CN113933631A - Multi-conductor cable electromagnetic parameter automatic testing method - Google Patents
Multi-conductor cable electromagnetic parameter automatic testing method Download PDFInfo
- Publication number
- CN113933631A CN113933631A CN202111188094.6A CN202111188094A CN113933631A CN 113933631 A CN113933631 A CN 113933631A CN 202111188094 A CN202111188094 A CN 202111188094A CN 113933631 A CN113933631 A CN 113933631A
- Authority
- CN
- China
- Prior art keywords
- conductor cable
- parameters
- conductor
- cable
- radio frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/001—Measuring interference from external sources to, or emission from, the device under test, e.g. EMC, EMI, EMP or ESD testing
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Resistance Or Impedance (AREA)
Abstract
Description
技术领域technical field
本发明涉及多导体线缆参数测试领域,尤其涉及一种多导体线缆电磁参数自动测试方法。The invention relates to the field of multi-conductor cable parameter testing, in particular to an automatic testing method for multi-conductor cable electromagnetic parameters.
背景技术Background technique
线缆线束作为电子电气设备和系统的枢纽,用于实现不同系统之间信息和能量的有效传输。线缆通常是以很多单根线捆扎成线缆束的形式存在于电子系统设备壳体外部或内部,它们极易拾取由于设备等的电磁发射在空间形成的场,或者相互之间产生串扰,由于线缆耦合产生的感应电压和感应电流,会使线缆所连接的终端电路出现不期望的响应,导致电路性能降级,甚至引发电磁兼容故障。As the hub of electrical and electronic equipment and systems, cable harnesses are used to efficiently transmit information and energy between different systems. Cables usually exist outside or inside the housing of electronic system equipment in the form of many single wires bundled into cable bundles. They are very easy to pick up the field formed in space due to the electromagnetic emission of equipment, etc., or produce crosstalk between each other. Due to the induced voltage and induced current generated by the cable coupling, the terminal circuit connected to the cable will have an undesired response, resulting in degradation of circuit performance and even electromagnetic compatibility failure.
在对实际线缆进行电磁兼容分析时,我们需要获取线缆的电磁参数,电磁参数的提取通常有近似解析法、数值计算法、实测法,近似解析法就是在忽略某些条件下对简化模型进行解析求解得到电磁参数,实际情况下的线缆不能完全满足简化模型的条件,所以解析法得到的电磁参数精确度不高;常见的数值分析法主要有差分法、变分法和有限元法,数值方法因为是全波方法,其计算量大。实际使用过程中的线缆,线缆自身的几何参数、物理参数,在使用、运输或存储的过程中会发生变化,实测法更能反映真实的线缆的性能。In the electromagnetic compatibility analysis of the actual cable, we need to obtain the electromagnetic parameters of the cable. The extraction of electromagnetic parameters usually includes approximate analytical methods, numerical calculation methods, and actual measurement methods. The approximate analytical method is to simplify the model under certain conditions. The electromagnetic parameters are obtained by analytical solution. The actual cable cannot fully meet the conditions of the simplified model, so the accuracy of the electromagnetic parameters obtained by the analytical method is not high; the common numerical analysis methods mainly include the difference method, the variational method and the finite element method. , because the numerical method is a full-wave method, its computational complexity is large. In the actual use of the cable, the geometric parameters and physical parameters of the cable itself will change in the process of use, transportation or storage. The actual measurement method can better reflect the performance of the real cable.
因此,提供一种可以自动获取多导体线缆的电磁参数的测试方法,为线缆电磁兼容的研究提供可以量化的参数,属于本领域亟待解决的问题。Therefore, it is an urgent problem to be solved in the art to provide a test method that can automatically obtain the electromagnetic parameters of the multi-conductor cable, so as to provide quantifiable parameters for the study of cable electromagnetic compatibility.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服现有技术的不足,提供一种多导体线缆电磁参数自动测试方法。The purpose of the present invention is to overcome the deficiencies of the prior art and provide an automatic testing method for electromagnetic parameters of a multi-conductor cable.
本发明的目的是通过以下技术方案来实现的:The purpose of this invention is to realize through the following technical solutions:
本发明的第一方面,提供一种多导体线缆电磁参数自动测试方法,所述多导体线缆包括N根单导体线缆,N为大于等于2的正整数,每根单导体线缆均包括A端和B端,所述方法包括以下步骤:A first aspect of the present invention provides an automatic testing method for electromagnetic parameters of a multi-conductor cable. The multi-conductor cable includes N single-conductor cables, where N is a positive integer greater than or equal to 2, and each single-conductor cable is Including A end and B end, described method comprises the following steps:
依次控制同一根单导体线缆的两端接入测试系统,获取每根单导体线缆的第一散射参数和第二散射参数;Control both ends of the same single-conductor cable to access the test system in turn, and obtain the first scattering parameter and the second scattering parameter of each single-conductor cable;
根据散射参数和线缆长度,计算每根单导体线缆的电磁参数,所述电磁参数包括特征阻抗和相位常数;Calculate the electromagnetic parameters of each single-conductor cable according to the scattering parameters and the cable length, the electromagnetic parameters including characteristic impedance and phase constant;
进行组合控制:包括在控制任意两根单导体线缆的A端接入测试系统、获取第三散射参数后,控制该两根单导体线缆中的其中一个单导体线缆的A端和另外一个单导体线缆的B端入测试系统、获取第四散射参数;直到获取所有组单导体线缆的多散射参数,所述所有组定义为:任意一根单导体线缆均参与过组合;Perform combined control: including controlling the A-end of any two single-conductor cables to access the test system and obtaining the third scattering parameter, controlling the A-end of one of the two single-conductor cables and the other one of the two single-conductor cables. The B end of a single-conductor cable enters the test system and obtains the fourth scattering parameter; until the multi-scattering parameters of all groups of single-conductor cables are obtained, all groups are defined as: any single-conductor cable has participated in the combination;
根据所述单导体线缆的电磁参数和所有组单导体线缆的多散射参数,获取多导体线缆的电磁参数,所述多导体线缆的电磁参数包括互电感和互电容。The electromagnetic parameters of the multi-conductor cables are obtained according to the electromagnetic parameters of the single-conductor cables and the multi-scattering parameters of all groups of the single-conductor cables, and the electromagnetic parameters of the multi-conductor cables include mutual inductance and mutual capacitance.
进一步地,所述测试系统包括计算机、第一射频开关、第二射频开关和矢量网络分析仪;所述第一射频开关用于控制每根单导体线缆的A端接入,所述第二射频开关用于控制每根单导体线缆的B端接入;所述矢量网络分析仪的分别与第一射频开关、第二射频开关连接,用于获取测试参数;所述计算机分别与矢量网络分析仪、第一射频开关、第二射频开关连接,用于获取测试参数并进行计算、以及通过对第一射频开关和第二射频开关的控制从而控制单导体线缆的接入。Further, the test system includes a computer, a first radio frequency switch, a second radio frequency switch, and a vector network analyzer; the first radio frequency switch is used to control the access of the A terminal of each single-conductor cable, and the second radio frequency switch The radio frequency switch is used to control the access of the B end of each single-conductor cable; the vector network analyzer is connected to the first radio frequency switch and the second radio frequency switch, respectively, for obtaining test parameters; the computer is respectively connected to the vector network The analyzer, the first radio frequency switch, and the second radio frequency switch are connected, and are used for acquiring and calculating test parameters, and controlling the access of the single-conductor cable by controlling the first radio frequency switch and the second radio frequency switch.
进一步地,所述计算机通过Usb接口和第一射频开关、第二射频开关、矢量网络分析仪相连;计算机利用Matlab完成对第一射频开关、第二射频开关和矢量网络分析仪的控制。Further, the computer is connected with the first radio frequency switch, the second radio frequency switch and the vector network analyzer through the Usb interface; the computer uses Matlab to complete the control of the first radio frequency switch, the second radio frequency switch and the vector network analyzer.
进一步地,所述根据散射参数和线缆长度,计算每根单导体线缆的电磁参数,所述电磁参数包括特征阻抗和相位常数,包括以下公式:Further, according to the scattering parameters and the cable length, the electromagnetic parameters of each single-conductor cable are calculated, and the electromagnetic parameters include characteristic impedance and phase constant, including the following formula:
式中,S11为第一散射参数,S21为第二散射参数,Zc为单导体线缆的特征阻抗,Z0为矢量网络分析仪端口的阻抗,β为单导体线缆的相位常数,l为单导体线缆的线缆长度。In the formula, S 11 is the first scattering parameter, S 21 is the second scattering parameter, Z c is the characteristic impedance of the single-conductor cable, Z 0 is the impedance of the vector network analyzer port, and β is the phase constant of the single-conductor cable , l is the cable length of a single-conductor cable.
进一步地,所述矢量网络分析仪端口的阻抗为50Ω。Further, the impedance of the port of the vector network analyzer is 50Ω.
进一步地,根据所述单导体线缆的电磁参数和所有组单导体线缆的多散射参数,获取多导体线缆的电磁参数,所述多导体线缆的电磁参数包括互电感和互电容,包括:Further, the electromagnetic parameters of the multi-conductor cables are obtained according to the electromagnetic parameters of the single-conductor cables and the multi-scattering parameters of all groups of the single-conductor cables, and the electromagnetic parameters of the multi-conductor cables include mutual inductance and mutual capacitance, include:
计算得到各组单导体线缆的互电感和互电容的集合,求平均值作为多导体线缆电磁参数的互电感和互电容;每组单导体线缆的互电感和互电容的计算方式包括以下步骤,Calculate the set of mutual inductance and mutual capacitance of each group of single-conductor cables, and calculate the average value as the mutual inductance and mutual capacitance of the electromagnetic parameters of multi-conductor cables; the calculation methods of the mutual inductance and mutual capacitance of each group of single-conductor cables include: the following steps,
利用得到的散射参数可以得到中间参量:Using the obtained scattering parameters, the intermediate parameters can be obtained:
式中,S31为第三散射参数,S41为第四散射参数,Zc1和Zc2分别为待计算两根单导体线缆的特征阻抗,β1为第一单导体线缆的相位常数;In the formula, S 31 is the third scattering parameter, S 41 is the fourth scattering parameter, Z c1 and Z c2 are the characteristic impedances of the two single-conductor cables to be calculated, respectively, and β 1 is the phase constant of the first single-conductor cable. ;
利用(5)(6)作为已知量得到(7)(8):Using (5)(6) as known quantities yields (7)(8):
as=T1/a2R (7)a s =T 1 /a 2R (7)
bs=T1/b2L (8)b s =T 1 /b 2L (8)
其中, in,
根据(4)(5)(7)(8)得到:According to (4)(5)(7)(8), we get:
根据式(9)(10),将中间量带入得到:According to formulas (9) and (10), the intermediate quantities are brought in to obtain:
tb=Tb/K2 t b =T b /K 2
tf=Tf/K1 t f =T f /K 1
其中, in,
最终求得耦合电磁参数:Finally, the coupled electromagnetic parameters are obtained:
式中,f为频率。where f is the frequency.
本发明的有益效果是:The beneficial effects of the present invention are:
(1)在本发明的一示例性实施例中,通过实测法能反映真实的线缆的性能,利用矢量网络分析仪测试线缆的散射参数,通过推导散射参数和线缆电磁参数的关系,进而通过测试得到线缆的电磁参数。(1) In an exemplary embodiment of the present invention, the performance of the real cable can be reflected by the actual measurement method, and the scattering parameters of the cable are tested by using a vector network analyzer, and the relationship between the scattering parameters and the electromagnetic parameters of the cable is deduced, Then, the electromagnetic parameters of the cable are obtained through testing.
(2)在本发明的又一示例性实施例中,公开了测试系统的具体实现方式、以及测试系统中计算机与其他部分的具体连接方式。(2) In another exemplary embodiment of the present invention, a specific implementation manner of the test system and a specific connection manner of the computer and other parts in the test system are disclosed.
(3)在本发明的又一示例性实施例中,公开了各个步骤的具体实现方式。(3) In yet another exemplary embodiment of the present invention, the specific implementation manner of each step is disclosed.
附图说明Description of drawings
图1为本发明一示例性实施例公开的方法流程图;FIG. 1 is a flowchart of a method disclosed by an exemplary embodiment of the present invention;
图2为本发明一示例性实施例公开的测试系统结构示意图;FIG. 2 is a schematic structural diagram of a test system disclosed by an exemplary embodiment of the present invention;
图3为本发明一示例性实施例公开的单导体线缆的端口编号示意图。FIG. 3 is a schematic diagram of port numbering of a single-conductor cable disclosed in an exemplary embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below with reference to the accompanying drawings. Obviously, the described embodiments are part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
在本发明的描述中,需要说明的是,属于“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系为基于附图所述的方向或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be noted that "center", "upper", "lower", "left", "right", "vertical", "horizontal", "inner", "outer", etc. The indicated direction or positional relationship is based on the direction or positional relationship described in the accompanying drawings, which is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the indicated device or element must have a specific orientation or a specific orientation. construction and operation, and therefore should not be construed as limiting the invention.
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,属于“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。In the description of the present invention, it should be noted that, unless otherwise expressly specified and limited, “installation”, “connection” and “connection” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be mechanical connection or electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be internal communication between two elements. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood in specific situations.
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。The terminology used in this application is for the purpose of describing particular embodiments only and is not intended to limit the application. As used in this application and the appended claims, the singular forms "a," "the," and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. It will also be understood that the term "and/or" as used herein refers to and includes any and all possible combinations of one or more of the associated listed items.
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。此外,属于“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。It should be understood that although the terms first, second, third, etc. may be used in this application to describe various information, such information should not be limited by these terms. These terms are only used to distinguish the same type of information from each other. For example, the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information without departing from the scope of the present application. Depending on the context, the word "if" as used herein can be interpreted as "at the time of" or "when" or "in response to determining." Furthermore, the references to "first" and "second" are for descriptive purposes only, and should not be construed as indicating or implying relative importance.
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。In addition, the technical features involved in the different embodiments of the present invention described below can be combined with each other as long as they do not conflict with each other.
参见图1,图1示出了本发明一示例性实施例中提供的一种多导体线缆电磁参数自动测试方法,所述多导体线缆包括N根单导体线缆,N为大于等于2的正整数,每根单导体线缆均包括A端和B端,所述方法包括以下步骤:Referring to FIG. 1, FIG. 1 shows an automatic testing method for electromagnetic parameters of a multi-conductor cable provided in an exemplary embodiment of the present invention. The multi-conductor cable includes N single-conductor cables, and N is greater than or equal to 2 A positive integer of , each single-conductor cable includes an A end and a B end, and the method includes the following steps:
S1:依次控制同一根单导体线缆的两端接入测试系统,获取每根单导体线缆的第一散射参数和第二散射参数;S1: Control both ends of the same single-conductor cable to access the test system in turn, and obtain the first scattering parameter and the second scattering parameter of each single-conductor cable;
S2:根据散射参数和线缆长度,计算每根单导体线缆的电磁参数,所述电磁参数包括特征阻抗和相位常数;S2: Calculate the electromagnetic parameters of each single-conductor cable according to the scattering parameters and the cable length, where the electromagnetic parameters include characteristic impedance and phase constant;
S3:进行组合控制:包括在控制任意两根单导体线缆的A端接入测试系统、获取第三散射参数后,控制该两根单导体线缆中的其中一个单导体线缆的A端和另外一个单导体线缆的B端入测试系统、获取第四散射参数;直到获取所有组单导体线缆的多散射参数,所述所有组为:任意一根单导体线缆均参与过组合;S3: Perform combined control: including controlling the A-end of any two single-conductor cables to access the test system and obtaining the third scattering parameter, controlling the A-end of one of the two single-conductor cables Enter the test system with the B end of another single-conductor cable to obtain the fourth scattering parameter; until the multi-scattering parameters of all groups of single-conductor cables are obtained, the all groups are: any single-conductor cable has participated in the combination ;
S4:根据所述单导体线缆的电磁参数和所有组单导体线缆的多散射参数,获取多导体线缆的电磁参数,所述多导体线缆的电磁参数包括互电感和互电容。S4: Obtain the electromagnetic parameters of the multi-conductor cables according to the electromagnetic parameters of the single-conductor cables and the multi-scattering parameters of all groups of the single-conductor cables, where the electromagnetic parameters of the multi-conductor cables include mutual inductance and mutual capacitance.
具体地,在该示例性实施例中,通过实测法能反映真实的线缆的性能,利用矢量网络分析仪测试线缆的散射参数,通过推导散射参数和线缆电磁参数的关系,进而通过测试得到线缆的电磁参数。Specifically, in this exemplary embodiment, the performance of the real cable can be reflected by the actual measurement method, the scattering parameters of the cable are tested by a vector network analyzer, and the relationship between the scattering parameters and the electromagnetic parameters of the cable is deduced, and then the test is passed. Obtain the electromagnetic parameters of the cable.
对于步骤S3中的说明,例如有5根单导体线缆,可以按照为1+2、2+3、3+4、4+5的形式进行组合;也可以是1+3,1+2,1+4,1+5的组合形式;还可以是1+3,3+4,3+2,2+5的组合形式。即任意有关联即可。For the description in step S3, for example, there are 5 single-conductor cables, which can be combined in the form of 1+2, 2+3, 3+4, 4+5; or 1+3, 1+2, 1+4, 1+5 combination; also 1+3, 3+4, 3+2, 2+5 combination. That is, any relationship can be used.
更优地,在一示例性实施例中,如图2所示,所述测试系统包括计算机、第一射频开关、第二射频开关和矢量网络分析仪;所述第一射频开关用于控制每根单导体线缆的A端接入,所述第二射频开关用于控制每根单导体线缆的B端接入;所述矢量网络分析仪的分别与第一射频开关、第二射频开关连接,用于获取测试参数;所述计算机分别与矢量网络分析仪、第一射频开关、第二射频开关连接,用于获取测试参数并进行计算、以及通过对第一射频开关和第二射频开关的控制从而控制单导体线缆的接入。More preferably, in an exemplary embodiment, as shown in FIG. 2 , the test system includes a computer, a first radio frequency switch, a second radio frequency switch and a vector network analyzer; the first radio frequency switch is used to control each The A-end of a single-conductor cable is connected, and the second RF switch is used to control the B-end of each single-conductor cable to be connected; the vector network analyzer is connected to the first RF switch and the second RF switch respectively. connected to obtain test parameters; the computer is respectively connected to the vector network analyzer, the first radio frequency switch, and the second radio frequency switch, and is used to obtain test parameters and perform calculations, and to pass the first radio frequency switch and the second radio frequency switch. control to control the access of single-conductor cables.
更为具体地,所述计算机通过Usb接口和第一射频开关、第二射频开关、矢量网络分析仪相连;计算机利用Matlab完成对第一射频开关、第二射频开关和矢量网络分析仪的控制。另外,射频开关和多导体线缆之间还可以设置有转接盒。More specifically, the computer is connected to the first radio frequency switch, the second radio frequency switch and the vector network analyzer through the Usb interface; the computer uses Matlab to complete the control of the first radio frequency switch, the second radio frequency switch and the vector network analyzer. In addition, a transition box may also be arranged between the radio frequency switch and the multi-conductor cable.
在下述示例性实施例中,如图3所示,首先给N根单导体线缆的端口进行编号,同一根单导体线缆的端口号连续,不同根线缆的同一侧端口号相差2,分别编号1、2、3…2N-2、2N-1、2N,N≥2,N为正整数(单数为A端,双数为B端)。In the following exemplary embodiment, as shown in FIG. 3 , the ports of N single-conductor cables are numbered first. The port numbers of the same single-conductor cable are consecutive, and the port numbers of different cables on the same side differ by 2. Numbered 1, 2, 3...2N-2, 2N-1, 2N respectively, N≥2, N is a positive integer (single number is A-end, even number is B-end).
对于步骤S1的实现,具体为:对于第一根单导体线缆,连接到编号为1、2的同一根多导体线缆的两端,获得第一散射参数S11和第二散射参数S21;重复上述内容多次直到获取N根单导体线缆的第一散射参数和第二散射参数。The implementation of step S1 is specifically: for the first single-conductor cable, connect to both ends of the same multi-conductor cable numbered 1 and 2 to obtain the first scattering parameter S11 and the second scattering parameter S21 ; Repeat the above content multiple times until the first scattering parameter and the second scattering parameter of the N single-conductor cables are obtained.
对于步骤S2的实现,在一优选示例性实施例中,对于第一根单导体线缆,所述根据散射参数和线缆长度,计算每根单导体线缆的电磁参数,所述电磁参数包括特征阻抗和相位常数,包括以下公式:For the implementation of step S2, in a preferred exemplary embodiment, for the first single-conductor cable, the electromagnetic parameters of each single-conductor cable are calculated according to the scattering parameters and the cable length, and the electromagnetic parameters include Characteristic impedance and phase constant, including the following formulas:
式中,S11为第一散射参数,S21为第二散射参数,Zc为单导体线缆的特征阻抗,Z0为矢量网络分析仪端口的阻抗(在一示例性实施例中,所述矢量网络分析仪端口的阻抗为50Ω),β为单导体线缆的相位常数,l为单导体线缆的线缆长度。In the formula, S11 is the first scattering parameter, S21 is the second scattering parameter, Zc is the characteristic impedance of the single-conductor cable, and Z0 is the impedance of the vector network analyzer port (in an exemplary embodiment, the vector The impedance of the network analyzer port is 50Ω), β is the phase constant of the single-conductor cable, and l is the cable length of the single-conductor cable.
在另外的示例性实施例中,还包括计算相速v:In a further exemplary embodiment, it also includes calculating the phase velocity v:
v=2πf/βv=2πf/β
式中,f表示频率。where f is the frequency.
其他单导体线缆的电磁参数方法相同,例如对于第一根单导体线缆和第二根单导体线缆,可以计算得到两根线缆的特征阻抗分别为Zc1和Zc2,相位常数分别为β1和β2。The electromagnetic parameters of other single-conductor cables are the same. For example, for the first single-conductor cable and the second single-conductor cable, the characteristic impedances of the two cables can be calculated as Z c1 and Z c2 respectively, and the phase constants are respectively are β 1 and β 2 .
对于步骤S3的实现,以第一根单导体线缆和第二根单导体线缆为例,使得线缆端口1和3接入矢量网络分析仪,测得第三散射参数S31;使得线缆端口1和4接入矢量网络分析仪,测得散射参数S41。其他组单导体线缆组的计算方式相同。For the implementation of step S3, taking the first single-conductor cable and the second single-conductor cable as examples, the
而在一示例性实施例中,所有组都是前一根线缆和后一根线缆进行计算:即获得任意两根线缆的散射参数Sj,i和Sj+1,i,自动存储数据到计算机中,i,j=1,3,5…2N-1。And in an exemplary embodiment, all groups are calculated for the previous cable and the next cable: that is, to obtain any two cables The scattering parameters S j,i and S j+1,i are automatically stored in the computer, i,j=1,3,5...2N-1.
对于步骤S4的实现,所述根据所述单导体线缆的电磁参数和所有组单导体线缆的多散射参数,获取多导体线缆的电磁参数,所述多导体线缆的电磁参数包括互电感和互电容,包括:For the implementation of step S4, the electromagnetic parameters of the multi-conductor cables are obtained according to the electromagnetic parameters of the single-conductor cables and the multi-scattering parameters of all groups of the single-conductor cables, and the electromagnetic parameters of the multi-conductor cables include mutual Inductance and mutual capacitance, including:
计算得到各组单导体线缆的互电感和互电容的集合,求平均值作为多导体线缆电磁参数的互电感和互电容;每组单导体线缆的互电感和互电容的计算方式(以第一根单导体线缆和第二根单导体线缆为例,)包括以下步骤,Calculate the set of mutual inductance and mutual capacitance of each group of single-conductor cables, and calculate the average value as the mutual inductance and mutual capacitance of the electromagnetic parameters of multi-conductor cables; the calculation method of the mutual inductance and mutual capacitance of each group of single-conductor cables ( Taking the first single-conductor cable and the second single-conductor cable as an example, ) includes the following steps,
利用得到的散射参数可以得到中间参量:Using the obtained scattering parameters, the intermediate parameters can be obtained:
式中,S31为第三散射参数,S41为第四散射参数,Zc1和Zc2分别为待计算两根单导体线缆的特征阻抗,β1为第一单导体线缆的相位常数;In the formula, S 31 is the third scattering parameter, S 41 is the fourth scattering parameter, Z c1 and Z c2 are the characteristic impedances of the two single-conductor cables to be calculated, respectively, and β 1 is the phase constant of the first single-conductor cable. ;
利用(5)(6)作为已知量得到(7)(8):Using (5)(6) as known quantities yields (7)(8):
as=T1/a2R (7)a s =T 1 /a 2R (7)
bs=T1/b2L (8)b s =T 1 /b 2L (8)
其中, in,
根据(4)(5)(7)(8)得到:According to (4)(5)(7)(8), we get:
根据式(9)(10),将中间量带入得到:According to formulas (9) and (10), the intermediate quantities are brought in to obtain:
tb=Tb/K2 t b =T b /K 2
tf=Tf/K1 t f =T f /K 1
其中, in,
最终求得耦合电磁参数:Finally, the coupled electromagnetic parameters are obtained:
式中,f为频率。where f is the frequency.
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。Obviously, the above-mentioned embodiments are only examples for clear description, rather than limiting the implementation manner. For those of ordinary skill in the art, changes or changes in other different forms can also be made on the basis of the above-mentioned descriptions. . There is no need and cannot be exhaustive of all implementations here. And the obvious changes or changes derived from this are still within the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111188094.6A CN113933631B (en) | 2021-10-12 | 2021-10-12 | Multi-conductor cable electromagnetic parameter automatic testing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111188094.6A CN113933631B (en) | 2021-10-12 | 2021-10-12 | Multi-conductor cable electromagnetic parameter automatic testing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113933631A true CN113933631A (en) | 2022-01-14 |
CN113933631B CN113933631B (en) | 2022-05-03 |
Family
ID=79278520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111188094.6A Active CN113933631B (en) | 2021-10-12 | 2021-10-12 | Multi-conductor cable electromagnetic parameter automatic testing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113933631B (en) |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103048563A (en) * | 2012-12-19 | 2013-04-17 | 南京航空航天大学 | Method for rapidly estimating crosstalk of cable harness terminal above right-angle grounded plane |
CN103605024A (en) * | 2013-11-15 | 2014-02-26 | 中国电子科技集团公司第四十一研究所 | Multi-port S parameter test device based on USB interface |
CN103760445A (en) * | 2014-01-24 | 2014-04-30 | 中国人民解放军军械工程学院 | Method for testing shielding effectiveness of irregular structure cavity based on reverberation room |
CN203643514U (en) * | 2013-12-30 | 2014-06-11 | 京信通信技术(广州)有限公司 | Coupling assembly and data measuring device of measuring scattering parameters |
CN104297597A (en) * | 2014-10-20 | 2015-01-21 | 中国电子科技集团公司第四十一研究所 | New method for testing clamp effect in dual-port-removed network |
US20150204927A1 (en) * | 2014-01-22 | 2015-07-23 | Richard I. Mellitz | Techniques for Characterizing a Transmission Line |
CN105572480A (en) * | 2015-12-24 | 2016-05-11 | 北京航空航天大学 | Method for in-situ test of broadband transmission line parameters of double-conductor type cable |
CN106199239A (en) * | 2016-06-24 | 2016-12-07 | 北京航空航天大学 | A kind of measuring method of radio frequency amplifier intermodulation suppression level based on X parameter |
CN106405288A (en) * | 2016-08-31 | 2017-02-15 | 北京航空航天大学 | Method for obtaining electromagnetic transmission matrix of linear impedance stabilization network |
CN106443247A (en) * | 2016-09-08 | 2017-02-22 | 北京航空航天大学 | Method of quickly testing terminal injection currents of all cables in cable bundle |
CN106771649A (en) * | 2016-11-15 | 2017-05-31 | 中国电子科技集团公司第四十研究所 | A kind of multiport scattering parameter method of testing for being based on four port vector network analyzers |
US20180026737A1 (en) * | 2016-07-22 | 2018-01-25 | The Directv Group, Inc. | Determining ambient noise in a device under test electromagnetic compatibility test environment |
CN108896872A (en) * | 2018-07-04 | 2018-11-27 | 贵州电网有限责任公司 | Handheld cable fault detection system and method based on SSTDR |
CN109633311A (en) * | 2018-12-14 | 2019-04-16 | 广东柏兹电子科技有限公司 | Dispersion curve testing method of artificial period transmission structure |
CN109813965A (en) * | 2019-04-04 | 2019-05-28 | 西安弘捷电子技术有限公司 | Based on the cascade data collection system of scattering parameter |
CN110133401A (en) * | 2019-05-13 | 2019-08-16 | 成都凯天电子股份有限公司 | The method for checking electronic product electromagnetic radiation sensitivity failure |
CN110188381A (en) * | 2019-04-18 | 2019-08-30 | 中国北方车辆研究所 | A kind of construction method and system of the simulation model for electromagnetic interference prediction |
CN110377994A (en) * | 2019-07-10 | 2019-10-25 | 湖南大学 | A kind of woven shield radial design method based on shield effectiveness |
CN110470871A (en) * | 2019-09-20 | 2019-11-19 | 西安电子科技大学 | Based on the multi-mode material electromagnetic parameter test device and method of single port |
CN110531171A (en) * | 2019-08-28 | 2019-12-03 | 湖南大学 | A kind of calculation method of the critical wiring spacing of determining cable crosstalk |
CN110806507A (en) * | 2019-10-24 | 2020-02-18 | 成都飞机工业(集团)有限责任公司 | In-situ automatic test method for bundled radio frequency cable and LRM modular interface |
CN111624410A (en) * | 2020-06-29 | 2020-09-04 | 普联技术有限公司 | Method and device for acquiring scattering parameter model |
-
2021
- 2021-10-12 CN CN202111188094.6A patent/CN113933631B/en active Active
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103048563A (en) * | 2012-12-19 | 2013-04-17 | 南京航空航天大学 | Method for rapidly estimating crosstalk of cable harness terminal above right-angle grounded plane |
CN103605024A (en) * | 2013-11-15 | 2014-02-26 | 中国电子科技集团公司第四十一研究所 | Multi-port S parameter test device based on USB interface |
CN203643514U (en) * | 2013-12-30 | 2014-06-11 | 京信通信技术(广州)有限公司 | Coupling assembly and data measuring device of measuring scattering parameters |
US20150204927A1 (en) * | 2014-01-22 | 2015-07-23 | Richard I. Mellitz | Techniques for Characterizing a Transmission Line |
CN103760445A (en) * | 2014-01-24 | 2014-04-30 | 中国人民解放军军械工程学院 | Method for testing shielding effectiveness of irregular structure cavity based on reverberation room |
CN104297597A (en) * | 2014-10-20 | 2015-01-21 | 中国电子科技集团公司第四十一研究所 | New method for testing clamp effect in dual-port-removed network |
CN105572480A (en) * | 2015-12-24 | 2016-05-11 | 北京航空航天大学 | Method for in-situ test of broadband transmission line parameters of double-conductor type cable |
CN106199239A (en) * | 2016-06-24 | 2016-12-07 | 北京航空航天大学 | A kind of measuring method of radio frequency amplifier intermodulation suppression level based on X parameter |
US20180026737A1 (en) * | 2016-07-22 | 2018-01-25 | The Directv Group, Inc. | Determining ambient noise in a device under test electromagnetic compatibility test environment |
CN106405288A (en) * | 2016-08-31 | 2017-02-15 | 北京航空航天大学 | Method for obtaining electromagnetic transmission matrix of linear impedance stabilization network |
CN106443247A (en) * | 2016-09-08 | 2017-02-22 | 北京航空航天大学 | Method of quickly testing terminal injection currents of all cables in cable bundle |
CN106771649A (en) * | 2016-11-15 | 2017-05-31 | 中国电子科技集团公司第四十研究所 | A kind of multiport scattering parameter method of testing for being based on four port vector network analyzers |
CN108896872A (en) * | 2018-07-04 | 2018-11-27 | 贵州电网有限责任公司 | Handheld cable fault detection system and method based on SSTDR |
CN109633311A (en) * | 2018-12-14 | 2019-04-16 | 广东柏兹电子科技有限公司 | Dispersion curve testing method of artificial period transmission structure |
CN109813965A (en) * | 2019-04-04 | 2019-05-28 | 西安弘捷电子技术有限公司 | Based on the cascade data collection system of scattering parameter |
CN110188381A (en) * | 2019-04-18 | 2019-08-30 | 中国北方车辆研究所 | A kind of construction method and system of the simulation model for electromagnetic interference prediction |
CN110133401A (en) * | 2019-05-13 | 2019-08-16 | 成都凯天电子股份有限公司 | The method for checking electronic product electromagnetic radiation sensitivity failure |
CN110377994A (en) * | 2019-07-10 | 2019-10-25 | 湖南大学 | A kind of woven shield radial design method based on shield effectiveness |
CN110531171A (en) * | 2019-08-28 | 2019-12-03 | 湖南大学 | A kind of calculation method of the critical wiring spacing of determining cable crosstalk |
CN110470871A (en) * | 2019-09-20 | 2019-11-19 | 西安电子科技大学 | Based on the multi-mode material electromagnetic parameter test device and method of single port |
CN110806507A (en) * | 2019-10-24 | 2020-02-18 | 成都飞机工业(集团)有限责任公司 | In-situ automatic test method for bundled radio frequency cable and LRM modular interface |
CN111624410A (en) * | 2020-06-29 | 2020-09-04 | 普联技术有限公司 | Method and device for acquiring scattering parameter model |
Non-Patent Citations (4)
Title |
---|
BING LI: "Modelling of transmission lines based on power waves and transfer coefficients", 《2020 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY》 * |
刘洪颐: "一种快速测试线缆终端共模阻抗的方法", 《北京航空航天大学学报》 * |
苏东林: "线缆耦合信号实时监测方法", 《北京航空航天大学学报》 * |
赵宏旭: "屏蔽层端接对机载线缆屏蔽性能影响研究", 《电测与仪表》 * |
Also Published As
Publication number | Publication date |
---|---|
CN113933631B (en) | 2022-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103926470B (en) | Electromagnetic interface filter loads insertion loss Auto-Test System | |
CN108345753B (en) | A crosstalk noise prediction method for non-parallel cables | |
CN101701994A (en) | A low-frequency cable network conduction and insulation test method | |
CN110531172A (en) | A kind of electric vehicle high-tension cable shield effectiveness measurement method | |
JP2004030598A (en) | System for predicting electrical action of multi-port device having balanced device port | |
CN113933631B (en) | Multi-conductor cable electromagnetic parameter automatic testing method | |
CN107612769B (en) | Method and system for testing wireless transmission rate of router | |
CN102857389A (en) | Frequency domain distortion prediction channel modeling method of 1553B bus | |
CN114487695B (en) | Fault distance measurement method and system for cable hybrid DC line based on single-terminal and double-terminal distance measurement | |
CN104898026A (en) | Method and device for positioning of cable fault | |
JP3217195U (en) | 4-wire measurement cable and impedance measurement system | |
CN114137332A (en) | Signal testing device, method, computer equipment and storage medium | |
CN104023353A (en) | Router performance test method and test system | |
JP2007235363A (en) | Characteristic determining method, common-mode filter, and communication system | |
CN111770001A (en) | A system and method for detecting transmission characteristics of AFDX bus | |
CN110850235A (en) | Multi-terminal positioning algorithm and positioning system based on cable topology and fault transient traveling wave | |
CN102693364B (en) | Equivalent conversion method of generalized communication/control bus terminating model | |
JP2017015450A (en) | Noise-proof characteristic evaluation method of cable and pair cable selection method | |
CN107144417B (en) | A kind of test method and system of waveguide coaxial converter insertion loss | |
US8942722B2 (en) | Integration of wired information and wireless information to locate a wireless device | |
CN205484640U (en) | Simple and easy net twine tester | |
CN212410832U (en) | High-efficient type secondary cable digit is to line ware | |
CN103701660A (en) | Ethernet equipment connection device and testing system and method applied thereby | |
Neus et al. | Binder identification by means of phantom measurements | |
CN115913281B (en) | A signal separation method for Ethernet full-duplex communication link |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |