CN113964225A - 低成本高可靠四端CsPbBr3/Si叠层太阳电池及其制作方法 - Google Patents

低成本高可靠四端CsPbBr3/Si叠层太阳电池及其制作方法 Download PDF

Info

Publication number
CN113964225A
CN113964225A CN202010699948.6A CN202010699948A CN113964225A CN 113964225 A CN113964225 A CN 113964225A CN 202010699948 A CN202010699948 A CN 202010699948A CN 113964225 A CN113964225 A CN 113964225A
Authority
CN
China
Prior art keywords
cspbbr
layer
perovskite
cell
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010699948.6A
Other languages
English (en)
Inventor
陈大正
张春福
樊刚
朱卫东
习鹤
刘晨波
张进成
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202010699948.6A priority Critical patent/CN113964225A/zh
Publication of CN113964225A publication Critical patent/CN113964225A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种低成本高可靠四端CsPbBr3/Si叠层太阳电池及其制作方法,该叠层太阳电池包括硅底电池和位于其上的CsPbBr3钙钛矿顶电池,硅底电池和CsPbBr3钙钛矿顶电池之间存在空气间隙,其中,CsPbBr3钙钛矿顶电池包括自上而下依次层叠的第一透明电极、第一传输层、CsPbBr3钙钛矿吸光层、第二传输层、第二透明电极和光学耦合层。本发明的低成本高可靠四端CsPbBr3/Si叠层太阳电池,将CsPbBr3钙钛矿顶电池与硅底电池以机械方式组合在一起,形成机械叠层电池,由于使用机械叠层方式避免了顶电池与底电池之间的工艺冲突,也避免了因为制备顶电池而损伤底部硅电池。

Description

低成本高可靠四端CsPbBr3/Si叠层太阳电池及其制作方法
技术领域
本发明属于半导体太阳电池技术领域,具体涉及一种低成本高可靠四端CsPbBr3/Si叠层太阳电池及其制作方法。
背景技术
对于占据光伏发电主导地位的晶硅太阳电池而言,吸收蓝紫光波段高能光子会产生严重的热释能量损失,极大地限制了电池光电转换效率的提升。由于进一步提升晶硅太阳电池效率的技术难度大、成本高,使得Si电池更大规模的应用面临巨大挑战。
针对这一问题,研究者们提出叠层电池技术,利用宽带隙半导体顶电池吸收短波光子,Si底电池吸收长波光子,从而大幅提高太阳光谱的利用率,是打破Si电池理论效率极限的重要手段。近年来,新型钙钛矿薄膜太阳电池因其带隙可调(1.2-2.3eV)、光吸收系数高、能量转换效率高(25.2%)、制造成本低等优点,受到越来越多的关注与研究。
晶硅钙钛矿叠层电池主要分为二端(串联型)和四端(机械叠层)两种器件结构。在四端结构中几乎所有带隙的钙钛矿顶电池均有望获得40%以上的叠层效率,同时不存在子电池之间的电流匹配与工艺兼容等问题,因而成为了低成本高效率晶硅钙钛矿叠层太阳电池的研究热点。但是,在晶硅钙钛矿叠层电池中,如何减少硅底电池的效率损失以及如何确保钙钛矿顶电池的长期稳定性仍是亟待解决的问题。
发明内容
为了解决现有技术中存在的上述问题,本发明提供了一种低成本高可靠四端CsPbBr3/Si叠层太阳电池及其制作方法。本发明要解决的技术问题通过以下技术方案实现:
本发明提供了一种低成本高可靠四端CsPbBr3/Si叠层太阳电池,包括:硅底电池和位于其上的CsPbBr3钙钛矿顶电池,所述硅底电池和所述 CsPbBr3钙钛矿顶电池之间存在空气间隙,其中,
所述CsPbBr3钙钛矿顶电池包括自上而下依次层叠的第一透明电极、第一传输层、CsPbBr3钙钛矿吸光层、第二传输层、第二透明电极和光学耦合层。
在本发明的一个实施例中,所述硅底电池为异质结HIT硅电池。
在本发明的一个实施例中,所述第一透明电极和所述第二透明电极的透光率大于或等于80%,方块电阻小于或等于10Ω/sq,其材料为ITO,FTO, AZO中的任一种。
在本发明的一个实施例中,所述第一传输层包括电子传输层、空穴传输层中的任一种,所述第二传输层包括电子传输层、空穴传输层中的另一种,所述第一传输层和所述第二传输层的厚度均为50~80nm。
在本发明的一个实施例中,所述电子传输层的材料采用n型半导体材料,所述n型半导体材料包括TiO2、SnO2、ZnO、PCBM中的任一种;
所述空穴传输层的材料采用p型半导体材料,所述p型半导体材料包括spiro-OMeTAD、P3HT、PEDOT:PSS、NiOx中的任一种。
在本发明的一个实施例中,所述CsPbBr3钙钛矿吸光层的厚度为 200~300nm。
在本发明的一个实施例中,所述光学耦合层的折射率大于或等于2,材料为MoO3、V2O5、TeO2、Al2O3、LiF、MgF2、SiO2中的任一种,厚度为 20~25nm。
本发明还提供了一种低成本高可靠四端CsPbBr3/Si叠层太阳电池的制备方法,包括:
S1:利用溶液旋涂法在第一透明电极上淀积形成第一传输层;
S2:利用两步溶液旋涂法在所述第一传输层上生成CsPbBr3钙钛矿吸光层;
S3:利用溶液旋涂法在所述CsPbBr3钙钛矿吸光层上淀积形成第二传输层;
S4:利用热蒸发技术或者磁控溅射技术在所述第二传输层上制备第二透明电极;
S5:利用热蒸发技术在所述第二透明电极上制备光学耦合层,得到 CsPbBr3钙钛矿顶电池;
S6:将所述CsPbBr3钙钛矿顶电池与硅底电池以机械方式组合在一起,形成机械叠层电池,其中,所述硅底电池为异质结HIT硅电池,所述CsPbBr3钙钛矿顶电池与所述硅底电池之间存在空气间隙。
在本发明的一个实施例中,所述S2包括:
在所述第一传输层上以2000rpm的转速旋涂钙钛矿前驱体溶液,旋涂时间为30s,然后90℃退火60min,制备得到钙钛矿前驱体层;
在所述钙钛矿前驱体层上以2000rpm的转速旋涂CsBr溶液,旋涂时间为30s,然后在250℃退火5min,形成钙钛矿层;
利用异丙醇溶液在2000rpm的转速下冲洗所述钙钛矿层,旋转时间为30s,然后在250℃退火5min,形成所述CsPbBr3钙钛矿吸光层。
在本发明的一个实施例中,所述光学耦合层制备条件均为:生长温度为600℃,生长压力为1E-4Pa,生长速率为
Figure BDA0002592650910000041
与现有技术相比,本发明的有益效果在于:
本发明的低成本高可靠四端CsPbBr3/Si叠层太阳电池,将CsPbBr3钙钛矿顶电池与硅底电池以机械方式组合在一起,形成机械叠层电池,由于使用机械叠层方式避免了顶电池与底电池之间的工艺冲突,也避免了因为制备顶电池而损伤底部硅电池。
本发明的低成本高可靠四端CsPbBr3/Si叠层太阳电池,使用无机 CsPbBr3钙钛矿层作为顶电池吸光层提高了短波段蓝紫光的利用率,又与底部硅电池吸光波段完美匹配,进而提升了硅电池的固有效率。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图说明
图1是本发明实施例提供的一种低成本高可靠四端CsPbBr3/Si叠层太阳电池的结构示意图;
图2是本发明实施例提供的一种低成本高可靠四端CsPbBr3/Si叠层太阳电池制备方法的流程示意图;
图3是本发明实施例提供的一种CsPbBr3钙钛矿顶电池的结构示意图;
图4是本发明实施例提供的另一种CsPbBr3钙钛矿顶电池的结构示意图。
具体实施方式
为了进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及具体实施方式,对依据本发明提出的一种低成本高可靠四端CsPbBr3/Si叠层太阳电池及其制作方法进行详细说明。
有关本发明的前述及其他技术内容、特点及功效,在以下配合附图的具体实施方式详细说明中即可清楚地呈现。通过具体实施方式的说明,可对本发明为达成预定目的所采取的技术手段及功效进行更加深入且具体地了解,然而所附附图仅是提供参考与说明之用,并非用来对本发明的技术方案加以限制。
实施例一
请参见图1,图1是本发明实施例提供的一种低成本高可靠四端 CsPbBr3/Si叠层太阳电池的结构示意图。如图所示,低成本高可靠四端 CsPbBr3/Si叠层太阳电池,其特征在于,包括:本实施例的CsPbBr3/Si叠层太阳电池包括硅底电池1和位于其上的CsPbBr3钙钛矿顶电池2,硅底电池 1和CsPbBr3钙钛矿顶电池2之间存在空气间隙,空气间隙的存在可以方便引出电极而且也避免了硅底电池1和CsPbBr3钙钛矿顶电池2直接接触在一起,从而影响电池的寿命性能。其中,CsPbBr3钙钛矿顶电池2包括自上而下依次层叠的第一透明电极21、第一传输层22、CsPbBr3钙钛矿吸光层23、第二传输层24、第二透明电极25和光学耦合层26。
在本实施例中,硅底电池1为异质结HIT硅电池。异质结HIT硅电池包括自下而上依次层叠的金属背电极11、氧化物透明底电极12、n型硅层 13、第一i型硅层14、c型硅层15、第二i型硅层16、p型硅层17、氧化物透明顶电极18和金属顶电极19。异质结HIT硅电池是比较成熟的硅电池结构,在此不再赘述。
第一透明电极21和第二透明电极25都具有高透光率以及低电阻,优选地,其透光率应大于或等于80%,方块电阻小于或等于10Ω/sq。第一透明电极21和第二透明电极25的材料可以为ITO(氧化铟锡),FTO(掺杂氟的 SnO2导电玻璃),AZO(铝掺杂的氧化锌透明导电玻璃)中的任一种。在本实施例中,可选地,第一透明电极21和第二透明电极25的厚度为100~180nm。
值得说明的是,第一透明电极21和第二透明电极25还可以选择透光率在80%以上的金属透明电极,其材料可以采用高透光的Au、Ag中的任一种。若第一透明电极21和第二透明电极25为金属透明电极,可选地,其厚度为9~11nm。
进一步地,第一传输层22包括电子传输层、空穴传输层中的任一种,第二传输层24包括电子传输层、空穴传输层中的另一种。也就是,第一传输层22和第二传输层24所传输的电子类型相反,例如,当第一传输层22 为电子传输层时,则第二传输层24为空穴传输层;当第一传输层22为空穴传输层时,则第二传输层24为电子传输层。
在本实施例中,第一传输层22和第二传输层24的厚度均为50~80nm。
具体地,电子传输层可以使用n型半导体材料,如氧化钛(TiO2)、氧化锡(SnO2)、氧化锌(ZnO)等金属氧化物、或者富勒烯(PCBM)等有机物。空穴传输层可以使用p型半导体材料,如2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(spiro-OMeTAD)、3-己基噻吩(P3HT)、聚乙撑二氧噻吩-聚(苯乙烯磺酸盐)(PEDOT:PSS)等有机材料,或者氧化镍(NiOx)等无机材料。
进一步地,CsPbBr3钙钛矿吸光层23的禁带宽度为Eg>2.3eV,在本实施例中,CsPbBr3钙钛矿吸光层23的厚度为200~300nm。
进一步地,光学耦合层26可以采用高折射率介质减反层材料,其折射率应大于或等于2,其材料可以采用MoO3、V2O5、TeO2、Al2O3、LiF、MgF2、 SiO2中的任一种,其厚度可以为20~25nm。
在本实施例中,光学耦合层26采用高折射率介质减反层,可以降低表面反射、提高透明电极透光率。
本实施例的低成本高可靠四端CsPbBr3/Si叠层太阳电池,将CsPbBr3钙钛矿顶电池与硅底电池以机械方式组合在一起,形成机械叠层电池,叠层电池中的CsPbBr3钙钛矿顶电池与硅底电池可以独自独立工作,互不干扰。而且,由于使用机械叠层方式避免了顶电池与底电池之间的工艺冲突,也避免了因为制备顶电池而损伤底部硅电池。
本实施例的低成本高可靠四端CsPbBr3/Si叠层太阳电池,使用无机 CsPbBr3钙钛矿层作为顶电池吸光层提高了短波段蓝紫光的利用率,又与底部硅电池吸光波段完美匹配,进而提升了硅电池的固有效率。
实施例二
本实施例提供了一种低成本高可靠四端CsPbBr3/Si叠层太阳电池制备方法,请参见图2,图2是本发明实施例提供的一种低成本高可靠四端 CsPbBr3/Si叠层太阳电池制备方法的流程示意图。如图所示,该制备方法包括:
S1:利用溶液旋涂法在第一透明电极上淀积形成第一传输层;
S2:利用两步溶液旋涂法在第一传输层上生成CsPbBr3钙钛矿吸光层;
S3:利用溶液旋涂法在CsPbBr3钙钛矿吸光层上淀积形成第二传输层;
S4:利用热蒸发技术或者磁控溅射技术在第二传输层上制备第二透明电极;
S5:利用热蒸发技术在第二透明电极上制备光学耦合层,得到CsPbBr3钙钛矿顶电池;
S6:将CsPbBr3钙钛矿顶电池与硅底电池以机械方式组合在一起,形成机械叠层电池,其中,硅底电池为异质结HIT硅电池,CsPbBr3钙钛矿顶电池与硅底电池之间存在空气间隙。可选地,可以使用环氧树脂透明胶将 CsPbBr3钙钛矿顶电池与硅底电池局部粘合在一起,形成机械叠层电池。
其中,第一传输层包括电子传输层、空穴传输层中的任一种,第二传输层包括电子传输层、空穴传输层中的另一种。
具体地,S2包括:
首先,在第一传输层上以2000rpm的转速旋涂钙钛矿前驱体溶液,旋涂时间为30s,然后90℃退火60min,制备得到钙钛矿前驱体层;接着,在钙钛矿前驱体层上以2000rpm的转速旋涂CsBr溶液,旋涂时间为30s,然后在250℃退火5min,形成钙钛矿层;最后,利用异丙醇溶液在2000rpm 的转速下冲洗钙钛矿层,旋转时间为30s,然后在250℃退火5min,形成CsPbBr3钙钛矿吸光层。
值得说明的是,在制备CsPbBr3钙钛矿吸光层之前,需要将制备好的第一透明电极以及第一传输层采用UV-ozone(紫外-臭氧)处理15min。
具体地,光学耦合层制备条件均为:生长温度为600℃,生长压力为 1E-4Pa,生长速率为
Figure BDA0002592650910000081
进一步地,对CsPbBr3钙钛矿顶电池的制备流程进行具体说明,请参见图3,图3是本发明实施例提供的一种CsPbBr3钙钛矿顶电池的结构示意图。如图所示,CsPbBr3钙钛矿顶电池包括自下而上依次层叠的第一透明电极31、电子传输层32、CsPbBr3钙钛矿吸光层33、空穴传输层34、第二透明电极 35和光学耦合层36。
其中,第一透明电极31采用透明FTO导电玻璃,电子传输层32采用氧化钛(TiO2)或氧化锡(SnO2),空穴传输层34采用Spiro-OMeTAD,第二透明电极35采用Ag、Au或者ITO,光学耦合层36采用TeO2
该CsPbBr3钙钛矿顶电池的制备方法包括:
步骤1:第一透明电极31清洗;
具体地,将透明FTO导电玻璃依次用去污剂、去离子水、丙酮以及无水乙醇分别超声清洗15分钟,然后用氮气流风干。
步骤2:电子传输层32制备;
具体地,将清洗好的透明FTO导电玻璃采用UV-ozone处理15min,将氧化钛溶液以3000rpm的转速旋涂在透明FTO导电玻璃上,旋涂时间为 30s,然后120℃预热10分钟,再放入箱式炉中500℃保温1h结晶成膜,形成电子传输层32。
步骤3:CsPbBr3钙钛矿吸光层33制备;
具体地,将已经制备好电子传输层32的衬底继续UV-ozone处理15min,然后以2000rpm的转速旋涂钙钛矿前驱体溶液(PbBr2溶液),旋涂30s,然后90℃退火60min,制备得到钙钛矿前驱体层。接着在钙钛矿前驱体层上以2000rpm的转速旋涂CsBr溶液,旋涂时间为30s,然后在250℃退火5min,形成钙钛矿层。最后使用IPA(异丙醇)溶液在2000rpm的转速下冲洗钙钛矿层,旋转时间为30s,然后在250℃退火5min,形成所述CsPbBr3钙钛矿吸光层33。
步骤4:空穴传输层34制备;
具体地,将已经配好的Spiro-OMeTAD溶液先以1000rpm转速、旋涂时间为5s的条件、再以4000rpm转速、旋涂时间为40s的条件旋涂在已经制备好的CsPbBr3钙钛矿吸光层33上,阴干静置两分钟,然后使其氧化一天,形成空穴传输层34。
步骤5:第二透明电极35制备;
具体地,在已经制备好的空穴传输层34上以磁控溅射技术生长一层 120nm的ITO,得到第二透明电极35。
步骤6:光学耦合层36制备;
具体地,在已经制备好的第二透明电极35上以热蒸发技术生长一层 30nm的TeO2,制备条件为:生长温度为600℃,生长压力为1E-4Pa,生长速率为
Figure BDA0002592650910000101
从而制得减反层(即光学耦合层36)。
请参见图4,图4是本发明实施例提供的另一种CsPbBr3钙钛矿顶电池的结构示意图。如图所示,CsPbBr3钙钛矿顶电池包括自下而上依次层叠的第一透明电极41、空穴传输层42、CsPbBr3钙钛矿吸光层43、电子传输层 44、第二透明电极45和光学耦合层46。
其中,第一透明电极41采用透明FTO导电玻璃,空穴传输层42采用 NiOx,电子传输层44采用PCBM,第二透明电极45采用Ag、Au或者ITO,光学耦合层46采用TeO2
该CsPbBr3钙钛矿顶电池的制备方法包括:
步骤1:第一透明电极41清洗;
具体地,将透明FTO导电玻璃依次用去污剂、去离子水、丙酮以及无水乙醇分别超声清洗15分钟,然后用氮气流风干。
步骤2:空穴传输层42制备;
具体地,将清洗好的透明FTO导电玻璃采用UV-ozone处理15min,将氧化镍溶液以3000rpm的转速旋涂在透明FTO导电玻璃上,旋涂时间为30s,然后250℃退火45分钟,结晶成膜,形成空穴传输层42。
步骤3:CsPbBr3钙钛矿吸光层43制备;
具体地,将已经制备好空穴传输层42的衬底继续UV-ozone处理15min,然后以2000rpm的转速旋涂钙钛矿前驱体溶液(PbBr2溶液),旋涂30s,然后90℃退火60min,制备得到钙钛矿前驱体层。接着在钙钛矿前驱体层上以2000rpm的转速旋涂CsBr溶液,旋涂时间为30s,然后在250℃退火5min,形成钙钛矿层。最后使用IPA(异丙醇)溶液在2000rpm的转速下冲洗钙钛矿层,旋转时间为30s,然后在250℃退火5min,形成所述CsPbBr3钙钛矿吸光层43。
步骤4:电子传输层44制备;
具体地,将已经配好的PCBM溶液以2000rpm转速旋涂在已经制备好 CsPbBr3钙钛矿吸光层43上,旋涂时间为30s,阴干静置两分钟,然后使其氧化一天,得到电子传输层44。
步骤5:第二透明电极45制备;
具体地,在已经制备好的电子传输层44上以磁控溅射技术生长一层 120nm的ITO,得到第二透明电极45。
步骤6:光学耦合层46制备;
具体地,在已经制备好的第二透明电极46上以热蒸发技术生长一层 30nm的TeO2,制备条件为:生长温度为600℃,生长压力为1E-4Pa,生长速率为
Figure BDA0002592650910000111
从而制得减反层(即光学耦合层46)。
应当说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的物品或者设备中还存在另外的相同要素。“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

1.一种低成本高可靠四端CsPbBr3/Si叠层太阳电池,其特征在于,包括:硅底电池(1)和位于其上的CsPbBr3钙钛矿顶电池(2),所述硅底电池(1)和所述CsPbBr3钙钛矿顶电池(2)之间存在空气间隙,其中,
所述CsPbBr3钙钛矿顶电池(2)包括自上而下依次层叠的第一透明电极(21)、第一传输层(22)、CsPbBr3钙钛矿吸光层(23)、第二传输层(24)、第二透明电极(25)和光学耦合层(26)。
2.根据权利要求1所述的低成本高可靠四端CsPbBr3/Si叠层太阳电池,其特征在于,所述硅底电池(1)为异质结HIT硅电池。
3.根据权利要求1所述的低成本高可靠四端CsPbBr3/Si叠层太阳电池,其特征在于,所述第一透明电极(21)和所述第二透明电极(25)的透光率大于或等于80%,方块电阻小于或等于10Ω/sq,其材料为ITO,FTO,AZO中的任一种。
4.根据权利要求1所述的低成本高可靠四端CsPbBr3/Si叠层太阳电池,其特征在于,所述第一传输层(22)包括电子传输层、空穴传输层中的任一种,所述第二传输层(24)包括电子传输层、空穴传输层中的另一种,所述第一传输层(22)和所述第二传输层(24)的厚度均为50~80nm。
5.根据权利要求4所述的低成本高可靠四端CsPbBr3/Si叠层太阳电池,其特征在于,所述电子传输层的材料采用n型半导体材料,所述n型半导体材料包括TiO2、SnO2、ZnO、PCBM中的任一种;
所述空穴传输层的材料采用p型半导体材料,所述p型半导体材料包括spiro-OMeTAD、P3HT、PEDOT:PSS、NiOx中的任一种。
6.根据权利要求1所述的低成本高可靠四端CsPbBr3/Si叠层太阳电池,其特征在于,所述CsPbBr3钙钛矿吸光层(23)的厚度为200~300nm。
7.根据权利要求1所述的低成本高可靠四端CsPbBr3/Si叠层太阳电池,其特征在于,所述光学耦合层(26)的折射率大于或等于2,材料为MoO3、V2O5、TeO2、Al2O3、LiF、MgF2、SiO2中的任一种,厚度为20~25nm。
8.一种低成本高可靠四端CsPbBr3/Si叠层太阳电池的制备方法,其特征在于,包括:
S1:利用溶液旋涂法在第一透明电极上淀积形成第一传输层;
S2:利用两步溶液旋涂法在所述第一传输层上生成CsPbBr3钙钛矿吸光层;
S3:利用溶液旋涂法在所述CsPbBr3钙钛矿吸光层上淀积形成第二传输层;
S4:利用热蒸发技术或者磁控溅射技术在所述第二传输层上制备第二透明电极;
S5:利用热蒸发技术在所述第二透明电极上制备光学耦合层,得到CsPbBr3钙钛矿顶电池;
S6:将所述CsPbBr3钙钛矿顶电池与硅底电池以机械方式组合在一起,形成机械叠层电池,其中,所述硅底电池为异质结HIT硅电池,所述CsPbBr3钙钛矿顶电池与所述硅底电池之间存在空气间隙。
9.根据权利要求8所述的低成本高可靠四端CsPbBr3/Si叠层太阳电池的制备方法,其特征在于,所述S2包括:
在所述第一传输层上以2000rpm的转速旋涂钙钛矿前驱体溶液,旋涂时间为30s,然后90℃退火60min,制备得到钙钛矿前驱体层;
在所述钙钛矿前驱体层上以2000rpm的转速旋涂CsBr溶液,旋涂时间为30s,然后在250℃退火5min,形成钙钛矿层;
利用异丙醇溶液在2000rpm的转速下冲洗所述钙钛矿层,旋转时间为30s,然后在250℃退火5min,形成所述CsPbBr3钙钛矿吸光层。
10.根据权利要求8所述的低成本高可靠四端CsPbBr3/Si叠层太阳电池的制备方法,其特征在于,所述光学耦合层制备条件均为:生长温度为600℃,生长压力为1E-4Pa,生长速率为
Figure FDA0002592650900000031
CN202010699948.6A 2020-07-20 2020-07-20 低成本高可靠四端CsPbBr3/Si叠层太阳电池及其制作方法 Pending CN113964225A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010699948.6A CN113964225A (zh) 2020-07-20 2020-07-20 低成本高可靠四端CsPbBr3/Si叠层太阳电池及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010699948.6A CN113964225A (zh) 2020-07-20 2020-07-20 低成本高可靠四端CsPbBr3/Si叠层太阳电池及其制作方法

Publications (1)

Publication Number Publication Date
CN113964225A true CN113964225A (zh) 2022-01-21

Family

ID=79459620

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010699948.6A Pending CN113964225A (zh) 2020-07-20 2020-07-20 低成本高可靠四端CsPbBr3/Si叠层太阳电池及其制作方法

Country Status (1)

Country Link
CN (1) CN113964225A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060082285A1 (en) * 2004-10-15 2006-04-20 Industrial Technology Research Institute Top emitting organic light emitting device
US20130008493A1 (en) * 2011-07-05 2013-01-10 The Boeing Company Inverted metamorphic multi-junction (imm) solar cell and associated fabrication method
CN104956483A (zh) * 2013-01-25 2015-09-30 佛罗里达大学研究基金会有限公司 使用溶液处理pbs光探测器的新型ir图像传感器
US20170330986A1 (en) * 2016-05-12 2017-11-16 North Carolina State University Intermetallic bonded multi-junction structures
CN111403613A (zh) * 2020-03-26 2020-07-10 武汉理工大学 一种利用刮刀涂布法制备大面积、半透明钙钛矿薄膜的方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060082285A1 (en) * 2004-10-15 2006-04-20 Industrial Technology Research Institute Top emitting organic light emitting device
US20130008493A1 (en) * 2011-07-05 2013-01-10 The Boeing Company Inverted metamorphic multi-junction (imm) solar cell and associated fabrication method
CN104956483A (zh) * 2013-01-25 2015-09-30 佛罗里达大学研究基金会有限公司 使用溶液处理pbs光探测器的新型ir图像传感器
US20170330986A1 (en) * 2016-05-12 2017-11-16 North Carolina State University Intermetallic bonded multi-junction structures
CN111403613A (zh) * 2020-03-26 2020-07-10 武汉理工大学 一种利用刮刀涂布法制备大面积、半透明钙钛矿薄膜的方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEIJIE CHEN: ""A Semitransparent Inorganic Perovskite Film for Overcoming Ultraviolet Light Instability of Organic Solar Cells and Achieving 14.03% Efficiency"", 《ADV. MATER.》, pages 1 - 10 *

Similar Documents

Publication Publication Date Title
Xu et al. Light management in monolithic perovskite/silicon tandem solar cells
CN207320169U (zh) 一种渐变带隙的钙钛矿电池
CN110600614B (zh) 一种钙钛矿/钙钛矿两端叠层太阳能电池的隧穿结结构
CN113097387B (zh) 抗辐照光伏储能一体化装置及其制备方法
CN112736200B (zh) 一种叠层电池及其制备方法和应用
CN105789444A (zh) 一种基于真空蒸发镀膜法的钙钛矿太阳能电池及其制备方法
CN110867516A (zh) 新型基于钙钛矿和晶硅背钝化叠层太阳电池及其制造方法
CN110970562A (zh) 一种钙钛矿/晶硅叠层太阳能电池及其制备方法
CN112599675B (zh) 一种适用于叠层太阳能电池的中间层、电池及制备方法
Islam et al. Recent progress and future prospects for light management of all‐perovskite tandem solar cells
WO2023115870A1 (zh) 一种pn异质结硒化锑/钙钛矿太阳能电池及其制备方法
CN209963073U (zh) 一种新型高效率双面入光CdTe钙钛矿叠层光伏电池
CN102244111A (zh) 一种薄膜太阳能电池
CN114203757A (zh) 基于二维钙钛矿的硅叠层太阳能电池及其制作方法
CN112599683B (zh) 一种制备叠层太阳能电池的层压工艺
CN114695671A (zh) 钙钛矿太阳能电池及其制备方法、光伏系统
CN113644195A (zh) 一种全无机钙钛矿/有机叠层太阳电池及其制备方法
JP2017126737A (ja) 光電変換素子および光電変換素子の製造方法
CN115172602B (zh) 一种掺杂金属氧化物复合层结构
CN113964225A (zh) 低成本高可靠四端CsPbBr3/Si叠层太阳电池及其制作方法
CN115799375A (zh) 无ito电极的钙钛矿/硅异质结两端串联太阳能电池及其制备方法
CN114447228A (zh) 具有微腔结构的钙钛矿太阳能电池及其制备方法
CN102201288A (zh) 太阳能电池
CN113889540A (zh) 双面无机半透明CsPbBr3薄膜钙钛矿太阳电池及其制备方法
CN220307715U (zh) 一种具有双吸光层结构的钙钛矿太阳电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination