CN113948206A - 一种基于多层级框架的疾病分期模型融合方法 - Google Patents

一种基于多层级框架的疾病分期模型融合方法 Download PDF

Info

Publication number
CN113948206A
CN113948206A CN202111246964.0A CN202111246964A CN113948206A CN 113948206 A CN113948206 A CN 113948206A CN 202111246964 A CN202111246964 A CN 202111246964A CN 113948206 A CN113948206 A CN 113948206A
Authority
CN
China
Prior art keywords
model
sample set
models
layer
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111246964.0A
Other languages
English (en)
Other versions
CN113948206B (zh
Inventor
轩吴凡
周福宝
郑丽娜
冯子康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN202111246964.0A priority Critical patent/CN113948206B/zh
Publication of CN113948206A publication Critical patent/CN113948206A/zh
Application granted granted Critical
Publication of CN113948206B publication Critical patent/CN113948206B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • G06F18/254Fusion techniques of classification results, e.g. of results related to same input data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Medical Informatics (AREA)
  • Primary Health Care (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种基于多层级框架的疾病分期模型融合方法,将受试者信息分为训练样本集和测试样本集,使用训练集中部分数据训练模型,训练集中余下数据做模型内部验证;基于输入的受试者信息,利用多种单一疾病分期模型得出训练集中疾病分期的预测信息,筛选性能优异且原理不同的模型作为第一层基模型,并使用第一层基模型对测试样本集进行预测;将第一层基模型得出的对训练样本集内部验证部分数据和测试样本集的预测结果作为数据特征输入第二层模型,结合第一层基模型的动态权重计算得到融合模型;本发明能够自动地针对样本数据建立疾病分期模型并进行模型融合,并能根据所输入的评价指标阈值进行动态优化,可提高分期模型的精度并且减少漏报、误报率。

Description

一种基于多层级框架的疾病分期模型融合方法
技术领域
本发明涉及一种疾病分期模型融合算法,具体是一种基于多层级框架的疾病分期模型融合方法,属于多分类算法技术领域,尤其适用于对疾病信息的识别和分期预测。
背景技术
随着数字科学在医疗技术上应用的推进,越来越多的病患和临床信息能以电子病历为载体存储。借助于这些病患信息开展疾病识别、分期甚至是预测的研究也成为近十年来的一大研究热点。
由于单一数据特征提取层面或分类算法层面的改进对疾病识别帮助有限,因此模型集成或融合的方式有望成为疾病识别与分期模型构建与优化的主流思想。近年来堆栈集成和多层级建模集成思想在分类算法优化中表现良好,但在疾病识别与分期领域还没有取得较好的应用。部分学者针对疾病分期模型的融合方法进行了探究,但由于检测精度、系统稳定性、系统普适性等多种影响因素,目前还没有一个成熟、精确度高且稳定的疾病分期模型融合方法被公认肯定。
发明内容
本发明的目的是提供一种基于多层级框架的疾病分期模型融合方法,该方法能够客观、自动地针对样本数据建立疾病分期模型并进行模型融合,并能根据所输入的评价指标阈值进行动态优化,可提高分期模型的精度并且减少漏报、误报率。
为了实现上述目的,本发明提供一种基于多层级框架的疾病分期模型融合方法,包括以下步骤:
步骤1,将受试者信息输入并划分为训练样本集和测试样本集,使用训练样本集中部分数据训练模型,训练样本集中余下数据用于做模型内部验证,使用多种单一疾病分期模型并从中筛选出第一层基模型,第一层基模型的预测结果输入第二层模型做模型融合;
步骤2,使用第一层基模型对训练样本集内部验证数据和测试样本集进行预测,其结果结合第一层基模型的动态权重作为第二层数据特征输入至第二层模型,以得到疾病分期模型融合的结果;
步骤3,计算动态权重,根据第一层基模型在训练样本集的预测结果的评价指标线性地分配初权重,以第二层模型对测试样本集中样本识别的准确率和假阴性率为双目标函数,使用粒子群算法和迭代的方法多次进行权重的调参和优化,并且根据所输入的目标值动态计算最佳权重组合,最终得到疾病分期模型融合的参数。
本发明的步骤1中筛选第一层基模型具体过程如下:
(1)使用多种单一疾病分期模型对训练样本集中的信息进行分类,所述多种单一疾病分期模型包含支持向量机模型、K近邻模型、分类树模型、朴素贝叶斯模型以及3类集成模型,3类集成模型为提升算法模型、引导聚焦算法模型、随机森林算法模型,经筛选后基模型1、基模型2、……、基模型n中的集成模型的数量占比应低于50%,高于50%则依次剔除过拟合程度高的模型直至集成模型的数量占比低于50%;
(2)根据假阴性率及准确率初步筛选出性能优异的模型,默认筛选出假阴性率低于10%且准确率高于80%的所有模型;
(3)针对根据假阴性率及准确率初步筛选出的模型,计算其两两之间预测结果序列的皮尔逊相关系数,将皮尔逊相关系数在90%以上的两个模型优先根据假阴性率、其次根据准确率排序,剔除效率低的一方,最终得到多个性能优异且原理不同的模型作为第一层基模型。
本发明所述步骤2中第二层模型建立在实际计算量较大和模型算力允许的情况把第二层模型的预测结果结合动态权重作为第三层数据特征输入至第三层模型做模型融合,因此多层框架的实际作用层数应多于两层。
本发明步骤3中,以训练样本集内部验证数据的预测结果和原信息标签作为训练数据,对测试样本集进行预测。
本发明步骤3的具体过程如下:
(1)使用粒子群算法动态求解最优权重组合,根据基模型在训练样本集的预测结果的评价指标线性地分配初权重后,随机初始化每个粒子;
(2)以准确率和假阴性率为目标函数在测试样本集做双目标规划,迭代过程中在假阴性率的最优解集内求准确率的最优解集。
本发明步骤1和步骤2中提及的预测结果形式为分类过程中输出的标签和概率矩阵。
本发明步骤2中的第二层模型根据训练结果在逻辑回归模型和支持向量机模型中择优选择。
与现有技术相比,本发明基于输入的受试者疾病特征信息,结合模型训练的集合划分以及多层级框架将受试者划分为训练样本集和测试样本集,使用训练样本集中部分数据训练模型,训练样本集中余下数据用于做模型内部验证;融合前分类器筛选:基于输入的受试者疾病信息,利用多种单一疾病分期模型得出训练集中疾病分期的预测信息,并利用模型间预测结果的相关性结合各模型的准确率和假阴性率做差异化筛选,得到性能优异且原理不同的模型作为第一层基模型,并使用第一层基模型对测试样本集进行预测;融合方式的优化:将基模型得出的对训练样本集内部验证部分数据和测试样本集的预测结果作为数据特征输入第二层模型,不同基模型的数据乘以其对应的权重于第二层使用模型预测疾病分期,最终得到模型融合的结果;权重的动态计算:线性根据基模型在内部验证数据中的预测效果设置初步权重,使用粒子群算法和迭代的方法动态优化权重;本发明能够客观、自动地针对样本数据建立疾病分期模型并进行模型融合,并能根据所输入的评价指标阈值进行动态优化,可提高分期模型的精度并且减少漏报、误报率。
附图说明
图1是本发明的模型融合过程中数据划分示意图;
图2是本发明的具体流程图。
具体实施方式
下面结合附图对本发明作进一步说明。
如图1和图2所示,一种基于多层级框架的疾病分期模型融合方法,包括以下步骤:
步骤1,构建多层框架:将受试者信息划分为训练样本集和测试样本集,使用训练样本集中部分数据训练模型,训练样本集中余下数据用于做模型内部验证,使用多种单一疾病分期模型并从中筛选出第一层基模型,第一层基模型的预测结果输入第二层模型做模型融合;
筛选第一层基模型具体过程如下:
(1)使用多种单一疾病分期模型对训练样本集中的信息进行分类,所述多种单一疾病分期模型包含支持向量机模型、K近邻模型、分类树模型、朴素贝叶斯模型以及3类集成模型,3类集成模型为提升算法模型、引导聚焦算法模型、随机森林算法模型,经筛选后基模型1、基模型2、……、基模型n中的集成模型的数量占比低于50%,高于50%则依次剔除过拟合程度高的模型直至集成模型的数量占比低于50%;
(2)根据假阴性率及准确率初步筛选出性能优异的模型,默认筛选出假阴性率低于10%且准确率高于80%的所有模型;
(3)针对根据假阴性率及准确率初步筛选出的模型,计算其两两之间预测结果序列的皮尔逊相关系数,将皮尔逊相关系数在90%以上的两个模型优先根据假阴性率、其次根据准确率排序,剔除效率低的一方,最终得到多个性能优异且原理不同的模型作为第一层基模型。
步骤2,优化融合方式:使用第一层基模型对训练样本集内部验证数据和测试样本集进行预测,其结果结合不同基模型的动态权重作为第二层数据特征输入第二层模型,以得到疾病分期模型融合的结果;以训练样本集内部验证数据的预测结果和原信息标签作为训练数据,对测试样本集进行预测,避免将第一层基模型的训练数据引入第二层模型泛化过程,从而减少数据泄露和过拟合的可能;
步骤3,计算动态权重:根据第一层基模型在训练样本集的预测结果的评价指标线性地分配初权重,以第二层模型对测试样本集中样本识别的准确率和假阴性率为双目标函数,使用粒子群算法和迭代的方法多次进行权重的调参和优化,并且根据所输入的目标值动态计算最佳权重组合,最终得到疾病分期模型融合的参数;具体过程如下:
(1)使用粒子群算法动态求解最优权重组合,根据基模型在训练样本集的预测结果的评价指标线性地分配初权重后,随机初始化每个粒子;
(2)以准确率和假阴性率为目标函数在测试样本集做双目标规划,迭代过程中在假阴性率的最优解集内求准确率的最优解集。
所述步骤2中第二层模型的建立在实际计算量较大和模型算力允许的情况可把第二层模型的预测结果结合动态权重作为第三层数据特征输入第三层模型做模型融合,因此多层框架的实际作用层数应多于两层。
所述步骤1和步骤3中提及的预测结果形式为分类过程中输出的标签和概率矩阵。
所述步骤3中的第二层模型根据训练结果在逻辑回归模型和支持向量机模型中择优选择。
本发明方法全面,操作流程简单,得到的疾病分期模型具有客观、稳定性强、漏报误报率低等特点,在疾病信息识别及其模型融合领域具有广泛的应用价值。本发明提及的90%的相关度阈值、10%的假阴性率阈值和80%的准确率阈值都是算法所设置的常规值,而不是用于特定描述,可以根据模型应用的实际结果进行调整。
实施例1
一种基于多层级框架的疾病分期模型融合方法,包括以下步骤:
步骤1:输入矿井工人体检的肺部CT图像,根据医生初步的诊断结果识别出疑似尘肺病患者后,然后将受试者划分为训练样本集和测试样本集,使用训练样本集中80%的数据训练模型,训练样本集中余下20%的数据用于做模型内部验证,从单一疾病分期模型中筛选出第一层基模型并把第一层基模型的预测结果输入第二层模型做模型融合;
使用向量机模型、K近邻模型、分类树模型、朴素贝叶斯模型、提升算法、引导聚焦算法和随机森林算法模型对训练样本集中的信息进行分类,筛选出假阴性率低于10%且准确率高于80%的所有模型,并计算两两模型之间预测结果序列的皮尔逊相关系数,将皮尔逊相关系数在90%以上的两个模型优先根据假阴性率、其次根据准确率剔除效率较低一方,最终得到向量机模型、K近邻模型、随机森林算法模型作为第一层基模型,满足集成模型的数量占比不得超过50%的基模型筛选要求;
步骤2:使用第一层基模型对训练样本集内部验证数据和测试样本集进行预测,其分类过程中输出的标签和概率矩阵结合不同的权重作为第二层数据特征输入第二层模型,以得到疾病分期模型融合的结果;
步骤3:根据第一层基模型在训练样本集的预测结果的评价指标,线性地为向量机模型、K近邻模型、随机森林算法模型分配初权重比例为0.2:0.3:0.5,随机初始化每个粒子,使用粒子群算法动态求解最优权重组合,以第二层模型对测试样本集中样本识别的准确率和假阴性率为双目标函数,迭代过程中在假阴性率的最优解集内求准确率的最优解集并多次进行权重的调参和优化,并且根据所输入的目标值动态计算最佳权重组合:0.22:0.33:0.45,结合此权重得到对尘肺病分期模型的融合方案,并输出对疑似病例的分期诊断。
实施例2
一种基于多层级框架的疾病分期模型融合方法,包括以下步骤:
步骤1:输入矿井工人体检的呼出气传感数据,根据医生初步的诊断结果识别出疑似尘肺病患者后,将受试者划分为训练样本集和测试样本集,使用训练样本集中80%的数据训练模型,训练样本集中余下20%的数据用于做模型内部验证,从单一疾病分期模型中筛选出第一层基模型并把第一层基模型的预测结果输入第二层模型做模型融合;
使用向量机模型、K近邻模型、分类树模型、朴素贝叶斯模型、提升算法、引导聚焦算法和随机森林算法模型对训练样本集中的信息进行分类,筛选出假阴性率低于10%且准确率高于80%的所有模型,并计算两两模型之间预测结果序列的皮尔逊相关系数,将皮尔逊相关系数在90%以上的两个模型优先根据假阴性率、其次根据准确率剔除效率较低一方,最终得到向量机模型、K近邻模型、随机森林算法模型作为第一层基模型,满足集成模型的数量占比不得超过50%的基模型筛选要求;
步骤2:使用第一层基模型对训练样本集内部验证数据和测试样本集进行预测,其分类过程中输出的标签和概率矩阵结合不同的权重作为第二层数据特征输入第二层模型,以得到疾病分期模型融合的结果;
步骤3:根据第一层基模型在训练样本集的预测结果的评价指标,线性地为向量机模型、K近邻模型、随机森林算法模型分配初权重比例为0.2:0.3:0.5,随机初始化每个粒子,使用粒子群算法动态求解最优权重组合,以第二层模型对测试集中样本识别的准确率和假阴性率为双目标函数,迭代过程中在假阴性率的最优解集内求准确率的最优解集并多次进行权重的调参和优化,并且根据所输入的目标值动态计算最佳权重组合:0.22:0.33:0.45,结合此权重得到对尘肺病分期模型的融合方案,并输出对疑似病例的分期诊断。

Claims (7)

1.一种基于多层级框架的疾病分期模型融合方法,其特征在于,包括以下步骤:
步骤1,将受试者信息输入并划分为训练样本集和测试样本集,使用训练样本集中部分数据训练模型,训练样本集中余下数据用于做模型内部验证,使用多种单一疾病分期模型并从中筛选出第一层基模型,第一层基模型的预测结果输入第二层模型做模型融合;
步骤2,使用第一层基模型对训练样本集内部验证数据和测试样本集进行预测,其结果结合第一层基模型的动态权重作为第二层数据特征输入至第二层模型,以得到疾病分期模型融合的结果;
步骤3,计算动态权重,根据第一层基模型在训练样本集的预测结果的评价指标线性地分配初权重,以第二层模型对测试样本集中样本识别的准确率和假阴性率为双目标函数,使用粒子群算法和迭代的方法多次进行权重的调参和优化,并且根据所输入的目标值动态计算最佳权重组合,最终得到疾病分期模型融合的参数。
2.根据权利要求1所述的一种基于多层级框架的疾病分期模型融合方法,其特征在于,筛选第一层基模型具体过程如下:
(1)使用多种单一疾病分期模型对训练样本集中的信息进行分类,所述多种单一疾病分期模型包含支持向量机模型、K近邻模型、分类树模型、朴素贝叶斯模型以及3类集成模型,3类集成模型为提升算法模型、引导聚焦算法模型、随机森林算法模型,经筛选后基模型1、基模型2、……、基模型n中的集成模型的数量占比应低于50%,高于50%则依次剔除过拟合程度高的模型直至集成模型的数量占比低于50%;
(2)根据假阴性率及准确率初步筛选出性能优异的模型,默认筛选出假阴性率低于10%且准确率高于80%的所有模型;
(3)针对根据假阴性率及准确率初步筛选出的模型,计算其两两之间预测结果序列的皮尔逊相关系数,将皮尔逊相关系数在90%以上的两个模型优先根据假阴性率、其次根据准确率排序,剔除效率低的一方,最终得到多个性能优异且原理不同的模型作为第一层基模型。
3.根据权利要求1或2所述的一种基于多层级框架的疾病分期模型融合方法,其特征在于,所述步骤2中第二层模型建立在实际计算量较大和模型算力允许的情况把第二层模型的预测结果结合动态权重作为第三层数据特征输入至第三层模型做模型融合,即多层框架的实际作用层数应多于两层。
4.根据权利要求3所述的一种基于多层级框架的疾病分期模型融合方法,其特征在于,所述步骤3中,以训练样本集内部验证数据的预测结果和原信息标签作为训练数据,对测试样本集进行预测。
5.根据权利要求3所述的一种基于多层级框架的疾病分期模型融合方法,其特征在于,所述步骤3的具体过程如下:
(1)使用粒子群算法动态求解最优权重组合,根据基模型在训练样本集的预测结果的评价指标线性地分配初权重后,随机初始化每个粒子;
(2)以准确率和假阴性率为目标函数在测试样本集做双目标规划,迭代过程中在假阴性率的最优解集内求准确率的最优解集。
6.根据权利要求3所述的一种基于多层级框架的疾病分期模型融合方法,其特征在于,所述步骤1和步骤2中提及的预测结果形式为分类过程中输出的标签和概率矩阵。
7.根据权利要求3所述的一种基于多层级框架的疾病分期模型融合方法,其特征在于,所述步骤2中的第二层模型根据训练结果在逻辑回归模型和支持向量机模型中择优选择。
CN202111246964.0A 2021-10-26 2021-10-26 一种基于多层级框架的疾病分期模型融合方法 Active CN113948206B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111246964.0A CN113948206B (zh) 2021-10-26 2021-10-26 一种基于多层级框架的疾病分期模型融合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111246964.0A CN113948206B (zh) 2021-10-26 2021-10-26 一种基于多层级框架的疾病分期模型融合方法

Publications (2)

Publication Number Publication Date
CN113948206A true CN113948206A (zh) 2022-01-18
CN113948206B CN113948206B (zh) 2024-05-07

Family

ID=79332394

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111246964.0A Active CN113948206B (zh) 2021-10-26 2021-10-26 一种基于多层级框架的疾病分期模型融合方法

Country Status (1)

Country Link
CN (1) CN113948206B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115274100A (zh) * 2022-09-30 2022-11-01 谱宁医学科技(天津)有限责任公司 基于血浆光谱的疾病筛查模型构建方法及疾病筛查装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107578124A (zh) * 2017-08-28 2018-01-12 国网山东省电力公司电力科学研究院 基于多层改进gru神经网络的短期电力负荷预测方法
CN108231201A (zh) * 2018-01-25 2018-06-29 华中科技大学 一种疾病数据分析处理模型的构建方法、系统及应用
US20210247367A1 (en) * 2018-08-08 2021-08-12 Zhejiang University Workflow-based model optimization method for vibrational spectral analysis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107578124A (zh) * 2017-08-28 2018-01-12 国网山东省电力公司电力科学研究院 基于多层改进gru神经网络的短期电力负荷预测方法
CN108231201A (zh) * 2018-01-25 2018-06-29 华中科技大学 一种疾病数据分析处理模型的构建方法、系统及应用
US20210247367A1 (en) * 2018-08-08 2021-08-12 Zhejiang University Workflow-based model optimization method for vibrational spectral analysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115274100A (zh) * 2022-09-30 2022-11-01 谱宁医学科技(天津)有限责任公司 基于血浆光谱的疾病筛查模型构建方法及疾病筛查装置
CN115274100B (zh) * 2022-09-30 2022-12-09 谱宁医学科技(天津)有限责任公司 基于血浆光谱的疾病筛查模型构建方法及疾病筛查装置

Also Published As

Publication number Publication date
CN113948206B (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
CN109350032B (zh) 一种分类方法、系统、电子设备及存储介质
KR100794516B1 (ko) 사례 기반 기계학습 추론을 이용한 질환 진단 및 검사 항목선정 시스템 및 방법
CN108196132B (zh) 系统内电磁兼容性评估方法
CN112756759B (zh) 点焊机器人工作站故障判定方法
CN110660478A (zh) 一种基于迁移学习的癌症图像预测判别方法和系统
CN112232526B (zh) 一种基于集成策略的地质灾害易发性评价方法及系统
CN113808738B (zh) 一种基于自识别影像的疾病识别系统
CN112201330A (zh) 结合DRGs工具和贝叶斯模型的医疗质量监测评估方法
CN112308825A (zh) 一种基于SqueezeNet的农作物叶片病害识别方法
CN113674862A (zh) 一种基于机器学习的急性肾功能损伤发病预测方法
CN113113152A (zh) 针对新型冠状病毒肺炎的疾病数据集样本获取处理方法、系统、装置、处理器及其存储介质
CN113948206B (zh) 一种基于多层级框架的疾病分期模型融合方法
CN116226103A (zh) 一种基于FPGrowth算法进行政务数据质量检测的方法
CN116564409A (zh) 基于机器学习的转移性乳腺癌转录组测序数据识别方法
CN109685133A (zh) 基于构建的预测模型低成本、高区分度的数据分类方法
CN117079017A (zh) 可信的小样本图像识别分类方法
CN113936804B (zh) 一种肺癌切除术后持续漏气风险预测模型构建系统
CN116089801A (zh) 一种基于多重置信度的医疗数据缺失值修复的方法
CN112732690B (zh) 一种用于慢病检测及风险评估的稳定系统及方法
CN110010246A (zh) 一种基于神经网络和置信区间的疾病智能诊断技术
CN115204475A (zh) 一种戒毒场所安全事件风险评估方法
KR101085066B1 (ko) 대용량 다속성 데이터집합에서 의미 있는 지식 탐사를 위한 연관 분류 방법
CN114611719A (zh) 一种新的基于布谷鸟搜索算法的XGBoost训练方法
CN111860441B (zh) 基于无偏深度迁移学习的视频目标识别方法
CN114663102A (zh) 基于半监督模型预测发债主体违约的方法、设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant