CN113921620A - 一种折射率渐变特性的减反射膜的制备方法 - Google Patents

一种折射率渐变特性的减反射膜的制备方法 Download PDF

Info

Publication number
CN113921620A
CN113921620A CN202111359180.9A CN202111359180A CN113921620A CN 113921620 A CN113921620 A CN 113921620A CN 202111359180 A CN202111359180 A CN 202111359180A CN 113921620 A CN113921620 A CN 113921620A
Authority
CN
China
Prior art keywords
antireflection film
cell
refractive index
solar cell
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111359180.9A
Other languages
English (en)
Inventor
张晓丹
李兴亮
李仁杰
周佳凯
张奇星
任宁宇
陈兵兵
许盛之
侯国付
赵颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN202111359180.9A priority Critical patent/CN113921620A/zh
Publication of CN113921620A publication Critical patent/CN113921620A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种折射率渐变特性的减反射膜的制备方法。本发明开发了一种折射率渐变特性的nc‑SiOx:H减反射膜,通过调整反应气体中CO2流量来调整nc‑SiOx:H中Si、O的比例,即x的值(0<x≤2)来实现折射率的梯度变化,可以实现全光谱范围的有效减反,解决了传统减反射膜对于太阳光谱入射角度和吸收层材料厚度的依赖性。另一方面,该减反射膜采用低温、低功率沉积,有效减少了等离子体中带电粒子对吸收层的轰击,在兼顾材料宽带隙、高透明度的同时,通过折射率渐变结构降低光学反射,因此成为硅基叠层电池减反射膜的理想选择。

Description

一种折射率渐变特性的减反射膜的制备方法
技术领域
本发明属于太阳电池的技术领域,特别涉及一种折射率渐变特性的减反射膜的制备及其在硅基叠层太阳电池中的应用。
背景技术
硅基叠层太阳电池由于其可获得更高的转换效率而引起众多研究者的关注,尤其是III-V/Si与钙钛矿/Si叠层电池。前者的优势是稳定性与高效率,后者的优势是低成本与工艺简单。目前,两端Ga0.51In0.49P/Ga0.93In0.07As0.87P0.13//Si叠层电池的效率为35.9%,两端钙钛矿叠层电池的最高效率为29.5%。其中,限制效率的主要因素包括光学损失、非辐射复合以及接触电阻。而光学损失可以通过减反射膜有效降低。自1817年,德国弗劳恩霍夫实验室制备出第一批减反射膜至今,不同类型的减反射膜,包括单层、双层、三层减反射膜的组合已经被广泛研究。其中高折射率的减反射膜包括ZnS(n=2.37,587nm)、TiO2(n=2.61,587nm)、Ta2O5(n=2.13,587nm)、CeO2(n=2.2,587nm)等,低折射率的减反射膜包括MgF2(n=1.38,587nm)、Al2O3(n=1.77,587nm)、SiO2(n=1.46,587nm)、LiF(n=1.39,587nm)、PDMS(n=1.4,587nm)等。为了提高减反射膜的效果,研究人员将高折射率的材料和低折射率的材料搭配形成双层减反射膜,比如应用较多的MgF2/ZnS、MgF2/Ta2O5、Al2O3/TiO2、MgF2/TiO2等。然而,双层减反射膜仅在特殊波段具有较好的减反效果,例如MgF2/ZnS减反射膜在300-650nm波长范围内可以将电池的反射损失降低至1.6%,在650-1200nm范围的减反效果不佳,且双层减反射膜增加了工艺难度,对吸收层材料的选择及其厚度变化窗口较窄。从目前已发表的结果上来看,所有的硅基叠层太阳电池均采用单层或者双层减反射膜,这样会导致部分太阳光在界面反射,不利于叠层电池吸收的同时造成电池效率偏低。
综上所述,可归纳出现有硅基叠层太阳电池中减反射膜的不足:1)单层或者双层减反射膜,减反射效果不佳,尤其是800-1200nm的长波范围,叠层电池吸收变差,导致电流偏低。2)目前的减反射膜对吸收层材料的选择及其厚度较为敏感,对太阳光的入射角度较为依赖,应用窗口较窄,不利于电池效率提高,限制了电池的实际应用。
发明内容
本发明目的是克服现有技术的上述不足,提出一种基于折射率渐变特性的减反射膜的制备及其在硅基叠层太阳电池中的应用,通过调整反应气体中CO2流量来调整nc-SiOx:H中Si、O的比例,即x值来实现折射率的梯度变化,其中0<x≤2。该减反射膜有效减少叠层电池前表面的反射损失,提高电池效率。
本发明的技术方案:
一种折射率渐变特性的减反射膜的制备方法,所述方法包括:
1)将硅基叠层太阳电池样品放入高真空沉积设备中,表面温度为50-300℃,本底真空度10-5-10-9Pa,通入反应气体,反应气体压强为0.5-5Torr,在辉光功率密度为0.01-0.1W/cm2条件下辉光沉积nc-SiOx:H减反射膜。
2)将反应气体中CO2流量按照:G(t)=G0+At通入,其中G(t)为CO2流量,G0为CO2初始流量,A为线性变化速率,t为辉光时间。CO2流量从1sccm逐渐上升至50sccm。
3)最终辉光沉积单层减反射薄膜的厚度为2-20nm,总厚度为20-200nm的多层nc-SiOx:H减反射膜,其中0<x≤2。折射率在薄膜纵向渐进式变化,在600nm波长处变化范围为4-1.5。
其中,所述反应气体包括:源气体为硅烷类SiH4、Si2H6或Si3H8;稀释气体为H2、He或Ar;掺杂气体为CO2、PH3、B2H6或B(CH3)3;稀释气体与源气体的流量之比为50-500∶1。
所述沉积设备为13.56MHz-100MHz的等离子体增强化学气相沉积PECVD或者热丝化学气相沉积(HWCVD)设备。所述nc-SiOx:H,是p型的或者是n型的。
所述叠层电池是III-V族与晶硅的叠层太阳电池,或者是钙钛矿与晶硅叠层太阳电池。其中,所述的硅基叠层太阳电池入光面为绒面的,或者入光面为平面的;所述的硅基叠层太阳电池为两端叠层电池,三端叠层电池或者为四端叠层电池。
所述的III-V族顶电池为单结的GaInP、AlGaAs、GaAs结构,或者为两结的GaInP/GaAs、GaInP/AlGaAs、GaInP/GaInAsP结构,或者为三结的AlGaInP/AlGaAs/GaAs、AlGaInP/GaInP/AlGaInAs结构,或者为四结AlGaInP/GaInP/AlGaInAs/GaInAs、AlGaInP/GaInP/AlGaAs/GaAs结构。
所述的钙钛矿顶电池为1.6-2.1eV带隙的有机无机杂化钙钛矿电池,或者为全无机的钙钛矿电池。
所述的硅基叠层太阳电池的硅底电池为HJT电池、TOP-Con电池、POLO电池、DASH电池、PERC、PERL或PERT电池。
本发明的机理分析:
光在介质中传播时,一般通过折射率n来量化当前介质中的光速相对于真空中的光速。光从折射率大的介质进入折射率小的介质会发生明显的界面反射,因此,在太阳电池中,一般采用低折射率的透明薄膜充当减反射膜。理论上,减反射膜的折射率的平方等于空气的折射率乘以窗口层的折射率时,减反射效果最佳。然而,硅基叠层电池的窗口层一般为单质结构,具有固定且唯一的折射率,当太阳光照射到叠层电池上时,只有特定波长的光可以实现界面零反射,此时,反射率和反射光波长的关系为V型,色中性差。本设计通过采用折射率渐变特征的氢化纳米晶硅氧的减反射膜,调整反应气体中CO2流量来调整nc-SiOx:H中Si、O的比例,即x值来实现折射率的梯度变化,x值逐渐增大,折射率依次减小,解决了传统减反射膜只能实现单一波长减反的限制。另一方面,该减反射膜采用低温、低功率沉积,有效减少了等离子体中带电粒子对吸收层的轰击,在兼顾材料宽带隙、高透明度的同时,通过折射率渐变结构降低光学反射,因此成为硅基叠层电池减反射膜的理想选择。
本发明的优点和积极效果:
本发明通过采用一种氢化纳米晶硅氧的梯度减反射膜,调整反应气体中CO2流量来调整nc-SiOx:H中Si、O的比例,即x取值来实现折射率的梯度变化,实现全光谱范围的有效减反。此种方法相比于现有技术还具有以下优点:1)解决了传统减反射膜对于太阳光谱入射角度和吸收层材料厚度的依赖性。2)可以实现全光谱范围的有效减反,适用于III-V/晶硅叠层电池和钙钛矿/晶硅叠层电池。3)该减反射膜具有较高的透明度、工艺简单,不仅适用于平面叠层电池,也适用于绒面叠层电池。
附图说明
图1是本发明基于硅基叠层太阳电池衬底制备的折射率渐变特性的减反射膜示意图
图2是本发明具体实施方式具有折射率渐变特征的nc-SiOx:H(0.1≤x≤1.5)多层减反射膜的III-V族/Si叠层太阳电池的伏安特性曲线图。
图3是本发明具体实施方式具有折射率渐变特征的nc-SiOx:H(0.1≤x≤2)多层减反射膜的III-V族/Si叠层太阳电池的伏安特性曲线图。
图4是本发明具体实施方式具有折射率渐变特征的nc-SiOx:H(1≤x≤1.8)多层减反射膜的钙钛矿/Si叠层太阳电池的伏安特性曲线图。
图5是本发明具体实施方式具有折射率渐变特征的nc-SiOx:H(1≤x≤2)多层减反射膜的钙钛矿/Si叠层太阳电池的伏安特性曲线图。
具体实施方式
下面结合附图和具体实施例对本发明所述的技术方案作进一步的详细说明。
实施例1:
本实施例方法所用的III-V族/硅异质结叠层太阳电池,由上至下依次包括:(n)nc-SiOx:H(0.1≤x≤1.5)增透薄膜、正面金属栅线电极Au/Ag、GaAs接触层、n-AlInP窗口层、n-GaInP吸收层、p-AlGaInP背场、隧穿结、n-AlGaAs窗口层、p-AlGaAs吸收层、p-GaInP背场、p-GaAs接触层、ITO连接层、导电粘合剂、ITO连接层、硅异质结底电池电子选择层n-a-Si:H、钝化层i-a-Si:H、硅衬底n-Silicon、钝化层i-a-Si:H、空穴选择层p-a-Si:H和背电极Al。
III-V族/硅异质结叠层太阳电池中,GaInP吸收层的带隙1.91eV,AlGaAs吸收层的带隙1.51eV,面积为2.2×2.2cm2
本实施例的折射率渐变特性的减反射膜通过以下方法制备得到:
1.将III-V/硅异质结叠层太阳电池放入PECVD设备中,叠层太阳电池表面温度为300℃,本底真空度1×10-5Pa,通入反应气体H2、SiH4、PH3流量分别为500、5、8sccm,反应气体压强为0.5Torr,在辉光功率密度为0.1W/cm2条件下辉光沉积nc-SiOx:H(0.1≤x≤1.5)减反射膜;
2.将反应气体中CO2流量按照:G(t)=1+0.633t通入,其中G(t)为CO2流量,t为辉光时间。CO2流量从1sccm逐渐上升至20sccm。
3.最终辉光沉积厚度为200nm,600nm波长处折射率在薄膜纵向生长方向从4.2递增至1.6的nc-SiOx:H减反射膜。折射率渐变特性的减反射膜示意图见图1。
4.用电子束蒸发ZnS/MgF2的厚度为41/97nm作为对比样。
实验效果:进行太阳电池的性能测试,如图2所示,在AM1.5G,100mW/cm2标准光强的照射下,本实施例制备的梯度nc-SiOx:H(0.1≤x≤1.5)减反射膜太阳电池的开路电压3.051V,短路电流密度11.22mA/cm2,填充因子79.54%,效率为27.2%。传统ZnS/MgF2减反射膜太阳电池的开路电压2.999V,短路电流密度9.61mA/cm2,填充因子79%,效率为22.77%。
实施例2:
本实施例方法所用的III-V族/硅异质结叠层太阳电池,由上至下依次包括:(n)nc-SiOx:H(0.1≤x≤2)增透薄膜、正面金属栅线电极Au/Ag、GaAs接触层、n-AlInP窗口层、n-GaInP吸收层、p-AlGaInP背场、隧穿结、n-AlGaAs窗口层、p-AlGaAs吸收层、p-GaInP背场、p-GaAs接触层、ITO连接层、导电粘合剂、ITO连接层、硅异质结底电池电子选择层n-a-Si:H、钝化层i-a-Si:H、硅衬底n-Silicon、钝化层i-a-Si:H、空穴选择层p-a-Si:H和背电极Al。
III-V族/硅异质结叠层太阳电池中,GaInP吸收层的带隙1.91eV,AlGaAs吸收层的带隙1.51eV,面积为2.2×2.2cm2
本实施例的折射率渐变特性的减反射膜通过以下方法制备得到:
1.将III-V/硅异质结叠层太阳电池放入PECVD设备中,待处理样品表面温度为300℃,本底真空度1×10-5Pa,通入反应气体H2、SiH4、PH3流量分别为500、5、8sccm,反应气体压强为0.5Torr,在辉光功率密度为0.1W/cm2条件下辉光沉积nc-SiOx:H(0.1≤x≤2)减反射膜;
2.将反应气体中CO2流量按照:G(t)=1+0.9t通入,其中G(t)为CO2流量,t为辉光时间。CO2流量从1sccm逐渐上升至20sccm。
3.最终辉光沉积厚度为200nm,600nm波长处折射率在薄膜纵向生长方向从4递增至1.5的nc-SiOx:H减反射膜。
4.用电子束蒸发ZnS/MgF2的厚度为41/97nm作为对比样。
实验效果:进行太阳电池的性能测试,如图3所示,在AM1.5G,100mW/cm2标准光强的照射下,本实施例制备的梯度nc-SiOx:H(0.1≤x≤2)减反射膜太阳电池的开路电压3.053V,短路电流密度12.35mA/cm2,填充因子73.26%,效率为27.62%。传统ZnS/MgF2减反射膜太阳电池的开路电压2.999V,短路电流密度9.61mA/cm2,填充因子79%,效率为22.77%。
实施例3:
本实施例方法所用的钙钛矿/硅异质结叠层太阳电池,由上至下依次包括:(n)nc-SiOx:H(1≤x≤1.8)增透薄膜、正面金属栅线电极Ag、透明导电薄膜IZO、中间保护层SnO2,钙钛矿顶电池电子传输层PCBM、钙钛矿吸收层Perovskite、钙钛矿空穴传输层PTAA、连接层ITO、硅异质结底电池电子选择层n-a-Si:H、钝化层i-a-Si:H、硅衬底n-Silicon、钝化层i-a-Si:H、空穴选择层p-a-Si:H和背电极Al。
钙钛矿/硅异质结叠层太阳电池中,钙钛矿吸收层为溶液沉积制备的带隙约为1.68eV的铅锡混合pin型钙钛矿Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3CsPbxSn1-x(IyBr1-y)3
本实施例的折射率渐变特性的减反射膜通过以下方法制备得到:
1.将III-V/Si叠层电池放入PECVD设备中,待处理样品表面温度为300℃,本底真空度1×10-7Pa,通入反应气体H2、SiH4、PH3流量分别为500、5、8sccm,反应气体压强为1Torr,在辉光功率密度为0.1W/cm2条件下辉光沉积nc-SiOx:H(1≤x≤1.8)减反射膜;
2.将反应气体中CO2流量按照:G(t)=10+0.633t通入,其中G(t)为CO2流量,t为辉光时间。CO2流量从10sccm逐渐上升至30sccm。
3.最终辉光沉积厚度为200nm,600nm波长处折射率在薄膜纵向生长方向从2.4递增至1.5的nc-SiOx:H减反射膜。折射率渐变特性的减反射膜示意图见图1。用电子束蒸发ZnS/MgF2的厚度为41/97nm作为对比样。
实验效果:进行太阳电池的性能测试,如图4所示,在AM1.5G,100mW/cm2标准光强的照射下,本实施案例制备的梯度nc-SiOx:H减反射膜太阳电池的开路电压1.864V,短路电流密度18.73mA/cm,填充因子76.58%,效率为26.75%。传统MgF2减反射膜太阳电池的开路电压1.856V,短路电流密度17.91mA/cm2,填充因子75.3%,效率为25.03%。
实施例4:
本实施例方法所用的钙钛矿/硅异质结叠层太阳电池,由上至下依次包括:(n)nc-SiOx:H(1≤x≤2)增透薄膜、正面金属栅线电极Ag、透明导电薄膜IZO、中间保护层SnO2,钙钛矿顶电池电子传输层PCBM、钙钛矿吸收层Perovskite、钙钛矿空穴传输层PTAA、连接层ITO、硅异质结底电池电子选择层n-a-Si:H、钝化层i-a-Si:H、硅衬底n-Silicon、钝化层i-a-Si:H、空穴选择层p-a-Si:H和背电极Al。
钙钛矿/硅异质结叠层太阳电池中,钙钛矿吸收层为溶液沉积制备的带隙约为1.68eV的铅锡混合pin型钙钛矿Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3CsPbxSn1-x(IyBr1-y)3
本实施例的折射率渐变特性的减反射膜通过以下方法制备得到:
1.将钙钛矿/硅叠层太阳电池放入PECVD设备中,待处理样品表面温度为100℃,本底真空度1×10-7Pa,通入反应气体H2、SiH4、PH3流量分别为500、5、8sccm,反应气体压强为1Torr,在辉光功率密度为0.1W/cm2条件下辉光沉积nc-SiOx:H(1≤x≤2)减反射膜;
2.将反应气体中CO2流量按照:G(t)=12+0.633t通入,其中G(t)为CO2流量,t为辉光时间。CO2流量从12sccm逐渐上升至30sccm。
3.最终辉光沉积厚度为200nm,600nm波长处折射率在薄膜纵向生长方向从2.2递增至1.5的nc-SiOx:H减反射膜。
4.用电子束蒸发MgF2的厚度为80nm作为对比样。
实验效果:进行太阳电池的性能测试,如图5所示,在AM1.5G,100mW/cm2标准光强的照射下,本实施案例制备的梯度nc-SiOx:H减反射膜太阳电池的开路电压1.863V,短路电流密度19.27mA/cm2,填充因子75.77%,效率为27.26%。传统MgF2减反射膜太阳电池的开路电压1.856V,短路电流密度17.91mA/cm2,填充因子75.3%,效率为25.03%。
综上,本发明通过调整反应气体中CO2流量来调整nc-SiOx:H中Si、O的比例,即x的值(0<x≤2)来实现折射率的梯度变化,实现全光谱范围的有效减反。解决了传统减反射膜对于太阳光谱入射角度和吸收层材料厚度的依赖性。该减反射膜具有较高的透明度、工艺简单,不仅适用于平面叠层电池,也适用于绒面叠层电池。

Claims (10)

1.一种折射率渐变特性的减反射膜的制备方法,其特征在于包括以下步骤:
1)将硅基叠层太阳电池样品放入高真空沉积设备中,表面温度为50-300℃,本底真空度10-5-10-9Pa,通入反应气体,反应气体压强为0.5-5Torr,在辉光功率密度为0.01-0.1W/cm2条件下辉光沉积nc-SiOx:H减反射膜;
2)将反应气体中CO2流量按照:G(t)=G0+At通入,其中G(t)为CO2流量,G0为CO2初始流量,A为线性变化速率,t为辉光时间;CO2流量从1sccm逐渐上升至50sccm;
3)最终辉光沉积单层减反射薄膜的厚度为2-20nm,总厚度为20-200nm的多层nc-SiOx:H减反射膜,其中0<x≤2;折射率在薄膜纵向渐进式变化,在600nm波长处变化范围为4-1.5。
2.根据权利要求1所述的折射率渐变特性的减反射膜的制备方法,其特征在于,所述反应气体包括:源气体为硅烷类SiH4、Si2H6或Si3H8;稀释气体为H2、He或Ar;掺杂气体为CO2、PH3、B2H6或B(CH3)3;稀释气体与源气体的流量之比为50-500∶1。
3.根据权利要求1所述的折射率渐变特性的减反射膜的制备方法,其特征在于所述沉积设备为13.56MHz-100MHz的等离子体增强化学气相沉积PECVD或者热丝化学气相沉积(HWCVD)设备。
4.根据权利要求1所述的折射率渐变特性的减反射膜的制备方法,其特征在于所述nc-SiOx:H,是p型的或者是n型的。
5.根据权利要求1所述的折射率渐变特性的减反射膜的制备方法,其特征在于,所述叠层电池是III-V族与晶硅的叠层太阳电池,或者是钙钛矿与晶硅叠层太阳电池。
6.根据权利要求1所述的折射率渐变特性的减反射膜的制备方法,其特征在于所述的硅基叠层太阳电池入光面为绒面的,或者入光面为平面的。
7.根据权利要求1所述的折射率渐变特性的减反射膜的制备方法,其特征在于所述的硅基叠层太阳电池为两端叠层电池,三端叠层电池或者为四端叠层电池。
8.根据权利要求5所述的折射率渐变特性的减反射膜的制备方法,其特征在于,所述的III-V族顶电池为单结的GaInP、AlGaAs、GaAs结构,或者为两结的GaInP/GaAs、GaInP/AlGaAs、GaInP/GaInAsP结构,或者为三结的AlGaInP/AlGaAs/GaAs、AlGaInP/GaInP/AlGaInAs结构,或者为四结AlGaInP/GaInP/AlGaInAs/GaInAs、AlGaInP/GaInP/AlGaAs/GaAs结构。
9.根据权利要求5所述的折射率渐变特性的减反射膜的制备方法,其特征在于,所述的钙钛矿顶电池为1.6-2.1eV带隙的有机无机杂化钙钛矿电池,或者为全无机的钙钛矿电池。
10.根据权利要求1所述的折射率渐变特性的减反射膜的制备方法,其特征在于,所述的硅基叠层太阳电池的硅底电池为HJT电池、TOP-Con电池、POLO电池、DASH电池、PERC、PERL或PERT电池。
CN202111359180.9A 2021-11-17 2021-11-17 一种折射率渐变特性的减反射膜的制备方法 Pending CN113921620A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111359180.9A CN113921620A (zh) 2021-11-17 2021-11-17 一种折射率渐变特性的减反射膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111359180.9A CN113921620A (zh) 2021-11-17 2021-11-17 一种折射率渐变特性的减反射膜的制备方法

Publications (1)

Publication Number Publication Date
CN113921620A true CN113921620A (zh) 2022-01-11

Family

ID=79246724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111359180.9A Pending CN113921620A (zh) 2021-11-17 2021-11-17 一种折射率渐变特性的减反射膜的制备方法

Country Status (1)

Country Link
CN (1) CN113921620A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101556971A (zh) * 2009-05-11 2009-10-14 南开大学 硅基薄膜太阳电池用背反射电极及其制备方法
US20100180941A1 (en) * 2008-09-08 2010-07-22 Electronics And Telecommunications Research Institute Antireflection film of solar cell, solar cell, and method of manufacturing solar cell
CN102723370A (zh) * 2012-06-18 2012-10-10 湖南红太阳光电科技有限公司 一种用于太阳能电池的宽光谱多层减反钝化膜
CN102916060A (zh) * 2012-11-05 2013-02-06 南开大学 一种硅基薄膜太阳电池及其制备方法
CN104362183A (zh) * 2014-09-23 2015-02-18 南开大学 具有折射率渐变特征的硅碳窗口层薄膜和制备方法及应用
US20150349147A1 (en) * 2012-12-14 2015-12-03 Raydex Technology, Inc. Broad Band Anti-Reflection Coating for Photovoltaic Devices and Other Devices
CN109920916A (zh) * 2019-03-26 2019-06-21 南昌航空大学 一种可溶液加工的渐变折射率叠层减反射膜及其制备方法
CN209472000U (zh) * 2019-05-13 2019-10-08 南昌航空大学 一种平面硅基有机/无机杂化太阳电池结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100180941A1 (en) * 2008-09-08 2010-07-22 Electronics And Telecommunications Research Institute Antireflection film of solar cell, solar cell, and method of manufacturing solar cell
CN101556971A (zh) * 2009-05-11 2009-10-14 南开大学 硅基薄膜太阳电池用背反射电极及其制备方法
CN102723370A (zh) * 2012-06-18 2012-10-10 湖南红太阳光电科技有限公司 一种用于太阳能电池的宽光谱多层减反钝化膜
CN102916060A (zh) * 2012-11-05 2013-02-06 南开大学 一种硅基薄膜太阳电池及其制备方法
US20150349147A1 (en) * 2012-12-14 2015-12-03 Raydex Technology, Inc. Broad Band Anti-Reflection Coating for Photovoltaic Devices and Other Devices
CN104362183A (zh) * 2014-09-23 2015-02-18 南开大学 具有折射率渐变特征的硅碳窗口层薄膜和制备方法及应用
CN109920916A (zh) * 2019-03-26 2019-06-21 南昌航空大学 一种可溶液加工的渐变折射率叠层减反射膜及其制备方法
CN209472000U (zh) * 2019-05-13 2019-10-08 南昌航空大学 一种平面硅基有机/无机杂化太阳电池结构

Similar Documents

Publication Publication Date Title
Hossain et al. Perovskite/silicon tandem solar cells: from detailed balance limit calculations to photon management
TWI398004B (zh) 太陽能電池及其製備方法
US11211510B2 (en) Multijunction solar cell with bonded transparent conductive interlayer
TWI542026B (zh) 高效多接面太陽能電池
US20080135083A1 (en) Cascade solar cell with amorphous silicon-based solar cell
JP2717583B2 (ja) 積層型光起電力素子
WO1994011906A1 (en) Heterojunction solar cell with passivated emitter surface
WO2012018649A2 (en) Cooperative photovoltaic networks and photovoltaic cell adaptations for use therein
Sertel et al. Effect of single-layer Ta2O5 and double-layer SiO2/Ta2O5 anti-reflective coatings on GaInP/GaAs/Ge triple-junction solar cell performance
Zhang et al. Broadband graded refractive index TiO2/Al2O3/MgF2 multilayer antireflection coating for high efficiency multi-junction solar cell
Li et al. Silicon heterojunction-based tandem solar cells: past, status, and future prospects
Makita et al. Mechanical stacked GaAs//CuIn1− yGaySe2 three‐junction solar cells with 30% efficiency via an improved bonding interface and area current‐matching technique
CN1941427A (zh) n+/p型GaAs太阳电池表面高透射率窗口层的制备方法
CN111081805B (zh) 一种基于范德瓦耳斯力结合的GaAs/InGaN二结太阳电池结构及其制备方法
CN111725332A (zh) 一种高性能三结砷化镓太阳电池
CN102956722B (zh) 一种薄膜太阳能电池
CN110534612B (zh) 一种反向生长三结太阳电池的制备方法
CN113921620A (zh) 一种折射率渐变特性的减反射膜的制备方法
CN105810760A (zh) 一种晶格匹配的五结太阳能电池及其制作方法
CN109461776A (zh) 一种低成本高效晶硅太阳能电池组件
Hwang et al. Highly effective III-V solar cells by controlling the surface roughnesses
Chang et al. Triple-junction GaInP/GaAs/Ge solar cells with an AZO transparent electrode and ZnO nanowires
KR20130035858A (ko) 박막 태양전지 및 그 제조방법
Al Eghfeli et al. Demonstration of aluminum doped ZnO as anti-reflection coating
Predan et al. Developments for wafer-bonded four-junction solar cells based on GaSb

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination