CN113940682A - 一种基于统计特征的房颤识别方法 - Google Patents
一种基于统计特征的房颤识别方法 Download PDFInfo
- Publication number
- CN113940682A CN113940682A CN202111328370.4A CN202111328370A CN113940682A CN 113940682 A CN113940682 A CN 113940682A CN 202111328370 A CN202111328370 A CN 202111328370A CN 113940682 A CN113940682 A CN 113940682A
- Authority
- CN
- China
- Prior art keywords
- intervals
- interval
- data
- window1
- window2
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 206010003658 Atrial Fibrillation Diseases 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000001914 filtration Methods 0.000 claims abstract description 11
- 238000012549 training Methods 0.000 claims abstract description 11
- 238000013145 classification model Methods 0.000 claims abstract description 8
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 6
- 238000012545 processing Methods 0.000 claims abstract description 5
- 230000016507 interphase Effects 0.000 claims description 33
- 238000004364 calculation method Methods 0.000 claims description 10
- 238000012360 testing method Methods 0.000 claims description 10
- 238000002372 labelling Methods 0.000 claims description 9
- 238000001514 detection method Methods 0.000 claims description 8
- 238000012795 verification Methods 0.000 claims description 3
- 208000000418 Premature Cardiac Complexes Diseases 0.000 abstract description 8
- 206010015856 Extrasystoles Diseases 0.000 abstract description 7
- 230000001746 atrial effect Effects 0.000 abstract description 7
- 208000024891 symptom Diseases 0.000 abstract description 5
- 230000002159 abnormal effect Effects 0.000 abstract description 4
- 206010003668 atrial tachycardia Diseases 0.000 abstract description 4
- 230000033764 rhythmic process Effects 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- 210000002837 heart atrium Anatomy 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 230000002861 ventricular Effects 0.000 description 3
- 101100409308 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) adv-1 gene Proteins 0.000 description 2
- 101150004094 PRO2 gene Proteins 0.000 description 2
- 101100129590 Schizosaccharomyces pombe (strain 972 / ATCC 24843) mcp5 gene Proteins 0.000 description 2
- 208000004301 Sinus Arrhythmia Diseases 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 206010003130 Arrhythmia supraventricular Diseases 0.000 description 1
- 101100517651 Caenorhabditis elegans num-1 gene Proteins 0.000 description 1
- 206010033557 Palpitations Diseases 0.000 description 1
- 208000001871 Tachycardia Diseases 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013075 data extraction Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000006794 tachycardia Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/352—Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/361—Detecting fibrillation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/363—Detecting tachycardia or bradycardia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7225—Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Cardiology (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Artificial Intelligence (AREA)
- Signal Processing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physiology (AREA)
- Psychiatry (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Fuzzy Systems (AREA)
- Data Mining & Analysis (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111328370.4A CN113940682B (zh) | 2021-11-10 | 2021-11-10 | 一种基于统计特征的房颤识别方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111328370.4A CN113940682B (zh) | 2021-11-10 | 2021-11-10 | 一种基于统计特征的房颤识别方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113940682A true CN113940682A (zh) | 2022-01-18 |
CN113940682B CN113940682B (zh) | 2024-08-06 |
Family
ID=79337688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111328370.4A Active CN113940682B (zh) | 2021-11-10 | 2021-11-10 | 一种基于统计特征的房颤识别方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113940682B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115486855A (zh) * | 2022-09-15 | 2022-12-20 | 浙江好络维医疗技术有限公司 | 一种基于qrs波群不定次循环叠加的心电图心搏分类方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120116213A (ko) * | 2011-04-12 | 2012-10-22 | 부산대학교 산학협력단 | 심실조기수축 판별 시스템, 심실조기수축 판별 방법 및 이를 수행하는 프로그램이 기록된 저장매체 |
CN107837082A (zh) * | 2017-11-27 | 2018-03-27 | 乐普(北京)医疗器械股份有限公司 | 基于人工智能自学习的心电图自动分析方法和装置 |
CN109117730A (zh) * | 2018-07-11 | 2019-01-01 | 上海夏先机电科技发展有限公司 | 心电图心房颤动实时判断方法、装置、系统及存储介质 |
CN111772628A (zh) * | 2020-07-16 | 2020-10-16 | 华中科技大学 | 一种基于深度学习的心电信号房颤自动检测系统 |
CN113343805A (zh) * | 2021-05-26 | 2021-09-03 | 南京医科大学 | 一种基于rr间期心电数据和集成学习的房颤节律识别方法 |
-
2021
- 2021-11-10 CN CN202111328370.4A patent/CN113940682B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120116213A (ko) * | 2011-04-12 | 2012-10-22 | 부산대학교 산학협력단 | 심실조기수축 판별 시스템, 심실조기수축 판별 방법 및 이를 수행하는 프로그램이 기록된 저장매체 |
CN107837082A (zh) * | 2017-11-27 | 2018-03-27 | 乐普(北京)医疗器械股份有限公司 | 基于人工智能自学习的心电图自动分析方法和装置 |
CN109117730A (zh) * | 2018-07-11 | 2019-01-01 | 上海夏先机电科技发展有限公司 | 心电图心房颤动实时判断方法、装置、系统及存储介质 |
CN111772628A (zh) * | 2020-07-16 | 2020-10-16 | 华中科技大学 | 一种基于深度学习的心电信号房颤自动检测系统 |
CN113343805A (zh) * | 2021-05-26 | 2021-09-03 | 南京医科大学 | 一种基于rr间期心电数据和集成学习的房颤节律识别方法 |
Non-Patent Citations (1)
Title |
---|
孟宪辉;刘明;熊鹏;陈健;杨林;刘秀玲;: "基于黎曼流形稀疏编码的阵发性房颤检测算法", 生物医学工程学杂志, no. 04, pages 1 - 9 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115486855A (zh) * | 2022-09-15 | 2022-12-20 | 浙江好络维医疗技术有限公司 | 一种基于qrs波群不定次循环叠加的心电图心搏分类方法 |
CN115486855B (zh) * | 2022-09-15 | 2024-05-03 | 浙江好络维医疗技术有限公司 | 一种基于qrs波群不定次循环叠加的心电图心搏分类方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113940682B (zh) | 2024-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7769434B2 (en) | Method of physiological data analysis and measurement quality check using principal component analysis | |
CN107358196B (zh) | 一种心搏类型的分类方法、装置及心电仪 | |
EP2895063B1 (en) | A system and method for detecting the presence of a p-wave in an ecg waveform | |
CN106214145B (zh) | 一种基于深度学习算法的心电图分类方法 | |
Eerikäinen et al. | Detecting atrial fibrillation and atrial flutter in daily life using photoplethysmography data | |
US7142907B2 (en) | Method and apparatus for algorithm fusion of high-resolution electrocardiograms | |
RU2496413C2 (ru) | Мониторинг мерцательной аритмии | |
EP0512719B1 (en) | Method and apparatus for performing mapping-type analysis including use of limited electrode sets | |
US6607480B1 (en) | Evaluation system for obtaining diagnostic information from the signals and data of medical sensor systems | |
de Chazal et al. | Automatic classification of ECG beats using waveform shape and heart beat interval features | |
CN115486855B (zh) | 一种基于qrs波群不定次循环叠加的心电图心搏分类方法 | |
CN108403107B (zh) | 一种心律失常判别方法及系统 | |
CN108024750A (zh) | Ecg导联信号的高/低频信号质量评价 | |
Qu et al. | ECG signal classification based on BPNN | |
Riasi et al. | Prediction of ventricular tachycardia using morphological features of ECG signal | |
CN113940682B (zh) | 一种基于统计特征的房颤识别方法 | |
CN111528833B (zh) | 一种心电信号的快速识别与处理方法及系统 | |
CN108836312B (zh) | 一种基于人工智能的进行杂波剔除的方法及系统 | |
Jiménez-Serrano et al. | Multiple cardiac disease detection from minimal-lead ECG combining feedforward neural networks with a one-vs-rest approach | |
Bashir et al. | Highlighting the current issues with pride suggestions for improving the performance of real time cardiac health monitoring | |
CN113812962A (zh) | 心电节律分类神经网络构建方法、系统及存储介质 | |
Magrans et al. | Myocardial ischemia event detection based on support vector machine model using QRS and ST segment features | |
Sun et al. | A screening system for myocardial ischemia based on pathophysiological vectorcardiogram | |
Hadia et al. | Morphology-based detection of premature ventricular contractions | |
Kot et al. | Analysis of the Biological Signal for Automated Diagnostics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: 310012 Block A, 13/F, Building E, Paradise Software Park, No. 3, Xidoumen Road, Xihu District, Hangzhou, Zhejiang Applicant after: ZHEJIANG HELOWIN MEDICAL TECHNOLOGY CO.,LTD. Address before: 310012 block B, 5 / F, building e, Paradise Software Park, No.3 xidoumen Road, Xihu District, Hangzhou City, Zhejiang Province Applicant before: ZHEJIANG HELOWIN MEDICAL TECHNOLOGY CO.,LTD. |
|
CB02 | Change of applicant information | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: Building D, 14th Floor, Block C, Tian Tang Software Park, No. 3 Xidoumen Road, Gudang Street, Xihu District, Hangzhou City, Zhejiang Province 310012 Patentee after: ZHEJIANG HELOWIN MEDICAL TECHNOLOGY CO.,LTD. Country or region after: China Address before: 310012 Block A, 13/F, Building E, Paradise Software Park, No. 3, Xidoumen Road, Xihu District, Hangzhou, Zhejiang Patentee before: ZHEJIANG HELOWIN MEDICAL TECHNOLOGY CO.,LTD. Country or region before: China |
|
CP03 | Change of name, title or address |