CN113980554A - Moisture-coating anti-condensation heat-insulation coating and preparation method thereof - Google Patents

Moisture-coating anti-condensation heat-insulation coating and preparation method thereof Download PDF

Info

Publication number
CN113980554A
CN113980554A CN202111368057.3A CN202111368057A CN113980554A CN 113980554 A CN113980554 A CN 113980554A CN 202111368057 A CN202111368057 A CN 202111368057A CN 113980554 A CN113980554 A CN 113980554A
Authority
CN
China
Prior art keywords
component
coating
moisture
modified
coatable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111368057.3A
Other languages
Chinese (zh)
Other versions
CN113980554B (en
Inventor
王焕焕
徐科
张耀
邱云鹏
马胜军
狄志刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CNOOC Energy Technology and Services Ltd
CNOOC Changzhou EP Coating Co Ltd
CNOOC Changzhou Paint and Coatings Industry Research Institute Co Ltd
Original Assignee
CNOOC Energy Technology and Services Ltd
CNOOC Changzhou EP Coating Co Ltd
CNOOC Changzhou Paint and Coatings Industry Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CNOOC Energy Technology and Services Ltd, CNOOC Changzhou EP Coating Co Ltd, CNOOC Changzhou Paint and Coatings Industry Research Institute Co Ltd filed Critical CNOOC Energy Technology and Services Ltd
Priority to CN202111368057.3A priority Critical patent/CN113980554B/en
Publication of CN113980554A publication Critical patent/CN113980554A/en
Application granted granted Critical
Publication of CN113980554B publication Critical patent/CN113980554B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

The moisture-coatable anti-condensation heat-insulation coating comprises a component A and a component B, wherein the mass ratio of the component A to the component B is 2-3: 1, the component A comprises 45-55% of epoxy resin, 40-50% of modified hollow microspheres and modified SiO2 aerogel mixed filler, 5% of diluent and 5% of solvent; the component B comprises 50-70% of amine curing agent, 5-15% of diluent, 5-15% of solvent and 5-10% of drier, wherein the drier selects DMP-30, m-phenylenediamine addition product and polymer with small molecular polar groups. The nucleophilicity of the lone pair electrons in the micromolecular polar group polymer promotes the attack on the epoxy group in the epoxy resin, thereby promoting the polymerization and curing of the epoxy resin, playing a promoting role and improving the curing rate. In addition, the micromolecule polar hydrophilic group can bring the condensed water to the surface of the coating, accelerate the drying inside the coating and prevent external water vapor from permeating.

Description

Moisture-coating anti-condensation heat-insulation coating and preparation method thereof
Technical Field
The invention relates to the technical field of coatings, in particular to a moisture-coatable anti-condensation heat-insulation coating and a preparation method thereof.
Background
Under certain temperature and pressure, when the temperature of the medium in the pipeline is lower than the ambient temperature and the temperature difference reaches a certain value, the outer surface of the pipeline or the valve is subjected to condensation. The surface condensation has certain influence on the safe operation of the pipeline, such as corrosion of metal components of the pipeline, and inconvenience is caused to maintenance and operation personnel due to long-term water accumulation. In the field of anti-condensation coating, a large amount of porous water absorbent or a small amount of emulsified organic metal soap drier is added into the water-based anti-condensation coating to accelerate the curing rate, but water is still adsorbed in a coating film, so that the coating film is not easy to dry and discharge, the adverse effect of sagging or dripping of the coating film is brought, and the risk of corrosion under an insulating layer is brought to a metal structure.
Disclosure of Invention
The technical problem to be solved by the invention is as follows: to provide a moisture-coatable moisture-condensation-proof heat-insulating coating material which can improve the curing rate of the coating material and the hydrophobicity of the coating material.
The technical scheme adopted by the invention for solving the technical problems is as follows: the moisture-coatable anti-condensation heat-insulation coating comprises a component A and a component B, wherein the mass ratio of the component A to the component B is 2-3: 1, the component A comprises 45-55% of epoxy resin, 40-50% of modified hollow microspheres and modified SiO2 aerogel mixed filler, 5% of diluent and 5% of solvent; the component B comprises 50-70% of amine curing agent, 5-15% of diluent, 5-15% of solvent and 5-10% of drier, wherein the drier selects DMP-30, m-phenylenediamine addition product and polymer with small molecular polar groups.
Furthermore, the epoxy resin in the component A is selected from one of E44 or E51.
Further, the modified hollow microspheres are modified by adopting a silane coupling agent KH550 or KH560 or a silane prepolymer, wherein the particle size of the hollow microspheres is 20-80 mu m, and the density is 0.35-0.50 g/cm3
Further, silane coupling agents KH550 or KH560 with different concentrations or silane prepolymers are added into the modified SiO2 aerogel through a chemical modification method to modify the SiO2 aerogel, wherein the SiO2 aerogel is hydrophobic aerogel powder with the particle size of 15-50 μm, the pore diameter of 20-50 nm and the thermal conductivity of less than 0.018W/(m.K).
Furthermore, the solvent in the component A is one or more of propylene glycol methyl ether or acetone.
Further, the polymer of the small molecule polar group in the component B is small molecule polysulfide rubber containing a terminal sulfydryl.
Further, the amine curing agent is one or more of cashew nut shell oil modified phenolic aldehyde amine, phenolic aldehyde amine NX2003, NC558 and ketimine addition product.
Further, a preparation method of the coating comprises the following steps:
sequentially adding the epoxy resin, the diluent, the solvent, the modified hollow microspheres and the modified SiO2 aerogel slurry into a stirrer according to the proportion, adjusting the rotating speed to be 500-600 r/min, and stirring for 30min to obtain a component A;
adding an amine curing agent, a diluent, a solvent, a drier and the like into a stirrer in sequence according to the proportion, adjusting the rotating speed to be 1000-1200 r/min, and stirring for 10-20 min to obtain a component B;
and mixing the component A and the component B according to the mass ratio, and stirring the mixture evenly by hand to obtain the moisture-coating anti-condensation heat-insulation coating.
The invention has the beneficial effects that:
the nucleophilicity of lone pair electrons in the micromolecular polar group polymer promotes to attack epoxy groups in the epoxy resin, and oxygen anions formed after the ring opening of the epoxy groups can further react with the epoxy groups, so that the polymerization and curing of the epoxy resin are promoted, the promotion effect is achieved, and the curing rate is improved. In addition, the micromolecule polar hydrophilic group can bring the condensed water to the surface of the coating, so that the drying inside the coating is accelerated, the hydrophobicity of the surface of the coating is improved along with the acceleration of the curing process, and the external water vapor is prevented from permeating.
Detailed Description
In order to make the technical solution of the present invention clearer, the following description will be made with reference to the embodiments. The described embodiments are only some embodiments of the invention, not all embodiments. All other embodiments that can be derived by a person skilled in the art from the embodiments of the present invention without any creative effort belong to the scope of the present invention.
Example 1
In this embodiment, a moisture-coatable anti-condensation thermal insulation coating includes the following components: the component A comprises 45-55% of epoxy resin, 40-50% of modified hollow microspheres and modified SiO2Aerogel mixed filler, 5% of diluent and 5% of solvent; the component B comprises 50-70% of amine curing agent, 5-15% of diluent, 5-15% of solvent and 5-10% of drier; wherein the epoxy resin is selected from one of E44 or E51; the solvent in the component A is propylene glycol monomethyl ether or acetone; the diluent in the component A is one or more of C12-C15 glycidyl ether and benzyl alcohol.
The modified hollow microsphere adopts silane coupling agent KH550 or KH560 or silane prepolymer to treat the hollow microsphere, wherein the hollow microsphere has a particle size of 20-80 μm and a density of 0.35-0.50 g/cm3(ii) a The hollow microspheres can block the air heat conduction process, further play a role in heat insulation, reduce the temperature difference between the inside and the outside and prevent condensation; the modified hollow microspheres can be stably dispersed in an epoxy resin system, improve the compatibility with epoxy resin, have a toughening effect on the epoxy system, and improve the hardness of the coating after curing. Modified SiO2The aerogel is added with silane coupling agents KH550 or KH560 or silane prepolymers with different concentrations by a chemical modification method, so that micromolecular groups are grafted on the surface of the aerogel, the dispersion effect of aerogel powder in resin is improved, the interface effect is reduced, and the binding force is increased. Wherein SiO is2The aerogel has a particle size of 15-50 μm and a pore size of 20-up to50nm and the thermal conductivity coefficient is less than 0.018W/(m.K). Modified hollow micro-bead and modified SiO2In the mixed filler of the nano aerogel, the added mass fraction of the modified hollow microspheres is 40-50 percent, and the modified SiO is2The mass fraction of aerogel is 5-10%.
The amine curing agent in the component B is a modified amine curing agent, such as cashew nut shell oil modified phenolic aldehyde amine or phenolic aldehyde amine NX2003, NC558, ketimine addition product and the like; preferred are such curing agents that cure epoxy resins in the presence of moisture or water, cure rapidly at low temperatures, and have low tolerance to substrate handling; the solvent in the component B is propylene glycol monomethyl ether or acetone;
the drier selects DMP-30 or m-phenylenediamine addition product or polymer with small molecular polar group, wherein the polymer with small molecular polar group is preferably polysulfide rubber with small molecule containing end sulfhydryl. Preferably, the nucleophilicity of lone pair electrons in the micromolecular polar group polymer promotes the attack of epoxy groups, and oxygen anions formed after the ring opening of the epoxy groups can further react with the epoxy groups, so that the polymerization and curing of the epoxy resin are promoted, the promotion effect is achieved, and the curing rate is improved. In addition, the micromolecule polar hydrophilic group can bring the condensed water to the surface of the coating, so that the drying inside the coating is accelerated, the hydrophobicity of the surface of the coating is improved along with the acceleration of the curing process, and the external water vapor is prevented from permeating.
The moisture-coatable anti-condensation heat-insulation coating of the embodiment is prepared by the following steps:
45 percent of epoxy resin E51, 5 percent of benzyl alcohol, 5 percent of propylene glycol methyl ether, 40 percent of modified hollow glass microspheres and 5 percent of modified SiO by mass2Adding the aerogel slurry into a stirrer, adjusting the rotating speed to be 500-600 r/min, and stirring for 30min to obtain a component A for later use.
Adding NX2003 with the mass ratio of 70%, benzyl alcohol with the mass ratio of 10%, propylene glycol methyl ether with the mass ratio of 10%, micromolecule polar group polymer with the mass ratio of 10% and the like into a stirrer in sequence according to the mixture ratio, adjusting the rotating speed to be 1000-1200 r/min, and stirring for 10-20 min to obtain a component B for later use.
Before use, A, B components are mixed according to the mass ratio of 2: 1, mixing and stirring uniformly by hand to obtain the moisture-coating anti-condensation heat-insulation coating.
Example 2
45 percent of epoxy resin E51, 5 percent of benzyl alcohol, 5 percent of propylene glycol methyl ether, 40 percent of modified hollow glass microspheres and 5 percent of modified SiO by mass2Adding the aerogel slurry into a stirrer, adjusting the rotating speed to be 500-600 r/min, and stirring for 30min to obtain a component A for later use.
Adding NX2003 with the mass ratio of 70%, benzyl alcohol with the mass ratio of 10%, propylene glycol methyl ether with the mass ratio of 10%, micromolecule polar group polymer with the mass ratio of 10% and the like into a stirrer in sequence according to the mixture ratio, adjusting the rotating speed to be 1000-1200 r/min, and stirring for 10-20 min to obtain a component B for later use.
Before use, A, B components are mixed according to the mass ratio of 2.5: 1, mixing and stirring uniformly by hand to obtain the moisture-coating anti-condensation heat-insulation coating.
Example 3
45 percent of epoxy resin E51, 5 percent of benzyl alcohol, 5 percent of propylene glycol methyl ether, 40 percent of modified hollow glass microspheres and 5 percent of modified SiO by mass2Adding the aerogel slurry into a stirrer, adjusting the rotating speed to be 500-600 r/min, and stirring for 30min to obtain a component A for later use.
Adding NX2003 with the mass ratio of 70%, benzyl alcohol with the mass ratio of 10%, propylene glycol methyl ether with the mass ratio of 10%, micromolecule polar group polymer with the mass ratio of 10% and the like into a stirrer in sequence according to the mixture ratio, adjusting the rotating speed to be 1000-1200 r/min, and stirring for 10-20 min to obtain a component B for later use.
Before use, A, B components are mixed according to the mass ratio of 3:1, mixing and stirring uniformly by hand to obtain the moisture-coating anti-condensation heat-insulation coating.
Comparative example 1
45 percent of epoxy resin E51, 10 percent of benzyl alcohol, 5 percent of propylene glycol monomethyl ether and 40 percent of propylene glycol methyl ether by mass% of unmodified hollow glass microspheres and 5% by mass of unmodified SiO2Adding the aerogel slurry into a stirrer, adjusting the rotating speed to be 500-600 r/min, and stirring for 30min to obtain a component A for later use.
Adding NX2003 with the mass ratio of 70%, benzyl alcohol with the mass ratio of 10%, propylene glycol methyl ether with the mass ratio of 10%, micromolecule polar group polymer with the mass ratio of 10% and the like into a stirrer in sequence according to the mixture ratio, adjusting the rotating speed to be 1000-1200 r/min, and stirring for 10-20 min to obtain a component B for later use.
Before use, A, B components are mixed according to the mass ratio of 2: 1, mixing and stirring uniformly by hand to obtain the moisture-coating anti-condensation heat-insulation coating.
Comparative example 2
45 percent of epoxy resin E51, 10 percent of benzyl alcohol, 5 percent of propylene glycol methyl ether, 40 percent of modified hollow glass microspheres and 5 percent of modified SiO2Adding the aerogel slurry into a stirrer, adjusting the rotating speed to be 500-600 r/min, and stirring for 30min to obtain a component A for later use.
Adding NX2003 with the mass ratio of 70%, benzyl alcohol with the mass ratio of 10%, propylene glycol methyl ether with the mass ratio of 20% and the like into a stirrer in sequence according to the mixture ratio, adjusting the rotating speed to be 1000-1200 r/min, and stirring for 10-20 min to obtain a component B for later use.
Before use, A, B components are mixed according to the mass ratio of 2: 1, mixing and stirring uniformly by hand to obtain the moisture-coating anti-condensation heat-insulation coating.
The coatings prepared in examples 1-3 and comparative examples 1-2 were tested as follows:
the simulated medium temperature is 15 ℃, the ambient temperature is 31 ℃, and a dew liquid film is generated on the surface of the pipeline before the thermal insulation coating is not coated. Before coating construction, a surface liquid film is wiped, and heat insulation coating is coated in a smearing mode, wherein the thickness of the coating is 2 mm. Observing whether the coating has sagging or not, the drying time and the anti-condensation effect, and preparing a test plate to measure the heat conductivity coefficient of the coating.
The test results are shown in the following table:
Figure BDA0003361590170000071
as shown in the table above, the coatings prepared in the examples 1-3 have no obstacle on application and no sagging on thick coating in construction performance, the surface drying time of the examples 1-3 is within 10h, the actual drying time is 24h, the thermal conductivity is below 0.1W/m.K, no bubbling and cracking phenomena exist in water-resistant and salt-fog-resistant tests, and no dewing phenomenon exists on the surface of the coating; the surface dry time of the coating in the comparative example 1 is 12 hours, the coating in the comparative example 2 cannot be dried and sagging occurs, the thermal conductivity of the coating in the comparative example 1 is 0.121W/mK, the thermal conductivity of the coating in the comparative example 2 is 0.06W/mK, and the coating in the comparative example 1 has no bubbling and cracking phenomena in water resistance and salt spray resistance, the bubbling phenomena occur at 96h and 168h in water resistance and salt spray resistance tests of the comparative example 2, partial condensation occurs on the surface of the coating in the comparative example 1, the coating in the comparative example 2 cannot be dried, and the surface is condensed.
Examples 1-3 in comparison to comparative example 1, examples were prepared with the addition of modified cenospheres and modified SiO to the formulation2Mixed filler of nano aerogel, modified hollow microsphere and modified SiO2The mixed filler of nanometer aerogel can effectively play thermal-insulated cold insulation effect, prevents that pipeline surface temperature is less than dew point temperature and dewfall. Compared with the comparative example 2, the micromolecular polar group polymer is added in the examples 1-3 to be used as a drier, the nucleophilicity of lone pair electrons in the micromolecular polar group polymer promotes the attack on epoxy groups in the epoxy resin, and after the ring opening of the epoxy groups, the formed oxygen anions can further react with the epoxy groups, so that the polymerization and curing of the epoxy resin are promoted, the promotion effect is achieved, and the curing rate is improved. In addition, the micromolecule polar hydrophilic group can bring the condensed water to the surface of the coating, so that the drying inside the coating is accelerated, the hydrophobicity of the surface of the coating is improved along with the acceleration of the curing process, and the external water vapor is prevented from permeating.
The coating in the embodiment can achieve the advantages of being dry and excellent in corrosion resistance within 24 hours, meets the performance requirements of wet online coating, heat insulation, condensation prevention, corrosion prevention and the like, and is suitable for pipeline equipment facilities such as industrial natural gas condensation.
In light of the foregoing description of preferred embodiments in accordance with the invention, it is to be understood that numerous changes and modifications may be made by those skilled in the art without departing from the scope of the invention. The technical scope of the present invention is not limited to the contents of the specification, and must be determined according to the scope of the claims.

Claims (8)

1. The moisture-coatable anti-condensation heat-insulation coating comprises a component A and a component B, wherein the mass ratio of the component A to the component B is 2-3: 1, the component A comprises 45-55% of epoxy resin, 40-50% of modified hollow microspheres and modified SiO2 aerogel mixed filler, 5% of diluent and 5% of solvent; the component B comprises 50-70% of amine curing agent, 5-15% of diluent, 5-15% of solvent and 5-10% of drier, wherein the drier selects DMP-30, m-phenylenediamine addition product and polymer with small molecular polar groups.
2. The moisture coatable dew condensation and thermal insulating coating of claim 1, wherein: the epoxy resin in the component A is selected from one of E44 or E51.
3. The moisture coatable dew condensation and thermal insulating coating of claim 1, wherein: the modified hollow microspheres are modified by adopting a silane coupling agent KH550 or KH560 or a silane prepolymer, wherein the particle size of the hollow microspheres is 20-80 mu m, and the density is 0.35-0.50 g/cm3
4. The moisture coatable dew condensation and thermal insulating coating of claim 1, wherein: the modified SiO2 aerogel is modified by adding silane coupling agents KH550 or KH560 or silane prepolymers with different concentrations through a chemical modification method, wherein the SiO2 aerogel is hydrophobic aerogel powder with the particle size of 15-50 mu m, the pore diameter of 20-50 nm and the thermal conductivity of less than 0.018W/(m.K).
5. The moisture coatable dew condensation and thermal insulating coating of claim 1, wherein: the solvent in the component A is one or more of propylene glycol methyl ether or acetone.
6. The moisture coatable dew condensation and thermal insulating coating of claim 1, wherein: and the polymer of the micromolecular polar group in the component B is micromolecular polysulfide rubber containing a terminal sulfydryl.
7. The moisture coatable dew condensation and thermal insulating coating of claim 1, wherein: the amine curing agent is one or more of cashew nut shell oil modified phenolic aldehyde amine, phenolic aldehyde amine NX2003, NC558 and ketimine addition products.
8. A preparation method of the coating is characterized by comprising the following steps: the moisture-coatable anti-condensation thermal insulation coating comprising any one of claims 1 to 7, which is prepared by the following steps:
sequentially adding the epoxy resin, the diluent, the solvent, the modified hollow microspheres and the modified SiO2 aerogel slurry into a stirrer according to the proportion, adjusting the rotating speed to be 500-600 r/min, and stirring for 30min to obtain a component A;
adding an amine curing agent, a diluent, a solvent, a drier and the like into a stirrer in sequence according to the proportion, adjusting the rotating speed to be 1000-1200 r/min, and stirring for 10-20 min to obtain a component B;
and mixing the component A and the component B according to the mass ratio, and stirring the mixture evenly by hand to obtain the moisture-coating anti-condensation heat-insulation coating.
CN202111368057.3A 2021-11-18 2021-11-18 Moisture-coating anti-condensation heat-insulation coating and preparation method thereof Active CN113980554B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111368057.3A CN113980554B (en) 2021-11-18 2021-11-18 Moisture-coating anti-condensation heat-insulation coating and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111368057.3A CN113980554B (en) 2021-11-18 2021-11-18 Moisture-coating anti-condensation heat-insulation coating and preparation method thereof

Publications (2)

Publication Number Publication Date
CN113980554A true CN113980554A (en) 2022-01-28
CN113980554B CN113980554B (en) 2023-01-24

Family

ID=79749280

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111368057.3A Active CN113980554B (en) 2021-11-18 2021-11-18 Moisture-coating anti-condensation heat-insulation coating and preparation method thereof

Country Status (1)

Country Link
CN (1) CN113980554B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507466A (en) * 2022-03-15 2022-05-17 青岛金光鸿智能机械电子有限公司 Low-temperature self-drying low-VOC camouflage functional heat-insulation cooling coating and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899257A (en) * 2010-09-01 2010-12-01 北京虹霞正升涂料有限责任公司 Heavy corrosion resistant, heat insulating and static conductive coating
CN102367353A (en) * 2011-10-12 2012-03-07 上海海隆赛能新材料有限公司 Low thermal conductivity composite thermal insulation paint and preparation method thereof
CN106634447A (en) * 2016-12-30 2017-05-10 中国铁路总公司 Solvent-free epoxy rust confining coating capable of coating in wet and rust environment
CN109971308A (en) * 2019-03-01 2019-07-05 北京碧海舟腐蚀防护工业股份有限公司 No-solvent type heat-insulating anti-corrosive coating and corrosion-inhibiting coating
CN111378347A (en) * 2019-05-14 2020-07-07 江苏科辉环境科技有限公司 High-temperature-resistant anti-condensation coating for high-temperature flue gas treatment equipment and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899257A (en) * 2010-09-01 2010-12-01 北京虹霞正升涂料有限责任公司 Heavy corrosion resistant, heat insulating and static conductive coating
CN102367353A (en) * 2011-10-12 2012-03-07 上海海隆赛能新材料有限公司 Low thermal conductivity composite thermal insulation paint and preparation method thereof
CN106634447A (en) * 2016-12-30 2017-05-10 中国铁路总公司 Solvent-free epoxy rust confining coating capable of coating in wet and rust environment
CN109971308A (en) * 2019-03-01 2019-07-05 北京碧海舟腐蚀防护工业股份有限公司 No-solvent type heat-insulating anti-corrosive coating and corrosion-inhibiting coating
CN111378347A (en) * 2019-05-14 2020-07-07 江苏科辉环境科技有限公司 High-temperature-resistant anti-condensation coating for high-temperature flue gas treatment equipment and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507466A (en) * 2022-03-15 2022-05-17 青岛金光鸿智能机械电子有限公司 Low-temperature self-drying low-VOC camouflage functional heat-insulation cooling coating and preparation method and application thereof

Also Published As

Publication number Publication date
CN113980554B (en) 2023-01-24

Similar Documents

Publication Publication Date Title
CN106634067B (en) A kind of preparation method of the super-hydrophobic coat with condensation droplet from spring characteristic
CN110527404B (en) Composite material modified wear-resistant anticorrosive paint and preparation method thereof
CN110330862B (en) Low-surface-energy water-based epoxy anticorrosive paint and preparation and application thereof
CN105623503A (en) Silicone rubber hydrophobic coating used for insulator and preparation method thereof
CN113980554B (en) Moisture-coating anti-condensation heat-insulation coating and preparation method thereof
CN100523105C (en) Semi-interpenetrating network structure double-component fire resistant paint
CN110218102B (en) Hydrophobic SiO2f/SiO2Wave-transparent material and preparation method thereof
CN105176394A (en) Organic and inorganic coating material based on sol-gel technique and preparation method thereof
CN115322612B (en) Inorganic filler dispersion liquid, super-hydrophobic insulating wear-resistant paint and preparation method
CN111393946B (en) Solvent-free epoxy anticorrosive paint with high operation period and preparation method thereof
CN107573797A (en) A kind of super-hydrophobic insulating film material of loose structure and preparation method thereof
CN106833043A (en) A kind of transparent durable super-hydrophobic new material coating and preparation method thereof
CN110105848B (en) Water-based epoxy asphalt anticorrosive paint and processing technology thereof
CN108034253A (en) A kind of silicone glass resin
JPS6348363A (en) Coating composition
CN115895373A (en) Outdoor wood lacquer containing inorganic resin and preparation method thereof
CN112111226B (en) Hydrophobic anti-drag composite material, preparation method and coating
CN115611288A (en) Closed silica aerogel microsphere and thermal insulation coating containing same
CN115304404A (en) SiO (silicon dioxide) 2f /SiO 2 Composite hydrophobic coating and preparation method thereof
Na et al. Synthesis of Organic–Inorganic Hybrid Sols with Nano Silica Particles and Organoalkoxysilanes for Transparent and High-Thermal-Resistance Coating Films Using Sol–Gel Reaction
CN114149742A (en) High-strength high-slip-resistance inorganic zinc silicate coating and preparation method thereof
CN114989703A (en) Steel structure surface heat-insulating anticorrosive paint and preparation method thereof
CN110256960A (en) A kind of high temperature organosilicon paint and preparation method thereof
JP2002321910A (en) Method for forming aerogel membrane
KR102536521B1 (en) Prevention corrosion coating composition for copper pipe

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant