CN113945340B - 一种预测填土导致架空承台沉降诱发管线渗漏量的方法 - Google Patents

一种预测填土导致架空承台沉降诱发管线渗漏量的方法 Download PDF

Info

Publication number
CN113945340B
CN113945340B CN202110996894.4A CN202110996894A CN113945340B CN 113945340 B CN113945340 B CN 113945340B CN 202110996894 A CN202110996894 A CN 202110996894A CN 113945340 B CN113945340 B CN 113945340B
Authority
CN
China
Prior art keywords
determining
pipeline
bearing platform
filling
overhead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110996894.4A
Other languages
English (en)
Other versions
CN113945340A (zh
Inventor
徐桃
姚争
张鹏
王涛
张�浩
刘腾飞
曲红星
迟余睿
王十瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Construction Seventh Engineering Division Corp Ltd
Transportation Construction Co Ltd of China Construction Seventh Engineering Division Corp Ltd
Original Assignee
China Construction Seventh Engineering Division Corp Ltd
Transportation Construction Co Ltd of China Construction Seventh Engineering Division Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Construction Seventh Engineering Division Corp Ltd, Transportation Construction Co Ltd of China Construction Seventh Engineering Division Corp Ltd filed Critical China Construction Seventh Engineering Division Corp Ltd
Priority to CN202110996894.4A priority Critical patent/CN113945340B/zh
Publication of CN113945340A publication Critical patent/CN113945340A/zh
Application granted granted Critical
Publication of CN113945340B publication Critical patent/CN113945340B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computer Hardware Design (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Civil Engineering (AREA)
  • Computing Systems (AREA)
  • Algebra (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

本发明涉及一种预测填土导致架空承台沉降诱发管线渗漏量的方法,解决现有技术中现场间接测量外,尚无可靠的理论方法进行预测的问题;其解决的技术方案是:步骤1:确定管线的内径D,河床承台两侧架空部分单段管线长度L1和L2:步骤2:确定承台处填土高度H0;步骤3:确定填土重度γ:步骤4:确定填土在承台处河床表面引起的竖向荷载P:P=γH0;步骤5:确定河床底部软土层厚度Z和软土的压缩模量Es:步骤6:确定承台位置处填土的等效宽度B:步骤7:计算承台由于填土荷载引起的下沉量S:步骤8:确定承台处两侧架空管线的转动倾角α1、α2步骤9:确定渗漏通道的面积A:步骤10:确定管道内流体的流速v;步骤11:确定出管道的渗漏量Q:Q=vA;本发明可计算出渗漏量。

Description

一种预测填土导致架空承台沉降诱发管线渗漏量的方法
技术领域
本发明涉及基础建设领域,特别是一种预测填土导致架空承台沉降诱发管线渗漏量的方法。
背景技术
承插式钢筋混凝土管道是一种常见的输水设备,当该类管线穿越河流时,通常采用承台对其进行架空,即承台架在两段管线的承插接口处。在城市建设过程中,经常遇到河谷填埋,堆土荷载压在下部承台基础上,加之河床底部往往存在一定厚度的软土,在填土荷载作用下,承台发生沉降,导致管线承插接口发生变形,插口下沉,接口脱开,导致输水渗漏;加上填土密实性较差,渗透系数较大,渗漏量往往较大。目前,对于这种情况下的渗漏量,除了现场间接测量外,尚无可靠的理论方法进行预测。
发明内容
针对上述情况,为解决现有技术中存在的问题,本发明之目的就是提供一种预测填土导致架空承台沉降诱发管线渗漏量的方法,解决现有技术中现场间接测量外,尚无可靠的理论方法进行预测的问题。
其解决的技术方案是:一种预测填土导致架空承台沉降诱发管线渗漏量的方法,所述的方法主要包括以下步骤:
步骤1:确定管线的内径D,河床承台两侧架空部分单段管线长度L1和L2
根据管线设计方案,确定管线的内径D;根据管线设计方案和施工方案,确定两侧架空部分单段管线长度,分别表示为L1和L2
步骤2:确定承台处填土高度H0
步骤3:确定填土重度γ:
利用钻探取出的土样,运回实验室进行密度试验,测试出密度后,乘以重力加速度,得到其重度γ;
步骤4:确定填土在承台处河床表面引起的竖向荷载P:
P=γH0
步骤5:确定河床底部软土层厚度Z和软土的压缩模量Es
利用上述钻探结果,确定软土层厚度Z;利用钻探取出的软土原状样品,运回实验室进行压缩固结试验,测试出其压缩模量Es
步骤6:确定承台位置处填土的等效宽度B:
步骤7:计算承台由于填土荷载引起的下沉量S:
步骤8:确定承台处两侧架空管线的转动倾角α1、α2
步骤9:确定渗漏通道的面积A:
步骤10:确定管道内流体的流速v:
根据管道的设计方案,确定出流速v;
步骤11:确定出管道的渗漏量Q:
Q=vA。
优选的,确定所述的填土高度H0时,在承台边缘1~2m位置处进行钻探取样。
优选的,确定所述的等效宽度B时,利用物探方法探测出承台位置处河床上方填土的横断面几何形状,在Auto-CAD里绘制出填土几何形状,利用Auto-CAD的面积查询功能,确定出横断面的面积A0,则B=A0/H0
优选的,若B≥Z,则β=0.75;若B≤0.5Z,β=0.25;若0.5Z<B<Z时,则β在(0.25,0.75)之间线性插值。
本发明的工作原理是当河床上受到填土的竖向荷载后,河床发生沉降,相应河床处的管道承台基础也发生相应沉降,而河床两侧处的承台基础下方没有软土存在,且无填土存在,故不会发生沉降;因此,河床处承台发生沉降后,上方架设的管道承插口发生旋转倾斜,下口打开,出现渗漏,水流流速越高,开口面积越大,则渗漏量越大。
附图说明
图1为本发明测量过程中的主视剖面图。
具体实施方式
以下结合附图对本发明的具体实施方式做进一步详细说明。
我国东南沿海某地区建有一座火力发电站,该火力发电站通过一输水管线进行输水;该管线为承插式钢筋混凝土管,管道横穿河流,在河床中间建有一承台;后来由于城市建设开发需要,地面进行整平,河流被填土覆盖。由于填土荷载作用,导致该管道出现渗漏,为了确定渗漏量,采用本发明的方法对其进行预测。
根据管线设计方案,确定管线的内径D为1.0m,根据管线设计方案和施工方案,确定河床承台两侧架空部分单段管线长度L1为5.5m、L2为5.0m;在承台边缘1~2m位置处进行钻探取样,确定填土高度H0为4.1m;利用钻探取出的土样,运回实验室进行密度试验,测试出密度后,乘以重力加速度,得到其重度γ为17.7kN/m3;确定填土在承台处河床表面引起的竖向荷载P为72.57kPa;利用上述钻探结果,确定软土层厚度Z为7.2m;利用钻探取出的软土原状样品,运回实验室进行压缩固结试验,测试出其压缩模量Es为1.74MPa;利用物探方法探测出承台位置处填土的横断面几何形状,在Auto-CAD里绘制出填土几何形状,利用Auto-CAD的面积查询功能,确定出横断面的面积A0为43.87m2,则承台位置处填土的等效宽度B为10.7m;由于B>Z,故β=0.75,则承台由于填土荷载引起的下沉量S为0.225m;进一步确定承台处两侧架空管线的转动倾角α1为2.34°、α2为2.58°;确定渗漏通道的面积A为0.135m2;根据管道的设计方案,确定出流速v为0.20m/s;确定出管道的渗漏量Q为0.027m3/s。

Claims (3)

1.一种预测填土导致架空承台沉降诱发管线渗漏量的方法,其特征在于,包括以下步骤:
步骤1:确定管线的内径D,河床承台两侧架空部分单段管线长度L1和L2
根据管线设计方案,确定管线的内径D;根据管线设计方案和施工方案,确定两侧架空部分单段管线长度,分别表示为L1和L2
步骤2:确定承台处填土高度H0
步骤3:确定填土重度γ:
利用钻探取出的土样,运回实验室进行密度试验,测试出密度后,乘以重力加速度,得到其重度γ;
步骤4:确定填土在承台处河床表面引起的竖向荷载P:
P=γH0
步骤5:确定河床底部软土层厚度Z和软土的压缩模量Es
利用上述钻探结果,确定软土层厚度Z;利用钻探取出的软土原状样品,运回实验室进行压缩固结试验,测试出其压缩模量Es
步骤6:确定承台位置处填土的等效宽度B:
步骤7:计算承台由于填土荷载引起的下沉量S:
若B≥Z,则β=0.75;若B≤0.5Z,β=0.25;若0.5Z<B<Z时,则β在(0.25,0.75)之间线性插值;
步骤8:确定承台处两侧架空管线的转动倾角α1、α2
步骤9:确定渗漏通道的面积A:
步骤10:确定管道内流体的流速v:
根据管道的设计方案,确定出流速v;
步骤11:确定出管道的渗漏量Q:
Q=vA。
2.根据权利要求1所述的一种预测填土导致架空承台沉降诱发管线渗漏量的方法,其特征在于,确定所述的填土高度H0时,在承台边缘1~2m位置处进行钻探取样。
3.根据权利要求1所述的一种预测填土导致架空承台沉降诱发管线渗漏量的方法,其特征在于,确定所述的等效宽度B时,利用物探方法探测出承台位置处河床上方填土的横断面几何形状,在Auto-CAD里绘制出填土几何形状,利用Auto-CAD的面积查询功能,确定出横断面的面积A0,则B=A0/H0
CN202110996894.4A 2021-08-27 2021-08-27 一种预测填土导致架空承台沉降诱发管线渗漏量的方法 Active CN113945340B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110996894.4A CN113945340B (zh) 2021-08-27 2021-08-27 一种预测填土导致架空承台沉降诱发管线渗漏量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110996894.4A CN113945340B (zh) 2021-08-27 2021-08-27 一种预测填土导致架空承台沉降诱发管线渗漏量的方法

Publications (2)

Publication Number Publication Date
CN113945340A CN113945340A (zh) 2022-01-18
CN113945340B true CN113945340B (zh) 2024-02-23

Family

ID=79328238

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110996894.4A Active CN113945340B (zh) 2021-08-27 2021-08-27 一种预测填土导致架空承台沉降诱发管线渗漏量的方法

Country Status (1)

Country Link
CN (1) CN113945340B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998055846A1 (en) * 1997-06-04 1998-12-10 Bg Plc Pipe leakage detection
DE202007016602U1 (de) * 2007-11-28 2009-04-02 Gebr. Fasel Betonwerk Gmbh Kanalsystem mit Prüfvorrichtung
CN101710019A (zh) * 2009-12-10 2010-05-19 同济大学 离心场中隧道渗漏水模拟与测量系统
WO2014196892A1 (en) * 2013-06-04 2014-12-11 Siemens Aktiengesellschaft System for leakage and collapse detection of levees and method using the system
CN108692891A (zh) * 2018-05-10 2018-10-23 重庆大学 一种管道渗漏模拟试验装置及试验方法
CN110245397A (zh) * 2019-05-30 2019-09-17 广东水利电力职业技术学院(广东省水利电力技工学校) 天然地基沉降预测方法、计算机可读存储介质和终端
CN112326155A (zh) * 2020-10-19 2021-02-05 北京城建设计发展集团股份有限公司 建筑与小区埋地给水管的渗漏监测报警检测系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998055846A1 (en) * 1997-06-04 1998-12-10 Bg Plc Pipe leakage detection
DE202007016602U1 (de) * 2007-11-28 2009-04-02 Gebr. Fasel Betonwerk Gmbh Kanalsystem mit Prüfvorrichtung
CN101710019A (zh) * 2009-12-10 2010-05-19 同济大学 离心场中隧道渗漏水模拟与测量系统
WO2014196892A1 (en) * 2013-06-04 2014-12-11 Siemens Aktiengesellschaft System for leakage and collapse detection of levees and method using the system
CN108692891A (zh) * 2018-05-10 2018-10-23 重庆大学 一种管道渗漏模拟试验装置及试验方法
CN110245397A (zh) * 2019-05-30 2019-09-17 广东水利电力职业技术学院(广东省水利电力技工学校) 天然地基沉降预测方法、计算机可读存储介质和终端
CN112326155A (zh) * 2020-10-19 2021-02-05 北京城建设计发展集团股份有限公司 建筑与小区埋地给水管的渗漏监测报警检测系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
管廊渗漏对其变形及周边土沉降特性的影响研究;刁钰;土木工程学报;第106-112页 *

Also Published As

Publication number Publication date
CN113945340A (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
Wu et al. Identification of tunnel settlement caused by land subsidence in soft deposit of Shanghai
Wang et al. Vertical performance of suction bucket foundation for offshore wind turbines in sand
CN103061329B (zh) 基于软基下大型沉管隧道基础水下注浆浆液及其注浆工艺
Zhang et al. Experimental study on installation of hybrid bucket foundations for offshore wind turbines in silty clay
Zhu et al. Deflection-based bearing capacity of suction caisson foundations of offshore wind turbines
Chen et al. Large-scale experimental investigation of the installation of suction caissons in silt sand
CN105203080B (zh) 一种路基沉降观测设备及其观测方法
Koh et al. Installation and monotonic pullout of a suction caisson anchor in calcareous silt
Wang et al. Field investigation of collapse of a 13-story high-rise residential building in Shanghai
CN111914373A (zh) 长距离岩石顶管摩阻力计算方法及管岩接触状态检测方法
Jiang et al. Experimental study on the migration regularity of sand outside a large, deep-water, open caisson during sinking
CN105386474A (zh) 确定基坑开挖面上方止水帷幕渗漏对周边环境影响的方法
Xu et al. Seismic and static 3D stability of two-stage slope considering joined influences of nonlinearity and dilatancy
Liu et al. Long Yu
Ni et al. Model tests of buoyant force on underground structures
Nokande et al. Shaking table test on mitigation of liquefaction-induced tunnel uplift by helical pile
Ren et al. Time effect of buoyant force reduction for underground structures in clays: model test and case study
Wang et al. Full-scale loading test of jet grouting in the artificial island–immersed tunnel transition area of the Hong Kong–Zhuhai–Macau Sea link
Liu et al. Ground improvement of dredged fills with two improved vacuum preloading methods: Case study
Mei et al. Study on the floating law of metro segments in water-rich sandy silt and silty clay strata
CN113945340B (zh) 一种预测填土导致架空承台沉降诱发管线渗漏量的方法
Zeng et al. A case study of vacuum tube-well dewatering technology for improving deep soft soil in Yangtze River floodplain
Jostad et al. Potential benefits of using skirted foundations for jackup platforms
CN112816660B (zh) 用于研究地下连续墙施工环境效应的离心模型试验装置及方法
Li et al. Experimental studies on shear behavior of sand-suction caisson wall interface under variable normal load and penetration rate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant