CN113918834A - 融合社交关系的图卷积协同过滤推荐方法 - Google Patents
融合社交关系的图卷积协同过滤推荐方法 Download PDFInfo
- Publication number
- CN113918834A CN113918834A CN202111235558.4A CN202111235558A CN113918834A CN 113918834 A CN113918834 A CN 113918834A CN 202111235558 A CN202111235558 A CN 202111235558A CN 113918834 A CN113918834 A CN 113918834A
- Authority
- CN
- China
- Prior art keywords
- embedding
- user
- layer
- social
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 59
- 238000001914 filtration Methods 0.000 title claims abstract description 34
- 230000002776 aggregation Effects 0.000 claims abstract description 113
- 238000004220 aggregation Methods 0.000 claims abstract description 113
- 239000011159 matrix material Substances 0.000 claims abstract description 105
- 239000013598 vector Substances 0.000 claims abstract description 65
- 230000002452 interceptive effect Effects 0.000 claims abstract description 42
- 230000003993 interaction Effects 0.000 claims description 84
- 230000004927 fusion Effects 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 12
- 238000010586 diagram Methods 0.000 claims description 10
- 230000014509 gene expression Effects 0.000 claims description 10
- 230000004931 aggregating effect Effects 0.000 claims description 9
- 238000006116 polymerization reaction Methods 0.000 claims description 8
- 230000002708 enhancing effect Effects 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000007499 fusion processing Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 7
- 230000006870 function Effects 0.000 description 21
- 238000012549 training Methods 0.000 description 14
- 230000006872 improvement Effects 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 8
- 238000005295 random walk Methods 0.000 description 8
- 230000006399 behavior Effects 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000007418 data mining Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000003997 social interaction Effects 0.000 description 2
- 230000017105 transposition Effects 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 238000003058 natural language processing Methods 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000011273 social behavior Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9536—Search customisation based on social or collaborative filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/30—Semantic analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/01—Social networking
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Computing Systems (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Evolutionary Computation (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Business, Economics & Management (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Economics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
Dataset | User# | Item# | Interaction# | Connection# | R-Density | S-Density |
Brightkite | 6,310 | 317,448 | 1,392,069 | 27,754 | 0.00069 | 0.00070 |
Gowalla | 14,923 | 756,595 | 2,825,857 | 82,112 | 0.00025 | 0.00037 |
Epinions | 12,392 | 112,267 | 742,682 | 198,264 | 0.00053 | 0.00129 |
FilmTrust | 58 | 657 | 1,530 | 590 | 0.04015 | 0.17539 |
Delicious | 479 | 23,341 | 103,649 | 6,180 | 0.00927 | 0.02694 |
LastFM | 1,860 | 17,583 | 92,601 | 24,800 | 0.00283 | 0.00717 |
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111235558.4A CN113918834B (zh) | 2021-10-22 | 2021-10-22 | 融合社交关系的图卷积协同过滤推荐方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111235558.4A CN113918834B (zh) | 2021-10-22 | 2021-10-22 | 融合社交关系的图卷积协同过滤推荐方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113918834A true CN113918834A (zh) | 2022-01-11 |
CN113918834B CN113918834B (zh) | 2022-10-28 |
Family
ID=79242397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111235558.4A Active CN113918834B (zh) | 2021-10-22 | 2021-10-22 | 融合社交关系的图卷积协同过滤推荐方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113918834B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114756768A (zh) * | 2022-06-15 | 2022-07-15 | 腾讯科技(深圳)有限公司 | 数据处理方法、装置、设备、可读存储介质及程序产品 |
CN116703529A (zh) * | 2023-08-02 | 2023-09-05 | 山东省人工智能研究院 | 基于特征空间语义增强的对比学习推荐方法 |
CN117370672A (zh) * | 2023-12-06 | 2024-01-09 | 烟台大学 | 基于混合结构图的用户兴趣点推荐方法、系统和设备 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150187024A1 (en) * | 2013-12-27 | 2015-07-02 | Telefonica Digital España, S.L.U. | System and Method for Socially Aware Recommendations Based on Implicit User Feedback |
CN111428147A (zh) * | 2020-03-25 | 2020-07-17 | 合肥工业大学 | 结合社交和兴趣信息的异源图卷积网络的社交推荐方法 |
CN112115378A (zh) * | 2020-09-16 | 2020-12-22 | 长沙理工大学 | 基于图卷积协同过滤的推荐预测系统以及推荐预测方法 |
CN112488791A (zh) * | 2020-11-30 | 2021-03-12 | 中国传媒大学 | 一种基于知识图谱卷积算法的个性化推荐方法 |
US20210110436A1 (en) * | 2019-10-14 | 2021-04-15 | Visa International Service Association | Group item recommendations for ephemeral groups based on mutual information maximization |
CN112800334A (zh) * | 2021-02-04 | 2021-05-14 | 河海大学 | 一种基于知识图谱和深度学习的协同过滤推荐方法及设备 |
CN112836125A (zh) * | 2021-02-08 | 2021-05-25 | 东北师范大学 | 一种基于知识图谱和图卷积网络的推荐方法及其系统 |
CN112905900A (zh) * | 2021-04-02 | 2021-06-04 | 辽宁工程技术大学 | 基于图卷积注意力机制的协同过滤推荐算法 |
CN113505311A (zh) * | 2021-07-12 | 2021-10-15 | 中国科学院地理科学与资源研究所 | 一种可根据“潜在语义空间”的旅游景点交互推荐方法 |
-
2021
- 2021-10-22 CN CN202111235558.4A patent/CN113918834B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150187024A1 (en) * | 2013-12-27 | 2015-07-02 | Telefonica Digital España, S.L.U. | System and Method for Socially Aware Recommendations Based on Implicit User Feedback |
US20210110436A1 (en) * | 2019-10-14 | 2021-04-15 | Visa International Service Association | Group item recommendations for ephemeral groups based on mutual information maximization |
CN111428147A (zh) * | 2020-03-25 | 2020-07-17 | 合肥工业大学 | 结合社交和兴趣信息的异源图卷积网络的社交推荐方法 |
CN112115378A (zh) * | 2020-09-16 | 2020-12-22 | 长沙理工大学 | 基于图卷积协同过滤的推荐预测系统以及推荐预测方法 |
CN112488791A (zh) * | 2020-11-30 | 2021-03-12 | 中国传媒大学 | 一种基于知识图谱卷积算法的个性化推荐方法 |
CN112800334A (zh) * | 2021-02-04 | 2021-05-14 | 河海大学 | 一种基于知识图谱和深度学习的协同过滤推荐方法及设备 |
CN112836125A (zh) * | 2021-02-08 | 2021-05-25 | 东北师范大学 | 一种基于知识图谱和图卷积网络的推荐方法及其系统 |
CN112905900A (zh) * | 2021-04-02 | 2021-06-04 | 辽宁工程技术大学 | 基于图卷积注意力机制的协同过滤推荐算法 |
CN113505311A (zh) * | 2021-07-12 | 2021-10-15 | 中国科学院地理科学与资源研究所 | 一种可根据“潜在语义空间”的旅游景点交互推荐方法 |
Non-Patent Citations (2)
Title |
---|
竺笈 等: "融合用户社会关系的双线性扩散图推荐模型", 《计算机科学与探索》 * |
高飞 等: "基于图卷积网络的双向协同过滤推荐算法", 《软件》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114756768A (zh) * | 2022-06-15 | 2022-07-15 | 腾讯科技(深圳)有限公司 | 数据处理方法、装置、设备、可读存储介质及程序产品 |
CN114756768B (zh) * | 2022-06-15 | 2022-09-02 | 腾讯科技(深圳)有限公司 | 数据处理方法、装置、设备、可读存储介质及程序产品 |
CN116703529A (zh) * | 2023-08-02 | 2023-09-05 | 山东省人工智能研究院 | 基于特征空间语义增强的对比学习推荐方法 |
CN116703529B (zh) * | 2023-08-02 | 2023-10-20 | 山东省人工智能研究院 | 基于特征空间语义增强的对比学习推荐方法 |
CN117370672A (zh) * | 2023-12-06 | 2024-01-09 | 烟台大学 | 基于混合结构图的用户兴趣点推荐方法、系统和设备 |
CN117370672B (zh) * | 2023-12-06 | 2024-02-23 | 烟台大学 | 基于混合结构图的用户兴趣点推荐方法、系统和设备 |
Also Published As
Publication number | Publication date |
---|---|
CN113918834B (zh) | 2022-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113918833B (zh) | 通过社交网络关系的图卷积协同过滤实现的产品推荐方法 | |
CN113918832B (zh) | 基于社交关系的图卷积协同过滤推荐系统 | |
CN111797321B (zh) | 一种面向不同场景的个性化知识推荐方法及系统 | |
CN112529168B (zh) | 一种基于gcn的属性多层网络表示学习方法 | |
CN111310063B (zh) | 基于神经网络的记忆感知门控因子分解机物品推荐方法 | |
CN113918834B (zh) | 融合社交关系的图卷积协同过滤推荐方法 | |
Wan et al. | Deep matrix factorization for trust-aware recommendation in social networks | |
Liu et al. | Social recommendation with learning personal and social latent factors | |
Hu et al. | Bayesian personalized ranking based on multiple-layer neighborhoods | |
Chen et al. | Learning multiple similarities of users and items in recommender systems | |
CN112417313A (zh) | 一种基于知识图卷积网络的模型混合推荐方法 | |
CN113590976A (zh) | 一种空间自适应图卷积网络的推荐方法 | |
Sivaramakrishnan et al. | An effective user clustering-based collaborative filtering recommender system with grey wolf optimisation | |
CN114461907A (zh) | 一种基于知识图谱的多元环境感知推荐方法及系统 | |
Ballandies et al. | Mobile link prediction: Automated creation and crowdsourced validation of knowledge graphs | |
Li et al. | Capsule neural tensor networks with multi-aspect information for Few-shot Knowledge Graph Completion | |
Mu et al. | Auxiliary stacked denoising autoencoder based collaborative filtering recommendation | |
CN118071400A (zh) | 基于图计算技术在信息消费领域的应用方法及系统 | |
CN113342994A (zh) | 一种基于无采样协作知识图网络的推荐系统 | |
CN117670464A (zh) | 一种去除社交平台噪声交互信号的商品推荐方法 | |
Huang et al. | Multi-affect (ed): improving recommendation with similarity-enhanced user reliability and influence propagation | |
CN117235375A (zh) | 基于图神经网络与元学习的用户多行为推荐方法 | |
Deng et al. | A Trust-aware Neural Collaborative Filtering for Elearning Recommendation. | |
Lin et al. | Automatic Hypergraph Generation for Enhancing Recommendation with Sparse Optimization | |
CN116304289A (zh) | 基于图神经网络的供应链的信息链推荐方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240611 Address after: 230000 B-1015, wo Yuan Garden, 81 Ganquan Road, Shushan District, Hefei, Anhui. Patentee after: HEFEI MINGLONG ELECTRONIC TECHNOLOGY Co.,Ltd. Country or region after: China Address before: No.69 Hongguang Avenue, Banan District, Chongqing Patentee before: Chongqing University of Technology Country or region before: China |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240904 Address after: 200000 Room 602, 6th Floor, Building 8, 471 Guiping Road, Xuhui District, Shanghai Patentee after: Shanghai Huanze Information Technology Co.,Ltd. Country or region after: China Address before: 230000 B-1015, wo Yuan Garden, 81 Ganquan Road, Shushan District, Hefei, Anhui. Patentee before: HEFEI MINGLONG ELECTRONIC TECHNOLOGY Co.,Ltd. Country or region before: China |