀释100倍,得到稀释液,然后取1mL稀释液置于玻璃样品池中测试粒径分布的仪器测试进行测试。Dynamic Light Scattering (DLS) test: Dilute the reaction solution after the polymerization reaction by 100 times with toluene to obtain a diluted solution, and then take 1 mL of the diluted solution and place it in a glass sample cell to test the particle size distribution.
图9为实施例1~4制备的两亲性嵌段聚合物纳米粒子的TEM图,图10为实施例1~2和实施例4制备的两亲性嵌段聚合物纳米粒子的DLS图。由图9~10可知,固定PDMAEA的DP=75,当PTFEMA的DP分别为265、310和400时,可以得到球形、蠕虫和囊泡形貌的两亲性嵌段聚合物纳米粒子,通过动态光散射(DLS)测得的粒径大小和TEM的是一致的,说明,本发明提供的制备方法能够很好的控制两亲性嵌段聚合物纳米粒子的形貌。9 is a TEM image of the amphiphilic block polymer nanoparticles prepared in Examples 1-4, and FIG. 10 is a DLS image of the amphiphilic block polymer nanoparticles prepared in Examples 1-2 and Example 4. It can be seen from Figures 9-10 that the fixed DP of PDMAEA is 75, and when the DP of PTFEMA is 265, 310 and 400, respectively, amphiphilic block polymer nanoparticles with spherical, worm and vesicle morphologies can be obtained. The particle size measured by light scattering (DLS) is consistent with that of TEM, indicating that the preparation method provided by the present invention can well control the morphology of the amphiphilic block polymer nanoparticles.
图11为实施例5~7制备的两亲性嵌段聚合物纳米粒子的TEM图,由图10可知,增加PDMAEA的聚合度则可以得到球形到蠕虫的形貌的两亲性嵌段聚合物纳米粒子。Fig. 11 is the TEM images of the amphiphilic block polymer nanoparticles prepared in Examples 5-7. It can be seen from Fig. 10 that the amphiphilic block polymer with the morphology from spherical to worm can be obtained by increasing the degree of polymerization of PDMAEA Nanoparticles.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the principles of the present invention, several improvements and modifications can be made. It should be regarded as the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111485621.XA CN113999354B (en) | 2021-12-07 | 2021-12-07 | Amphiphilic block polymer nanoparticles with different morphologies and their preparation methods and applications |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111485621.XA CN113999354B (en) | 2021-12-07 | 2021-12-07 | Amphiphilic block polymer nanoparticles with different morphologies and their preparation methods and applications |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113999354A CN113999354A (en) | 2022-02-01 |
CN113999354B true CN113999354B (en) | 2022-07-12 |
Family
ID=79931466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111485621.XA Active CN113999354B (en) | 2021-12-07 | 2021-12-07 | Amphiphilic block polymer nanoparticles with different morphologies and their preparation methods and applications |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113999354B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114671987B (en) * | 2022-04-15 | 2023-07-14 | 清华大学 | A kind of active polymer microsphere and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113480703A (en) * | 2021-07-08 | 2021-10-08 | 安阳工学院 | Method for preparing amphiphilic block copolymer by light-operated free radical polymerization and ring-opening copolymerization |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006241189A (en) * | 2005-02-28 | 2006-09-14 | Osaka Univ | Process for producing polyalkenyl ether |
-
2021
- 2021-12-07 CN CN202111485621.XA patent/CN113999354B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113480703A (en) * | 2021-07-08 | 2021-10-08 | 安阳工学院 | Method for preparing amphiphilic block copolymer by light-operated free radical polymerization and ring-opening copolymerization |
Non-Patent Citations (2)
Title |
---|
Precise control of molecular weight and stereospecificity in lewis pair polymerization of semifluorinated methacrylates:mechanistic studies and stereocomplex formation;Wang Xing等;《Macromolecules》;20201231;第53卷(第12期);4659-4669 * |
立构嵌段聚合物的合成方法;郑文洁等;《科学通报》;20161210;第61卷(第34期);3651-3660 * |
Also Published As
Publication number | Publication date |
---|---|
CN113999354A (en) | 2022-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang | Controlled/“living” radical precipitation polymerization: A versatile polymerization technique for advanced functional polymers | |
Feng et al. | PNIPAM‐b‐(PEA‐g‐PDMAEA) double‐hydrophilic graft copolymer: Synthesis and its application for preparation of gold nanoparticles in aqueous media | |
Liu et al. | Thermally responsive polymeric micellar nanoparticles self-assembled from cholesteryl end-capped random poly (N-isopropylacrylamide-co-N, N-dimethylacrylamide): synthesis, temperature-sensitivity, and morphologies | |
Fallahi-Sambaran et al. | Investigation of different core-shell toward Janus morphologies by variation of surfactant and feeding composition: A study on the kinetics of DOX release | |
US20100273906A1 (en) | Atom tranfer dispersion polymerization | |
Zhu et al. | Polymerization-induced cooperative assembly of block copolymer and homopolymer via RAFT dispersion polymerization | |
Shi et al. | Core cross-linked star (CCS) polymers with tunable polarity: synthesis by RAFT dispersion polymerization, self-assembly and emulsification | |
JP2002514667A (en) | Microgel preparation process | |
CN113999354B (en) | Amphiphilic block polymer nanoparticles with different morphologies and their preparation methods and applications | |
Chen et al. | Shell of amphiphilic molecular bottlebrush matters as unimolecular micelle | |
Zhou et al. | RAFT emulsion polymerization of styrene mediated by core cross-linked star (CCS) polymers | |
CN102731738B (en) | Polyhedral oligomeric silsesquioxane (POSS) based patterned nano microsphere and preparation method thereof | |
CN106832158B (en) | A kind of pH-responsive dynamic shell cross-linked polymer nanoparticle and preparation method thereof | |
Gohy | Metallo-supramolecular block copolymer micelles | |
Zhang et al. | Synthesis and unusual volume phase transition behavior of poly (N-isopropylacrylamide)–poly (2-hydroxyethyl methacrylate) interpenetrating polymer network microgel | |
Sun et al. | PHEA-g-PDMAEA well-defined graft copolymers: SET-LRP synthesis, self-catalyzed hydrolysis, and quaternization | |
Zhang et al. | A facile, efficient and “green” route to pH-responsive crosslinked poly (methacrylic acid) nanoparticles | |
Park et al. | Cross-linking polymerization-induced self-assembly to produce branched core cross-linked star block polymer micelles | |
CN101891843A (en) | A kind of preparation method of hyperbranched polyvinyl acetate | |
CN110804143A (en) | Method for preparing block polymer nanoparticles based on controllable free radical polymerization | |
Jiao et al. | Efficient one-pot synthesis of uniform, surface-functionalized, and “living” polymer microspheres by reverse atom transfer radical precipitation polymerization | |
CN107163203A (en) | A kind of many pattern organic nano particles and its preparation method and application | |
Pei et al. | Ethanolic RAFT dispersion polymerization of 2-(naphthalen-2-yloxy) ethyl methacrylate and 2-phenoxyethyl methacrylate with poly [2-(dimethylamino) ethyl methacrylate] macro-chain transfer agents | |
CN109535345B (en) | Method for preparing polymer based on semi-continuous feeding method | |
Jumeaux et al. | Synthesis and self-assembly of temperature-responsive copolymers based on N-vinylpyrrolidone and triethylene glycol methacrylate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |