CN113983936A - 基于光纤光栅位移计的桥梁竖向位移实时监测装置及方法 - Google Patents

基于光纤光栅位移计的桥梁竖向位移实时监测装置及方法 Download PDF

Info

Publication number
CN113983936A
CN113983936A CN202111258745.4A CN202111258745A CN113983936A CN 113983936 A CN113983936 A CN 113983936A CN 202111258745 A CN202111258745 A CN 202111258745A CN 113983936 A CN113983936 A CN 113983936A
Authority
CN
China
Prior art keywords
displacement meter
fiber grating
displacement
bridge
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111258745.4A
Other languages
English (en)
Inventor
李胜利
梁真真
郭攀
毋光明
王希东
徐斌
李攀杰
郑鹏飞
崔灿
李金珂
姜楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN202111258745.4A priority Critical patent/CN113983936A/zh
Publication of CN113983936A publication Critical patent/CN113983936A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种基于光纤光栅位移计的桥梁竖向位移实时监测装置,包括拉线和光纤光栅位移计,所述拉线一端固定在桥梁底部的测点上,所述拉线另一端与光纤光栅位移计的检测端固定,所述光纤光栅位移计安装在角度垫块上,所述角度垫块固定在桥梁的竖向支撑部上,所述光纤光栅位移计通过跳线与光纤光栅解调仪连接,所述光纤光栅解调仪收集数据并供电脑采集;还公开一种检测方法,先对光纤光栅位移计进行标定以及温度补偿,随后在模拟条件下对安装角度和光纤光栅位移计测得的竖向位移数据进行拟合,根据拟合结果获得竖向位移和斜向位移的比值,根据比值计算竖向位移数据。本发明安装方便快捷,成本可控,并且安全系数高,满足检测需求。

Description

基于光纤光栅位移计的桥梁竖向位移实时监测装置及方法
技术领域
本发明涉及中小桥梁健康监测领域,具体涉及一种基于光纤光栅位移计的桥梁竖向位移实时监测装置及方法。
背景技术
桥梁竖向位移作为最有用的、最直观的、最方便观察的主要监测指标,它与桥梁的实际状态密切相关,跨中竖向位移作为评估桥梁结构整体短期和长期性能以及评估其安全性的最重要的指标之一,既反映了桥梁在竖直方向上的整体刚度,也反映了桥梁的承载能力,在活载能力评估、健康监测、安全评估、温度效应和预应力损失等方面都有很多应用。
由于桥梁跨越水体或道路,桥梁的竖向位移检测是无法直接在监测点下方架设激光位移计直接测量的,需要搭设平台或者安装横向梁柱才能够固定激光位移计,这样的做法使得成本大大提高,并且当桥梁下方是道路时,也存在掉落以及因限高发生碰擦的风险,安全系数极低,因此通常很难建立一个固定的参考点,竖向位移仍然是长期实时监测中最难测量的参数之一。
综上,研发一种适应于中小桥梁的更方便、更容易架设、更经济实用的竖向位移实时监测系统已成为当前迫切的要求之一。
发明内容
本发明要解决的技术问题是提供一种基于光纤光栅位移计的桥梁竖向位移实时监测装置及方法,安装方便快捷,成本可控,并且安全系数高。
为了解决上述技术问题,本发明提供了一种基于光纤光栅位移计的桥梁竖向位移实时监测装置,包括拉线和光纤光栅位移计,所述拉线一端固定在桥梁底部的测点上,所述拉线另一端与光纤光栅位移计的检测端固定,所述光纤光栅位移计安装在角度垫块上,所述角度垫块固定在桥梁的竖向支撑部上,所述光纤光栅位移计通过跳线与光纤光栅解调仪连接,所述光纤光栅解调仪收集数据并供电脑采集。
进一步地,所述拉线为钢丝,具体可以为铟钢丝。
进一步地,所述拉线与光纤光栅位移计的检测端焊接固定并保证垂直度。
进一步地,所述测点上设置有固定件,所述拉线与固定件连接。
进一步地,所述角度垫块为角度可调的三角支架。
进一步地,还包括激光位移计,所述激光位移计用于实验验证,所述激光位移计摆放在测点下方测量竖向位移。
进一步地,还包括质量块,所述质量块为桥梁提供重力。
一种基于光纤光栅位移计的桥梁竖向位移实时监测方法,采用上述任意一项所述的监测装置,包括以下步骤:
步骤1)对光纤光栅位移计进行标定以及温度补偿;
ΔL=0.12609(W-W0±ΔWT)
ΔWT=KT(T-T0)
式中ΔL为位移变化量;W为光纤光栅位移计当前的中心波长;W0为光纤光栅位移计的初始中心波长;其中T0为初始温度;T为测量过程中的温度值;KT为温度系数;
步骤2)将标定好的光纤光栅位移计与拉线的一端固定在一起,拉线的另一端固定在试验梁底部的测点位置处,光纤光栅位移计固定在试验梁的竖向支撑部上,拉线与试验梁底部形成夹角θ,将激光位移计固定在测点下方;
步骤3)利用质量块对试验梁施加等级荷载;
步骤4)通过光纤光栅位移计测量得到斜向位移,通过激光位移计测量测点的竖向位移;
步骤5)记录数据后将质量块移除,随后改变光纤光栅位移计在试验梁的竖向支撑部上的安装固定位置,从而使梁底与拉线之间的夹角θ发生变化,调整至下一个角度后,跳转至步骤3)继续操作,直至无需调节夹角θ,继续下一个步骤;
步骤6)计算不同夹角θ下竖向位移与斜向位移的实测比值K;
步骤7)将不同夹角下测得的实测比值K与夹角θ进行拟合,得到随夹角θ变化时对应的拟合比值K1的函数关系;
Figure BDA0003324880520000031
式中Δh为竖向位移;ΔL为斜向位移;θ为拉线与桥梁底的夹角;K1为竖向位移与斜向位移的拟合比值;
步骤8)根据现场系统安装情况,确定夹角θ的取值,根据步骤6中的函数关系,确定对应的拟合比值K1;
步骤9)在现场将监测装置进行安装并实时测量现场桥梁的斜向位移的数据,再结合步骤7中得到的拟合比值K1,即可计算得到现场桥梁的竖向位移。
进一步地,在步骤1中,进行标定试验,在恒定的温度和湿度下对光纤光栅位移计进行至少三组正反行程的标定试验。
进一步地,在现场安装监测装置前,还需要进行小角度的夹角θ下光纤光栅位移计精度检验,在不同的小角度的夹角θ下将监测装置测量得到的竖向位移数据和和激光位移计测量得到的竖向位移数据进行对比,并通过监测装置与激光位移测得的竖向位移数据之间的最大绝对误差来评估基小角度的夹角θ下光纤光栅位移计的测量精度,从而确定夹角θ的最小取值。
本发明的有益效果:
1、本发明是基于测量斜向位移换算竖向位移的装置,本装置无需固定在测点正下方,通过采用角度垫块,将光纤光栅位移计斜向设置,通过拉线的配合,即可测量桥梁的斜向位移,光纤光栅位移计安装在桥梁底部的支撑部件上,整体结构掉落风险小,安全系数高,并且对于桥洞的限高基本没有影响,能够作为短期及长期的检监测使用。
2、本装置结构简单,并且安装时无需搭建平台,较比直接测量的装置来说,使用便捷,成本低。
3、本方法通过标定的方式,将光纤光栅位移计的误差降至最小,有效提高测量精度,并且还通过拟合的方式有效确定夹角与比值的关系,从而进一步的提高精度,保证数据具有良好的可靠性和信服力。
附图说明
图1是本发明的装置结构示意图;
图2是本发明在实验使用的装置结构示意图;
图3是本发明图2中角度垫块结构示意图;
图4是本发明光纤光栅位移计的标定系拟合直线图;
图5是本发明光纤光栅位移计的温度系拟合直线图;
图6是本发明桥梁负载作用下的变形曲线图;
图7是本发明不同角度下竖向位移与斜向位移之间的拟合直线图;
图8是本发明实测比值K随倾角θ变化的函数关系图;
图9是本发明小角度有效性的折线图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
参照图1所示,本发明的基于光纤光栅位移计的桥梁竖向位移实时监测装置的一实施例,包括拉线1和光纤光栅位移计2,拉线一端固定在桥梁底部的测点A上,拉线另一端与光纤光栅位移计的检测端固定,光纤光栅位移计安装在角度垫块3上,角度垫块固定在桥梁的竖向支撑部4上,光纤光栅位移计通过跳线与光纤光栅解调仪5连接,光纤光栅解调仪收集数据并供电脑6采集。
具体在使用时,先根据现场安装环境情况确定的安装夹角,根据安装夹角可以确定角度垫块的安装位置以及光纤光栅位移计的安装位置,随后将角度垫块安装在竖向支撑部上,竖向支撑部可以为桥墩,安装后将光纤光栅位移计固定在竖向支撑部上,随后安装拉线,拉线一端固定在测点位置,另一端与光纤光栅位移计的检测端固定,此处可以为焊接固定,保证户外使用的牢固度,上述拉线、光纤光栅位移计和角度垫块的安装顺序可以根据实际情况进行调整;
安装结束后将光纤光栅解调仪固定在桥墩上,通过跳线与光纤光栅位移计连接,随后连接电脑,即可将采集的数据传输给电脑记录,通过斜向位移的数据换算即可得到竖向位移,从而实现有效监测的目的和效果。上述装置结构简单,安装方便,无需搭设平台,不存在掉落风险大的问题,并且也不会对限高造成影响,安全可靠,稳定性好。
上述拉线为钢丝,具体可以为铟钢丝,可以满足使用需求,保证在测量过程中的稳定性。拉线与光纤光栅位移计的检测端焊接固定并保证垂直度,减少检测误差。为了方便拉线的固定,可以在测点上设置固定件,拉线与固定件连接,固定件可以为膨胀螺钉,方便操作。
参照图2和图3所示,该装置还可以在实验室内使用,进行模拟监测,为了便于夹角角度的调节,上述的角度垫块设计为角度可调的三角支架,三角支架在室内实验室使用,能够方便多种角度下的快速调节测量,三角支架包括L型本体8和调节臂9,调节臂的一端与L型本体的竖向段的上端部通过转轴10连接,调节臂靠近另一端的表面上开设第一调节长圆孔11,第一调节长圆孔对应的L型本体的横向段表面设置有第二调节长圆孔12,第一调节长圆孔和第二调节长圆孔配合形成X结构并通过手旋螺栓组件13固定,调节臂表面还设置有安装光纤光栅位移计的第三长圆孔14。
为了验证实验数据的准确性,还设计有激光位移计7,激光位移计用于实验验证,激光位移计摆放在测点下方测量竖向位移。在实验过程中,还需要质量块,质量块为桥梁提供重力,模拟桥梁承载重量。
本发明还公开了一种基于光纤光栅位移计的桥梁竖向位移实时监测方法,采用了上述的监测装置,在现场安装前,需要对光纤光栅位移计进行标定以及温度补偿,以保证光纤光栅位移计的测量精度;
其中,为了得到拉线位移与中心波长之间的关系,对光纤光栅位移计进行了实验室标定。标定试验中,在恒定的温度和湿度下对光纤光栅位移计进行了三组正反行程的标定试验,正行程为拉线初始位置等距离增加至最大量程50mm,每次拉伸的变化量为5mm,使用光纤光栅解调仪记录每次拉伸稳定后位移对应的中心波长值。反行程试验与正行程试验相反,从最大量程依次递减至初始位置,如图4所示得出光纤光栅位移计的标定系数;
光纤光栅位移计内传感器受温度的影响非常大,温度变化会造成传感器中心波长的漂移,会对光纤光栅位移计输出的位移产生影响,针对本套试验装置,温度主要对光纤光栅位移计产生影响,因此有必要对光纤光栅位移计进行温度修正。将光纤光栅位移计放入恒温恒湿试验箱中研究环境温度对光纤光栅位移计中心波长的影响,环境温度变化范围0-40℃,以5℃为一个温度变化量,利用解调仪和电脑采集传感器中心波长,进而拟合中心波长与温度之间的函数关系,得到温度系数KT如图5所示;
采用如下公式:ΔL=0.12609(W-W0±ΔWT)
ΔWT=KT(T-T0)
完成对光纤光栅位移计的标定和温度补偿;式中ΔL为位移变化量;W为光纤光栅位移计当前的中心波长;W0为光纤光栅位移计的初始中心波长;其中T0为初始温度;T为测量过程中的温度值;KT为温度系数;
对于集中荷载作用下的桥梁,其变形曲线图如图6所示,假设桥梁在下挠过程中桥梁底部与拉线的夹角θ0=θ1,将变形前和变形后的夹角统一记作θ,根据几何关系可知,激光位移计测量的竖向位移与本套系统测量的斜向位移之间的比值K满足下列公式:
Figure BDA0003324880520000071
其中L0为下挠前拉线的初始长度;L1为下挠后拉线的长度;Δh为激光位移计测量的竖向位移变化量;ΔL为本套系统测量的斜向位移变化量;θ为桥梁底部与拉线的夹角;K为激光位移测量的竖向位移变化与本套系统测量的斜向位移之间的比值;
倾角θ随着桥梁在下挠过程中会发生微小的改变,本方案主要通过改变拉线与桥梁底部的倾角,评估倾斜角度对测量竖向位移产生的影响,得出竖向位移与斜向位移之间的修正关系。因此需要进行有效的试验,在相同试验条件下,改变不同的拉线倾角并在试验梁跨中施加集中力,根据需要选择了初始夹角θ为30°、40°、50°、60°、70°和80°的室内试验工况,利用激光位移计测量试验梁跨中的竖向位移,而该套监测装置测量的是测点的斜向位移;具体的,将光纤光栅位移计与拉线的一端固定在一起,拉线的另一端固定在试验梁底部的测点位置处,光纤光栅位移计固定在试验梁的竖向支撑部上,拉线与试验梁底部配合形成试验工况中选择的初始夹角,将激光位移计固定在测点下方。每个工况下,分别做三次重复试验,进而得到在不同角度下竖向位移与斜向位移之间的实测比值K,如图7所示。
随着倾角θ的不断增大,实测比值K呈逐渐减少的趋势,满足公式的特征。但需要对上述公式进行修正,将倾角θ在下挠过程中的微小变化考虑进去,拟合不同倾角θ下测得实测比值K与倾角θ之间的函数关系,如图8所示,得到拟合比值K1:
Figure BDA0003324880520000081
式中Δh为竖向位移;ΔL为斜向位移;θ为拉线与桥梁底的夹角;K1为竖向位移与斜向位移的拟合比值;
拟合完成后,根据现场系统安装情况,确定现场安装时夹角θ的取值,根实测比值K与倾角θ之间的函数关系,确定对应的拟合比值K1;
在现场按照监测装置的固定方法将监测装置安装在桥梁的桥墩上,并实时测量现场桥梁的斜向位移的数据,再结合对应的拟合比值K1,计算得到现场桥梁的竖向位移,实现实时监测的目的。
其中,拟合实测比值K与夹角θ之间的函数关系时,为了实验方便起见选取的大一点的角度,而在实际工程中倾角越小越好,方便安装,使用安全,因此需要在小角度的夹角下确定本套系统的可行性以及它的测量精度。
具体的,在现场监测装置的固定安装中,倾角越小越容易找到固定安装点,更加符合现场的实际情况。实验室验证的目的是在不同的小角度下将本套系统和激光位移计获得的竖向位移测量数据进行对比,采用激光位移计进行精准测量,并通过监测装置与激光位移测得的竖向位移之间的最大绝对误差来评估基于光纤光栅位移计监测装置的测量精度。
每个夹角分别做三次重复试验,监测装置和激光位移计都记录了在不同小倾角下试验梁跨中的竖向位移随加载次数增加的变化,如图9所示是三次重复试验的结果,由图可知,两种手段测量的位移具有很好的一致性,夹角在15°以内时,每个加载点处三次试验的平均绝对误差均在0.25mm以内并且变化范围比较稳定,然而当夹角为10°时,三次重复试验的平均绝对误差明显高于其他三个夹角,基本在0.3mm以上,说明当夹角小于10°时,监测装置的精度受到限制,随着夹角的逐渐减小,监测装置的绝对误差逐渐增大,从而可以确定夹角θ的最小取值。
以上实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

1.一种基于光纤光栅位移计的桥梁竖向位移实时监测装置,其特征在于,包括拉线和光纤光栅位移计,所述拉线一端固定在桥梁底部的测点上,所述拉线另一端与光纤光栅位移计的检测端固定,所述光纤光栅位移计安装在角度垫块上,所述角度垫块固定在桥梁的竖向支撑部上,所述光纤光栅位移计通过跳线与光纤光栅解调仪连接,所述光纤光栅解调仪收集数据并供电脑采集。
2.如权利要求1所述的基于光纤光栅位移计的桥梁竖向位移实时监测装置,其特征在于,所述拉线为钢丝。
3.如权利要求2所述的基于光纤光栅位移计的桥梁竖向位移实时监测装置,其特征在于,所述拉线与光纤光栅位移计的检测端焊接固定并保证垂直度。
4.如权利要求1所述的基于光纤光栅位移计的桥梁竖向位移实时监测装置,其特征在于,所述测点上设置有固定件,所述拉线与固定件连接。
5.如权利要求1所述的基于光纤光栅位移计的桥梁竖向位移实时监测装置,其特征在于,所述角度垫块为角度可调的三角支架。
6.如权利要求1所述的基于光纤光栅位移计的桥梁竖向位移实时监测装置,其特征在于,还包括激光位移计,所述激光位移计用于实验验证,所述激光位移计摆放在测点下方测量竖向位移。
7.如权利要求6所述的基于光纤光栅位移计的桥梁竖向位移实时监测装置,其特征在于,还包括质量块,所述质量块为桥梁提供重力。
8.一种基于光纤光栅位移计的桥梁竖向位移实时监测方法,其特征在于,采用权利要求1-7任意一项所述的监测装置,包括以下步骤:
步骤1)对光纤光栅位移计进行标定以及温度补偿;
ΔL=0.12609(W-W0±ΔWT)
ΔWT=KT(T-T0)
式中ΔL为位移变化量;W为光纤光栅位移计当前的中心波长;W0为光纤光栅位移计的初始中心波长;其中T0为初始温度;T为测量过程中的温度值;KT为温度系数;
步骤2)将标定好的光纤光栅位移计与拉线的一端固定在一起,拉线的另一端固定在试验梁底部的测点位置处,光纤光栅位移计固定在试验梁的竖向支撑部上,拉线与试验梁底部形成夹角θ,将激光位移计固定在测点下方;
步骤3)利用质量块对试验梁施加等级荷载;
步骤4)通过光纤光栅位移计测量得到斜向位移,通过激光位移计测量测点的竖向位移;
步骤5)记录数据后将质量块移除,随后改变光纤光栅位移计在试验梁的竖向支撑部上的安装固定位置,从而使梁底与拉线之间的夹角θ发生变化,调整至下一个角度后,跳转至步骤3)继续操作,直至无需调节夹角θ,继续下一个步骤;
步骤6)计算不同夹角θ下竖向位移与斜向位移的实测比值K;
步骤7)将不同夹角下测得的实测比值K与夹角θ进行拟合,得到随夹角θ变化时对应的拟合比值K1的函数关系;
Figure FDA0003324880510000021
式中Δh为竖向位移;ΔL为斜向位移;θ为拉线与桥梁底的夹角;K1为竖向位移与斜向位移的拟合比值;
步骤8)根据现场系统安装情况,确定夹角θ的取值,根据步骤6中的函数关系,确定对应的拟合比值K1;
步骤9)在现场将监测装置进行安装并实时测量现场桥梁的斜向位移的数据,再结合步骤7中得到的拟合比值K1,即可计算得到现场桥梁的竖向位移。
9.如权利要求8所述的基于光纤光栅位移计的桥梁竖向位移实时监测方法,其特征在于,在步骤1中,进行标定试验,在恒定的温度和湿度下对光纤光栅位移计进行至少三组正反行程的标定试验。
10.如权利要求8所述的基于光纤光栅位移计的桥梁竖向位移实时监测方法,其特征在于,在现场安装监测装置前,还需要进行小角度的夹角θ下光纤光栅位移计精度检验,在不同的小角度的夹角θ下将监测装置测量得到的竖向位移数据和和激光位移计测量得到的竖向位移数据进行对比,并通过监测装置与激光位移测得的竖向位移数据之间的最大绝对误差来评估基小角度的夹角θ下光纤光栅位移计的测量精度,从而确定夹角θ的最小取值。
CN202111258745.4A 2021-10-28 2021-10-28 基于光纤光栅位移计的桥梁竖向位移实时监测装置及方法 Pending CN113983936A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111258745.4A CN113983936A (zh) 2021-10-28 2021-10-28 基于光纤光栅位移计的桥梁竖向位移实时监测装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111258745.4A CN113983936A (zh) 2021-10-28 2021-10-28 基于光纤光栅位移计的桥梁竖向位移实时监测装置及方法

Publications (1)

Publication Number Publication Date
CN113983936A true CN113983936A (zh) 2022-01-28

Family

ID=79742900

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111258745.4A Pending CN113983936A (zh) 2021-10-28 2021-10-28 基于光纤光栅位移计的桥梁竖向位移实时监测装置及方法

Country Status (1)

Country Link
CN (1) CN113983936A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116164660A (zh) * 2023-04-21 2023-05-26 安徽省七星工程测试有限公司 一种光纤光栅动态挠度监测仪及监测方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116164660A (zh) * 2023-04-21 2023-05-26 安徽省七星工程测试有限公司 一种光纤光栅动态挠度监测仪及监测方法

Similar Documents

Publication Publication Date Title
CN105320596B (zh) 一种基于倾角仪的桥梁挠度测试方法及其系统
CN108827158B (zh) 一种大跨径桥梁主塔偏位激光监测装置及方法
CN110082023B (zh) 一种索力实时监测装置和监测方法
US20210181056A1 (en) Method for determining temperature-induced sag variation of main cable and tower-top horizontal displacement of suspension bridges
CN109211153B (zh) 一种结构表面应变的测量方法
CN106885584B (zh) 测斜仪综合误差测试装置及测量方法
CN107268446B (zh) 斜拉桥塔梁同步施工测量装置及其测量方法
CN113983936A (zh) 基于光纤光栅位移计的桥梁竖向位移实时监测装置及方法
CN107664489B (zh) 一种桥梁应变和变形的测量方法
CN109506615A (zh) 基于梁式桥横截面中性轴安全指标的长期监测方法
CN111638027B (zh) 一种基于多目标位移传递的高墩连续钢构桥位移监测方法
CN216081327U (zh) 基于光纤光栅位移计的桥梁竖向位移实时监测装置
CN110132161A (zh) 一种基于桥梁跨中应变测量跨中挠度的方法
CN103074845B (zh) 一种刚性路面弯沉测试装置及其测试方法
CN117213390B (zh) 一种桥梁多监测指标一体化测量装置及方法
CN208012580U (zh) 桥梁挠度多点同步测试装置
CN111351518A (zh) 高速公路桥梁结构安全智慧感知设备及方法
CN110823183A (zh) 一种基于激光技术的桥塔偏位测量装置
CN111272137A (zh) 一种用于检测桥梁支座剪切变形的测试装置及应用
KR102435166B1 (ko) 정밀한 변형률-변위 예측을 위한 유전자 알고리즘과 ai 기술을 적용한 구조물의 계측 위치 및 개소 결정 방법
JP2020071157A (ja) 傾斜度算出装置、構造物及びプログラム
CN113587836A (zh) 一种光纤光栅应变传感器的原位校准方法
CN109211302B (zh) 裸fbg应变传感器的标定系统的标定方法
CN112683177A (zh) 一种隧道施工衬砌与道床相对位移监测装置
CN214583131U (zh) 一种分布式位移传感器的监测精度测定装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination