CN113972788A - 能调节发电效率的电机转动系统 - Google Patents

能调节发电效率的电机转动系统 Download PDF

Info

Publication number
CN113972788A
CN113972788A CN202111250289.9A CN202111250289A CN113972788A CN 113972788 A CN113972788 A CN 113972788A CN 202111250289 A CN202111250289 A CN 202111250289A CN 113972788 A CN113972788 A CN 113972788A
Authority
CN
China
Prior art keywords
motor
power generation
power
module
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111250289.9A
Other languages
English (en)
Inventor
方大毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202111250289.9A priority Critical patent/CN113972788A/zh
Publication of CN113972788A publication Critical patent/CN113972788A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明公开了一种能调节发电效率的电机转动系统,包括电源、启动电容、电机、调速开关、永磁同步发电机、整流模块、逆变模块和控制系统,电机通过调速开关与电源电连接,启动电容与电机并联,电机的输出轴与永磁同步发电机机械连接,永磁同步发电机与控制系统和整流模块电连接,整流模块和逆变模块分别与控制系统电连接,整流模块和逆变模块电连接,逆变模块与电网连接;电机带动永磁同步发电机进行发电,调节开关通过调节电机转速来改变发电系统的发电效率。本发明提供的能调节发电效率的电机转动系统能够根据电网负载的消耗量通过调节电机转速来进一步调节发电效率,基本达到供需平衡。

Description

能调节发电效率的电机转动系统
技术领域
本发明涉及发电技术领域,具体涉及一种能调节发电效率的电机转动系统。
背景技术
因为风能具有一定的动能,所以现有的风力发电系统是通过风轮机将风能转化为机械能,拖动发电机来发电。风力发电的原理是利用风带动风车叶片旋转,再通过增速器将旋转的速度提高来促使发电机发电的。
但是现有的风力发电系统没办法根据供电电网的负载消耗量的需求来适当增加或减少相应的发电量,导致发电量过少或发电量过剩。
发明内容
为此,本发明实施例提供一种能调节发电效率的电机转动系统,以解决现有技术存在的风力发电系统没办法根据供电电网的负载消耗量的需求来适当增加或减少相应的发电量的问题。
为了实现上述目的,本发明实施例提供如下技术方案:
一种能调节发电效率的电机转动系统,包括动力系统和发电系统,所述动力系统包括电源、启动电容、电机和调速开关,所述发电系统包括永磁同步发电机、整流模块、逆变模块和控制系统,所述电机通过所述调速开关与所述电源电连接,所述启动电容与所述电机并联,所述电机的输出轴与所述永磁同步发电机机械连接,所述永磁同步发电机与所述控制系统和所述整流模块电连接,所述整流模块和所述逆变模块分别与所述控制系统电连接,所述整流模块和所述逆变模块电连接,所述逆变模块与电网连接;所述电机带动所述永磁同步发电机进行发电,所述调节开关通过调节所述电机转速来改变所述发电系统的发电效率。
进一步的,所述电机与所述永磁同步发电机转向一致。
进一步的,所述调速开关分为高档、中档和低档三个档位。
进一步的,所述调速开关为电容式调速。
进一步的,所述启动电容至少为两个。
进一步的,所述电机为单相交流电机。
进一步的,所述动力系统的耗电量小于所述发电系统的发电量。
进一步的,所述电源为220V的交流电。
进一步的,所述整流模块和所述逆变模块之间设有电容滤波模块。
本发明至少具有以下有益效果:本发明提供一种能调节发电效率的电机转动系统,包括动力系统和发电系统,所述动力系统包括电源、启动电容、电机和调速开关,所述发电系统包括永磁同步发电机、整流模块、逆变模块和控制系统,所述电机通过所述调速开关与所述电源电连接,所述启动电容与所述电机并联,所述电机的输出轴与所述永磁同步发电机机械连接,所述永磁同步发电机与所述控制系统和所述整流模块电连接,所述整流模块和所述逆变模块分别与所述控制系统电连接,所述整流模块和所述逆变模块电连接,所述逆变模块与电网连接;所述电机带动所述永磁同步发电机进行发电,所述调节开关通过调节所述电机转速来改变所述发电系统的发电效率。本发明提供的能调节发电效率的电机转动系统能够根据电网负载的消耗量通过调节电机转速来进一步调节发电效率,基本达到供需平衡。
附图说明
为了更清楚地说明现有技术以及本发明,下面将对现有技术以及本发明实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引申获得其它的附图。
本说明书所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容能涵盖的范围内。
图1为本发明实施例提供的一种能调节发电效率的电机转动系统结构框图。
附图标记说明:
1-电源;2-调速开关;3-电机;4-启动电容;5-永磁同步发电机;6-控制系统;7-整流模块;8-电容滤波模块;9-逆变模块。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)旨在区别指代的对象。对于具有时序流程的方案,这种术语表述方式不必理解为描述特定的顺序或先后次序,对于装置结构的方案,这种术语表述方式也不存在对重要程度、位置关系的区分等。
此外,术语“包括”、“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包括了一系列步骤或单元的过程、方法、系统、产品或设备不必限于已明确列出的那些步骤或单元,而是还可包含虽然并未明确列出的但对于这些过程、方法、产品或设备固有的其它步骤或单元,或者基于本发明构思进一步的优化方案所增加的步骤或单元。
请参阅图1,本发明提供一种能调节发电效率的电机转动系统,包括动力系统和发电系统,动力系统包括电源1、启动电容4、电机3和调速开关2,发电系统包括永磁同步发电机5、整流模块7、逆变模块9和控制系统6,电机3通过调速开关2与电源1电连接,电源1为220V的交流电,启动电容4与电机3并联,电机3的输出轴与永磁同步发电机5机械连接,永磁同步发电机5与控制系统6和整流模块7电连接,整流模块7和逆变模块9分别与控制系统6电连接,整流模块7和逆变模块9电连接,逆变模块9与电网连接;电机3带动永磁同步发电机5进行发电,调节开关2通过调节电机3转速来改变发电系统的发电效率。本发明提供的能调节发电效率的电机转动系统能够根据电网负载的消耗量通过调节电机转速来进一步调节发电效率,基本达到供需平衡。
本发明中电机3与永磁同步发电机5转向一致,电机3为单相交流电机;调速开关2为电容式调速,分为高档、中档和低档三个档位来调节电机3的转速使得进一步调节发电系统的发电效率;因为本发明中电机3的功率较大,所以启动电容4至少要两个,防止电机3损坏。
本发明中动力系统的耗电量小于发电系统的发电量;整流模块7和逆变模块9之间设有电容滤波模块8,电容滤波模块8进一步过滤掉直流电中的交流成分。
以上实施例的各技术特征可以进行任意的组合(只要这些技术特征的组合不存在矛盾),为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述;这些未明确写出的实施例,也都应当认为是本说明书记载的范围。
上文中通过一般性说明及具体实施例对本发明作了较为具体和详细的描述。应当指出的是,在不脱离本发明构思的前提下,显然还可以对这些具体实施例作出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (9)

1.一种能调节发电效率的电机转动系统,其特征在于,包括动力系统和发电系统,所述动力系统包括电源、启动电容、电机和调速开关,所述发电系统包括永磁同步发电机、整流模块、逆变模块和控制系统,所述电机通过所述调速开关与所述电源电连接,所述启动电容与所述电机并联,所述电机的输出轴与所述永磁同步发电机机械连接,所述永磁同步发电机与所述控制系统和所述整流模块电连接,所述整流模块和所述逆变模块分别与所述控制系统电连接,所述整流模块和所述逆变模块电连接,所述逆变模块与电网连接;所述电机带动所述永磁同步发电机进行发电,所述调节开关通过调节所述电机转速来改变所述发电系统的发电效率。
2.根据权利要求1所述的能调节发电效率的电机转动系统,其特征在于,所述电机与所述永磁同步发电机转向一致。
3.根据权利要求1所述的能调节发电效率的电机转动系统,其特征在于,所述调速开关分为高档、中档和低档三个档位。
4.根据权利要求1所述的能调节发电效率的电机转动系统,其特征在于,所述调速开关为电容式调速。
5.根据权利要求1所述的能调节发电效率的电机转动系统,其特征在于,所述启动电容至少为两个。
6.根据权利要求1所述的能调节发电效率的电机转动系统,其特征在于,所述电机为单相交流电机。
7.根据权利要求1所述的能调节发电效率的电机转动系统,其特征在于,所述动力系统的耗电量小于所述发电系统的发电量。
8.根据权利要求1所述的能调节发电效率的电机转动系统,其特征在于,所述电源为220V的交流电。
9.根据权利要求1所述的能调节发电效率的电机转动系统,其特征在于,所述整流模块和所述逆变模块之间设有电容滤波模块。
CN202111250289.9A 2021-10-26 2021-10-26 能调节发电效率的电机转动系统 Pending CN113972788A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111250289.9A CN113972788A (zh) 2021-10-26 2021-10-26 能调节发电效率的电机转动系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111250289.9A CN113972788A (zh) 2021-10-26 2021-10-26 能调节发电效率的电机转动系统

Publications (1)

Publication Number Publication Date
CN113972788A true CN113972788A (zh) 2022-01-25

Family

ID=79588435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111250289.9A Pending CN113972788A (zh) 2021-10-26 2021-10-26 能调节发电效率的电机转动系统

Country Status (1)

Country Link
CN (1) CN113972788A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117220345A (zh) * 2023-11-07 2023-12-12 成都成发科能动力工程有限公司 一种小型透平发电用整流逆变系统及其控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117220345A (zh) * 2023-11-07 2023-12-12 成都成发科能动力工程有限公司 一种小型透平发电用整流逆变系统及其控制方法

Similar Documents

Publication Publication Date Title
Tiwari et al. Design and control of microgrid fed by renewable energy generating sources
Lu et al. Multi-terminal LVDC system for optimal acquisition of power in wind-farm using induction generators
Nababan et al. An overview of power topologies for micro-hydro turbines
Singh et al. Control of PMSG based variable speed wind-battery hybrid system in an isolated network
US20150292469A1 (en) Electric unit for a pump-storage power plant
Gupta et al. Fixed pitch wind turbine-based permanent magnet synchronous machine model for wind energy conversion systems
Benbouhenni et al. Comparative study of synergetic controller with super twisting algorithm for rotor side inverter of DFIG
Ahmadi et al. Voltage and frequency control in smart distribution systems in presence of DER using flywheel energy storage system
CN113972788A (zh) 能调节发电效率的电机转动系统
Bouharchouche et al. Modeling and control of a Doubly fed induction generator with battery-supercapacitor hybrid energy storage for wind power applications
Şahin et al. A novel filter compensation scheme for single phase-self-excited induction generator micro wind generation system
CN201903629U (zh) 交流变压型励磁同步风力发电实验装置
Liu et al. Integrated control strategy of multibrid wind power generation system
hassane Margoum et al. Design and control strategy of micro-wind turbine based PMSM in AC MicroGrid
Rathore et al. Performance evaluation of isolated 3-phase self-excited induction generator for remote mountainous region of Himalayas
Carrillo et al. Effects of WECS settings and PMSG parameters in the performance of a small wind energy generator
Masood et al. A Novel Solution to Eliminate Frequency Intermittency by Adding Spinning Reserve to the Micro-Hydro Turbine Generator using Real-Time Control of Induction Motor through AC-DC-AC Power Converters
Akbar et al. Operation Simulation of Doubly Fed Induction Generator (DFIG) as Stand Alone Generator
Kumar et al. A novel method of voltage regulation of isolated six-phase self-excited induction generator fed vsi driven by wind turbine
Ashfaq et al. Performance improvement of wind energy conversion system using matrix converter
Bhuvaneswari et al. Hybrid wind–diesel energy systems
Faqirzay et al. Maximum Power Extraction from Wind Generation System Using MPPT Control Scheme through Power Electronics Converters
Adam et al. Performance analysis of grid-connected and stand alone wind farm
Sreekala et al. Voltage and frequency control of wind hydro hybrid system in isolated locations using cage generators
Syuhada et al. Effect of rotation on achieving constant voltage in three-phase self-excited induction generator for small scale wind turbines application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination