CN113916833A - 基于近红外双峰pcf折射率与应力双参量传感系统 - Google Patents

基于近红外双峰pcf折射率与应力双参量传感系统 Download PDF

Info

Publication number
CN113916833A
CN113916833A CN202111445404.8A CN202111445404A CN113916833A CN 113916833 A CN113916833 A CN 113916833A CN 202111445404 A CN202111445404 A CN 202111445404A CN 113916833 A CN113916833 A CN 113916833A
Authority
CN
China
Prior art keywords
refractive index
stress
double
pcf
sensing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111445404.8A
Other languages
English (en)
Other versions
CN113916833B (zh
Inventor
沈涛
恭艾娜
王邵峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN202111445404.8A priority Critical patent/CN113916833B/zh
Publication of CN113916833A publication Critical patent/CN113916833A/zh
Application granted granted Critical
Publication of CN113916833B publication Critical patent/CN113916833B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/412Index profiling of optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02347Longitudinal structures arranged to form a regular periodic lattice, e.g. triangular, square, honeycomb unit cell repeated throughout cladding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/032Optical fibres with cladding with or without a coating with non solid core or cladding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03694Multiple layers differing in properties other than the refractive index, e.g. attenuation, diffusion, stress properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N2021/4173Phase distribution

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明专利提供了基于近红外双峰PCF折射率与应力双参量传感系统,它包括ASE光源、单模光纤、传感单元、光谱仪、光电转化器、解调模块和PC端。利用表面等离子体共振原理,通过一个特殊结构的光子晶体光纤的两个共振峰的间距来检测折射率与应力,结果在PC端中显示。本发明由双峰灵敏度公式来取代传统的波长灵敏度的计算方法,提出的新的传感装置采用了双峰灵敏度的传感方法,具有灵敏度高、设计灵活、结构紧凑、稳定性强等优点,在医学领域、生化分析物检测、水污染监控等实际使用的中具有很高的价值。

Description

基于近红外双峰PCF折射率与应力双参量传感系统
技术领域
本发明属于光纤传感技术领域,具体涉及基于近红外双峰PCF折射率与应力双参量传感系统。
背景技术
表面等离子体共振(SPR)存在于金属和介质(或空气)之间,利用全反射倏逝波激发表面等离子体极化激元(SPP)。SPR传感技术因其灵敏度高、无背景干扰、样品无标签、无需进一步纯化、实时快速检测等特点,已经成为监测分析物的折射率、过滤特定频率的光和检测纳米生物膜的形成的多功能工具。近年来,基于光子晶体光纤(PCF)的SPR传感器的概念已被提出。光子晶体光纤的特点是其设计的灵活性,因此可以通过不同的气孔布置来定制色散、双折射、非线性等。这些方面使得光子晶体光纤在许多领域特别引人注目,并在基于气体的非线性光学、原子和粒子制导、超高非线性、掺稀土激光和传感等领域有广泛的应用。PCF-SPR传感器可以实现等离子体模式和基模模式的完美匹配,因为基模的有效折射率可以设计为零到核心材料的折射率之间,在折射率检测方面具有很高的灵敏度和分辨率。克服了基于棱镜和传统光纤的SPR传感器体积大、传输损耗高、灵敏度低的缺点。目前PCF-SPR传感器的结构很多。
Wu T等人(Wu T,Shao Y,Wang Y,et al.Surface plasmon resonance biosensorbased on gold-coated side-polished hexagonal structure photonic crystal fiber[J].Optics express,2017,25(17):20313-20322.)提出一种基于镀金边抛光六边形结构光子晶体纤维的表面等离子体共振生物传感器,采取金属Au作为SPR激发材料,Au下方为一D型光子晶体光纤,气孔直径为3.6μm,气孔间距为7.9μm,包层直径为125μm,折射率测量范围为1.41-1.44。当PCF材料折射率为1.36时,此传感器的灵敏度达到了21700nm/RIU,但此传感器无法满足双参量测量,并且折射率测量范围过窄;Han B等人(Han B,Zhang Y,SiyuE,et al.Simultaneous measurement of temperature and strain based on dual SPReffect in PCF[J].Optics&Laser Technology,2019,113:46-51.)提出了一种基于双SPR效应的PCF中温度和应变的同时测量的传感结构,传感器采用对称式结构,纤芯第二层六边形气孔中上下两气孔镀了一层厚度为40nm的金属金,下方镀金气孔左右两侧填充温度敏感液(TSL)。通过理论和数值分析讨论计算了温度和应变对复合材料结果参数的影响,模拟结果表明以二甘醇为温度敏感液时,温度和应变测量灵敏度分别为-6.83nm/℃和1.30×10- 3nm/με;Wang G等人(Wang G,LuY,Duan L,et al.A refractive index sensor based onPCF with ultra-wide detection range[J].IEEE Journal of Selected Topics inQuantum Electronics,2020,27(4):1-8.)提出一种基于PCF的具有超宽检测范围的折射率传感器,同样采取金属金作为SPR激发材料,其中光子晶体光纤气孔呈三角形的晶格排列,其直径为0.6μm,气孔间距为2.0μm,包层直径为15μm,在光子晶体光纤中心气孔中填充待测液,在第二层六边形气孔y轴方向上方和下放气孔对称填充金属金材料,其折射率探测范围可从1.29-1.49,具有很宽的探测范围,但折射率处于1.49RI时损耗峰不明显,其平均波长灵敏度和振幅灵敏度分别为-4156.82nm/RIU和-3703.64nm/RIU,虽然折射率监测范围较宽,但此传感器的灵敏度较低,且无法满足双参量测量;常规酸液刻蚀过程中,刻蚀液的毒性和危害性限制了MXenes的大规模生产和应用,Sun Z等人(Sun Z,Yuan M,Lin L,etal.Selective lithiation-expansion-microexplosion synthesis of two-dimensionalfluoride-free Mxene[J].ACS Materials Letters,2019,1(6):628-632.)开发了一种简单有效的无氟制备方法,来选择性地腐蚀传统锂离子电池系统中Ti3AlC2的铝层,制备出了单层或少层的MXene纳米片,这种方法具有较高的产出率,此外,该刻蚀过程是在没有含氟的试剂中进行,主要试剂是水,有效避免了有毒液体的引入。所制备的MXenes的性能优于几乎所有报道的MXenes材料;Sakib M N等人(Sakib M N,Hossain M B,Al-tabatabaie K F,et al.High performance dual core D-shape PCF-SPR sensor modeling employinggold coat[J].Results in Physics,2019,15:102788.)提出采用金涂层、固体双芯的D型PCF-SPR传感器,分析物折射率范围为1.45-1.48,两个固体纤芯与y轴对称,双芯能量与金属层能量耦合较困难,适用的探测范围较窄;沈涛等人(沈涛,梁涵,杨添宇等,CN202011302626X,基于SPR的D型光子晶体光纤折射率传感器装置及方法。)公开了一种可检测折射率的D型PCF传感器;以及沈涛等人(沈涛,梁涵,杨添宇等,CN2020112985391,三角形气孔的D型光子晶体光纤折射率传感器装置及方法。)公开了一种三角形气孔的D型PCF传感器,其中气孔被设计为三角形,涂敷的敏感材料为金属Ag和Ta2O5薄膜,通过波长漂移来检测灵敏度。
以上已公开PCF-SPR的检测方法都是基于某种耦合模式,检测单一损耗峰的共振波长与其漂移变化。但PCF-SPR传感器是同时拥有多个耦合存在,只检测一个耦合模式的峰值是困难,不稳定的。因为在实际使用中存在无法区分具体耦合模式所对应的约束损耗峰和约束损耗峰的共振波长波动不稳定导致无法检测的问题,Guo Y等人(Guo Y,Li J,WangX,et al.Highly sensitive sensor based on D-shaped microstructure fiber withhollow core[J].Optics&Laser Technology,2020,123:105922.)提出了双峰检测光子晶体光纤传感器,分别检测两个峰的波长漂移量,同时拥有两个灵敏度,但是与上述单峰光子晶体光纤传感器在检测方法上没有区别;Xiao G等人提出(Xiao G,Ou Z,Yang H,et al.AnIntegrated Detection Based on a Multi-Parameter Plasmonic Optical FiberSensor[J].Sensors,2021,21(3):803.)双峰检测双参量光子晶体光纤传感器,通过两个耦合模式下的损耗峰同时检测两种参量,同样依据单峰的共振波长与共振波长漂移量来判断检测物的折射率与灵敏度,稳定性较低。
以上PCF-SPR传感器与本发明在对分析物状态的判别与灵敏度计算方法上有本质区别,且目前提出的高灵敏度传感器同样受限于光谱仪的性能,所以目前大多数PCF-SPR传感器只存在于仿真理论,实际制造效果较差。所以提出一种新的切实可行的工作在近红外波段的PCF结构及检测方法是十分重要的。
发明内容
针对上述问题,本发明要解决的技术问题是提出基于近红外双峰PCF折射率与应力双参量传感系统,并提出一种新的分析物状态(包括折射率、应力)判定方法与稳定的灵敏度计算方法。
本发明为解决其技术问题所采用的技术方案如下:
技术方案:基于近红外双峰PCF折射率与应力双参量传感系统,其特征在于:由ASE光源(1)、单模光纤(2)、传感单元(3)、光谱仪(4)、光电转化器(5)、解调模块(6)和PC端(7)组成;
所述ASE光源(1)的输出波段为近红外波段,输出760-2600nm的光信号,其中心波长为1550nm;
所述传感单元(3)为光子晶体光纤(3-1);由包层(3-2)、Ag层(3-5)、MXene薄膜(3-6)和分析液(3-7)构成;其特征在于:包层(3-2)中包含16个空气孔(3-3)和17个空气孔(3-4);空气孔(3-3)、空气孔(3-4)关于光纤y轴呈对称排列;空气孔(3-4)分布于空气孔(3-3)之间,空气孔(3-3)和空气孔(3-4)均呈现等三角形排列;在纤芯处缺失一空气孔;Ag层(3-5)和MXene薄膜(3-6)位于包层(3-2)和分析液(3-7)交界处,其中Ag层(3-5)在MXene薄膜(3-6)的下方;
所述的传感单元(3),其特征在于:包层(3-2)直径为10μm,空气孔(3-3)直径为1.2μm,空气孔(3-4)直径为0.4μm;空气孔(3-3)间距Λ1为2μm,空气孔(3-4)间距Λ2为2μm;Ag层(3-5)厚度为30nm;MXene薄膜(3-6)厚度为9.98nm;包层材料为熔融石英,其折射率由Sellmeier公式定义;其表达式为:
Figure BDA0003383969520000031
式中λ为光波波长,其单位为微米;n(λ)为熔融石英的折射率;
敏感材料为Ag层(3-5)和MXene薄膜(3-6);所述的Ag层(3-5)利用光纤磁控溅射涂层方法进行涂覆;采用堆叠-拉丝技术制备光子晶体光纤(3-1),光子晶体光纤(3-1)长度为15mm,具体制备方法为:
首先对石英套管进行预处理,在超净环境下按照参数拉制毛细管,拉制温度为1800℃-2000℃,之后对毛细管两端用氢氧焰进行拉锥封孔,在石英套管中将毛细管按照设计要求堆积形成所需的结构,用纯石英棒对空隙进行填充,利用氧炔火焰将石英套管与毛细管烧结在一起,在拉丝塔上使用两次拉丝技术制成光子晶体光纤;
所述的MXene薄膜(3-6)选用单层Ti3C2材料,采用滴涂法均匀涂敷在光子晶体光纤(3-1)的Ag层(3-5)上方;放入干燥箱中,设定温度为50℃进行干燥5-10小时;随后将涂敷好的传感单元(3)放入室温中静置36小时;
MXene薄膜(3-6)选用单层Ti3C2材料,其具体的制备方法为:通过微爆炸刻蚀法,来选择性地腐蚀锂离子电池系统中Ti3AlC2的铝层,得到单层Ti3C2薄膜材料;首先选取5g粉末状Ti3AlC2作为原材料,以锂箔为阳极,Ti3AlC2涂敷在惰性金属表面作为阴极,1mol/l的LiTFSi作为电解液,在2.45ml二甲醚四甘醇(TEGDME)溶液中采取可控的嵌锂-合金-膨胀微爆炸机理,在0.20mA恒流放电条件下通电2.5小时得到2ml嵌锂MAX混合溶液;随后将分散在N-甲基吡咯烷酮(NMP)溶液中的聚偏氟乙烯(PVDF)粘结剂与Ti3AlC2混合制成Ti3AlC2阴极,在直流电压为8V条件下继续电解9小时制备获得0.1443g锂化MAX褐色固体材料;随后,将制备的锂化MAX放入10ml去离子水溶液中与水发生微爆炸反应,待反应结束后在室温条件下静置2小时;将溶液放入离心机中以4000rpm转速下离心1小时,得到0.052ml深褐色单层Ti3C2悬浊液;
所述分析液(3-7)为待测液体,可通过传感单元(3)测出其折射率;而应力的变化会改变光子晶体光纤(3-1)的包层(3-2)的折射率,进而改变损耗峰的位置,故可达到双参量测量的目的;
所述的基于近红外双峰PCF折射率与应力双参量传感装置及方法,其特征在于:ASE光源(1)发射光信号经过单模光纤(2)传输到传感单元(3),传感单元(3)输出至光谱仪(4)与光电转化器(5),光电转化器(5)将光信号转化为电信号输出到解调模块(6),最终在PC端(7)中显示;
所述的光信号经过单模光纤(2)传输到传感单元(3),其特征在于:Ag层(3-5)表面激发的等离子体波波矢与入射光场的波矢在特定的波长范围内达到相位匹配,发生两次能量耦合,出现两个共振损耗峰;表面等离子体共振(SPR)对介质环境变化十分敏感,分析液(3-7)与包层(3-2)折射率RI变化会使共振条件发生变化,导致两个共振损耗峰发生明显变化,由此可以实现高灵敏度、实时性探测;
所述的基于近红外双峰PCF折射率与应力双参量传感装置及方法,其特征在于:由ASE光源(1)发出光信号,经单模光纤(2)传输至传感单元(3),当分析液(3-7)折射率改变时,光子晶体光纤(3-1)等离子体共振现象的条件发生改变,两种耦合模式发生变化,在光谱仪(4)中显示的两个峰的距离发生明显的改变,当分析液(3-7)或包层(3-2)的折射率增大时,两损耗峰之间的距离减小,当分析液(3-7)或包层(3-2)的折射率减少时,两损耗峰之间的距离增大,经双峰灵敏度公式计算灵敏度;
所述双峰灵敏度公式为:
s=(Δλpeak2-Δλpeak1)/Δna (2)
式中(Δλpeak2-Δλpeak1)为两种不同折射率和应力状态下的两个损耗峰的波长距离差值,Δna为折射率/应力的变化量,s为所求得的双峰灵敏度;其中Δλpeak1和Δλpeak2的大小与传感单元(3)所处的折射率和应力状态对应;传感单元(3)将携带(Δλpeak2-Δλpeak1)数值的光信号传输至光电转化器(5),光电转化器(5)将光信号转化为电信号输出至解调模块(6),最终在PC端(7)中显示分析液(3-7)的信息;
所述的基于近红外双峰PCF折射率与应力双参量传感系统,其特征在于:在同时测量折射率与应力时需要用以下公式进行计算:
Figure BDA0003383969520000041
Figure BDA0003383969520000042
式(3)中Δλ1为折射率改变后两峰间距的变化量,Δλ2为应力改变后两峰间距的变化量,(Δλpeak2-Δλpeak1)为两种不同折射率和应力状态下的两个损耗峰的波长距离差值,ST,SN分别为折射率与应力的灵敏度,ΔT与ΔN分别为折射率与应力的变化量,进而从公式(4)可得出折射率与应力的变化量。
结构发明:基于近红外双峰PCF折射率与应力双参量传感系统。
与已公开技术相比,本发明专利的有益效果是:
1.本发明所述的基于近红外双峰PCF折射率与应力双参量传感系统结构特殊,极大地增加了双折射特性以及色散特性,有利于偏振态的保持,可广泛应用于偏振控制、精密光纤传感等领域。
2.本发明所述的基于近红外双峰PCF折射率与应力双参量传感系统拥有两个约束损耗峰,通过本发明所提出的双峰灵敏度公式计算,解决了传统PCF-SPR传感器灵敏度测量精度差,实际测试效果差的问题,增加了测量系统的稳定性。
3.本发明所述的基于近红外双峰PCF折射率与应力双参量传感系统工作波长位于近红外,可忽略外界环境光对传感器的干扰。
4.本发明所述的基于近红外双峰PCF折射率与应力双参量传感系统,采用Ag和MXene作为SPR激发材料,可以实现折射率和应力双参量测量,达到最大灵敏度-15000nm/RIU和1.25×10-3nm/mpa,可广泛应用于样品检测,如生命科学研究、生物化学、环境监测等领域。
附图说明
图1为本发明提供基于近红外双峰PCF折射率与应力双参量传感系统的装置图。
图2为本发明提供基于近红外双峰PCF折射率与应力双参量传感系统的传感单元横截面图。
图3为本发明提供基于近红外双峰PCF折射率与应力双参量传感系统的耦合模式图。
图4为本发明提供基于近红外双峰PCF折射率与应力双参量传感系统的应力为0mpa折射率为1.36和应力为10mpa折射率为1.37的损耗谱变化图。
具体实施方式
下面结合附图对本发明提出的基于近红外双峰PCF折射率与应力双参量传感系统的具体实施方式加以说明。
如图1所示,为本发明提供基于近红外双峰PCF折射率与应力双参量传感系统的装置图,ASE光源(1)发射光信号经过单模光纤(2)传输到传感单元(3),传感单元(3)输出至光谱仪(4)与光电转化器(5),光电转化器(5)将光信号转化为电信号输出到解调模块(6),最终在PC端(7)中显示;
如图2所示,为本发明提供基于近红外双峰PCF折射率与应力双参量传感系统的传感单元横截面图,传感单元(3)为光子晶体光纤(3-1);由包层(3-2)、16个圆形空气孔(3-3)、17个圆形空气孔(3-4)、Ag层(3-5)、MXene薄膜(3-6)和分析液(3-7)构成;其特征在于:空气孔(3-3)、空气孔(3-4)关于光纤y轴呈对称排列;空气孔(3-4)分布于空气孔(3-3)之间,空气孔(3-3)和空气孔(3-4)均呈现等三角形排列;在包层中心处缺失一空气孔(3-4);Ag层(3-5)和MXene薄膜(3-6)位于包层(3-2)和分析液(3-7)交界处,其中Ag层(3-5)在MXene薄膜(3-6)的下方;空气孔可影响模式性质,可以把光控制在纤芯内;Ag层(3-5)和MXene薄膜(3-6)在包层(3-2)与分析液(3-7)交界处,当光信号传输至光子晶体光纤(3-1),Ag层(3-5)的存在导致表面等离子共振现象的发生,但Ag层(3-5)与空气接触易被氧化,MXene薄膜(3-6)起保护作用,其优良的物理特性也会使传感单元(3)的灵敏度提升,从而实现高灵敏度检测;
如图3所示,为本发明提供基于近红外双峰PCF折射率与应力双参量传感系统的耦合模式图,当工作波长为1260-2000nm时,本传感系统可以检测到两个约束损耗峰,发生两次纤芯与Ag层(3-5)及MXene薄膜(3-6)的能量耦合。
如图4所示,为本发明提供基于近红外双峰PCF折射率与应力双参量传感系统的应力为0mpa折射率为1.36和应力为10mpa折射率为1.37的损耗谱变化图,当折射率从1.36变化至1.37和应力从0mpa变化至10mpa时,本传感系统损耗峰变化情况,可得出此传感系统的折射率最大灵敏度分别为-15000nm/RIU和1.25×10-3nm/mpa。

Claims (1)

1.基于近红外双峰PCF折射率与应力双参量传感系统,其特征在于:由ASE光源(1)、单模光纤(2)、传感单元(3)、光谱仪(4)、光电转化器(5)、解调模块(6)和PC端(7)组成;
所述ASE光源(1)的输出波段为近红外波段,输出760-2600nm的光信号,其中心波长为1550nm;
所述传感单元(3)为光子晶体光纤(3-1);由包层(3-2)、Ag层(3-5)、MXene薄膜(3-6)和分析液(3-7)构成;其特征在于:包层(3-2)中包含16个空气孔(3-3)和17个空气孔(3-4);空气孔(3-3)、空气孔(3-4)关于光纤y轴呈对称排列;空气孔(3-4)分布于空气孔(3-3)之间,空气孔(3-3)和空气孔(3-4)均呈现等三角形排列;在纤芯处缺失一空气孔;Ag层(3-5)和MXene薄膜(3-6)位于包层(3-2)和分析液(3-7)交界处,其中Ag层(3-5)在MXene薄膜(3-6)的下方;
所述的传感单元(3),其特征在于:包层(3-2)直径为10μm,空气孔(3-3)直径为1.2μm,空气孔(3-4)直径为0.4μm;空气孔(3-3)间距Λ1为2μm,空气孔(3-4)间距Λ2为2μm;Ag层(3-5)厚度为30nm;MXene薄膜(3-6)厚度为9.98nm;包层材料为熔融石英,其折射率由Sellmeier公式定义;其表达式为:
Figure FDA0003383969510000011
式中λ为光波波长,其单位为微米;n(λ)为熔融石英的折射率;
敏感材料为Ag层(3-5)和MXene薄膜(3-6);所述的Ag层(3-5)利用光纤磁控溅射涂层方法进行涂覆;采用堆叠-拉丝技术制备光子晶体光纤(3-1),光子晶体光纤(3-1)长度为15mm,具体制备方法为:
首先对石英套管进行预处理,在超净环境下按照参数拉制毛细管,拉制温度为1800℃-2000℃,之后对毛细管两端用氢氧焰进行拉锥封孔,在石英套管中将毛细管按照设计要求堆积形成所需的结构,用纯石英棒对空隙进行填充,利用氧炔火焰将石英套管与毛细管烧结在一起,在拉丝塔上使用两次拉丝技术制成光子晶体光纤;
所述的MXene薄膜(3-6)选用单层Ti3C2材料,采用滴涂法均匀涂敷在光子晶体光纤(3-1)的Ag层(3-5)上方;放入干燥箱中,设定温度为50℃进行干燥5-10小时;随后将涂敷好的传感单元(3)放入室温中静置36小时;
MXene薄膜(3-6)选用单层Ti3C2材料,其具体的制备方法为:通过微爆炸刻蚀法,来选择性地腐蚀锂离子电池系统中Ti3AlC2的铝层,得到单层Ti3C2薄膜材料;首先选取5g粉末状Ti3AlC2作为原材料,以锂箔为阳极,Ti3AlC2涂敷在惰性金属表面作为阴极,1mol/l的LiTFSi作为电解液,在2.45ml二甲醚四甘醇(TEGDME)溶液中采取可控的嵌锂-合金-膨胀微爆炸机理,在0.20mA恒流放电条件下通电2.5小时得到2ml嵌锂MAX混合溶液;随后将分散在N-甲基吡咯烷酮(NMP)溶液中的聚偏氟乙烯(PVDF)粘结剂与Ti3AlC2混合制成Ti3AlC2阴极,在直流电压为8V条件下继续电解9小时制备获得0.1443g锂化MAX褐色固体材料;随后,将制备的锂化MAX放入10ml去离子水溶液中与水发生微爆炸反应,待反应结束后在室温条件下静置2小时;将溶液放入离心机中以4000rpm转速下离心1小时,得到0.052ml深褐色单层Ti3C2悬浊液;
所述分析液(3-7)为待测液体,可通过传感单元(3)测出其折射率;而应力的变化会改变光子晶体光纤(3-1)的包层(3-2)的折射率,进而改变损耗峰的位置,故可达到双参量测量的目的;
所述的基于近红外双峰PCF折射率与应力双参量传感装置及方法,其特征在于:ASE光源(1)发射光信号经过单模光纤(2)传输到传感单元(3),传感单元(3)输出至光谱仪(4)与光电转化器(5),光电转化器(5)将光信号转化为电信号输出到解调模块(6),最终在PC端(7)中显示;
所述的光信号经过单模光纤(2)传输到传感单元(3),其特征在于:Ag层(3-5)表面激发的等离子体波波矢与入射光场的波矢在特定的波长范围内达到相位匹配,发生两次能量耦合,出现两个共振损耗峰;表面等离子体共振(SPR)对介质环境变化十分敏感,分析液(3-7)与包层(3-2)折射率RI变化会使共振条件发生变化,导致两个共振损耗峰发生明显变化,由此可以实现高灵敏度、实时性探测;
所述的基于近红外双峰PCF折射率与应力双参量传感装置及方法,其特征在于:由ASE光源(1)发出光信号,经单模光纤(2)传输至传感单元(3),当分析液(3-7)折射率改变时,光子晶体光纤(3-1)等离子体共振现象的条件发生改变,两种耦合模式发生变化,在光谱仪(4)中显示的两个峰的距离发生明显的改变,当分析液(3-7)或包层(3-2)的折射率增大时,两损耗峰之间的距离减小,当分析液(3-7)或包层(3-2)的折射率减少时,两损耗峰之间的距离增大,经双峰灵敏度公式计算灵敏度;
所述双峰灵敏度公式为:
s=(Δλpeak2-Δλpeak1)/Δna (2)
式中(Δλpeak2-Δλpeak1)为两种不同折射率和应力状态下的两个损耗峰的波长距离差值,Δna为折射率/应力的变化量,s为所求得的双峰灵敏度;其中Δλpeak1和Δλpeak2的大小与传感单元(3)所处的折射率和应力状态对应;传感单元(3)将携带(Δλpeak2-Δλpeak1)数值的光信号传输至光电转化器(5),光电转化器(5)将光信号转化为电信号输出至解调模块(6),最终在PC端(7)中显示分析液(3-7)的信息;
所述的基于近红外双峰PCF折射率与应力双参量传感系统,其特征在于:在同时测量折射率与应力时需要用以下公式进行计算:
Figure FDA0003383969510000021
Figure FDA0003383969510000022
式(3)中Δλ1为折射率改变后两峰间距的变化量,Δλ2为应力改变后两峰间距的变化量,(Δλpeak2-Δλpeak1)为两种不同折射率和应力状态下的两个损耗峰的波长距离差值,ST,SN分别为折射率与应力的灵敏度,ΔT与ΔN分别为折射率与应力的变化量,进而从公式(4)可得出折射率与应力的变化量。
CN202111445404.8A 2021-11-30 2021-11-30 基于近红外双峰pcf折射率与应力双参量传感系统 Active CN113916833B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111445404.8A CN113916833B (zh) 2021-11-30 2021-11-30 基于近红外双峰pcf折射率与应力双参量传感系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111445404.8A CN113916833B (zh) 2021-11-30 2021-11-30 基于近红外双峰pcf折射率与应力双参量传感系统

Publications (2)

Publication Number Publication Date
CN113916833A true CN113916833A (zh) 2022-01-11
CN113916833B CN113916833B (zh) 2024-03-08

Family

ID=79248507

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111445404.8A Active CN113916833B (zh) 2021-11-30 2021-11-30 基于近红外双峰pcf折射率与应力双参量传感系统

Country Status (1)

Country Link
CN (1) CN113916833B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103196488A (zh) * 2013-03-12 2013-07-10 东北大学 用于磁场和温度同时检测的光子晶体光纤光栅传感方法
US20170052119A1 (en) * 2014-02-14 2017-02-23 The General Hospital Corporation System and method for tomographic lifetime multiplexing
CN108562386A (zh) * 2018-04-20 2018-09-21 中国矿业大学 一种温度补偿的光子晶体光纤横向应力传感器
CN110132894A (zh) * 2019-05-16 2019-08-16 中国矿业大学 一种温度补偿的光子晶体光纤甲烷传感装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103196488A (zh) * 2013-03-12 2013-07-10 东北大学 用于磁场和温度同时检测的光子晶体光纤光栅传感方法
US20170052119A1 (en) * 2014-02-14 2017-02-23 The General Hospital Corporation System and method for tomographic lifetime multiplexing
CN108562386A (zh) * 2018-04-20 2018-09-21 中国矿业大学 一种温度补偿的光子晶体光纤横向应力传感器
CN110132894A (zh) * 2019-05-16 2019-08-16 中国矿业大学 一种温度补偿的光子晶体光纤甲烷传感装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
肖功利 等: "D型对称双芯光子晶体光纤双谐振峰折射率传感器", 《光学学报》, vol. 40, no. 12 *

Also Published As

Publication number Publication date
CN113916833B (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
CN110726374B (zh) 基于单模光纤的光纤法珀应变传感器及制作方法、测量方法
CN112432715B (zh) 一种基于spr的d型光子晶体光纤温度传感装置及方法
Meng et al. Research on D-shape open-loop PCF temperature refractive index sensor based on SPR effect
CN111983749B (zh) 基于表面等离子体增强机制d型微结构光纤温度传感器
Liu et al. HE1, 1 mode-excited surface plasmon resonance for refractive index sensing by photonic crystal fibers with high sensitivity and long detection distance
CN109238506B (zh) 一种高灵敏度温度传感器及温度检测系统
CN112432925B (zh) 基于spr的d型光子晶体光纤折射率传感器装置及方法
CN113916833B (zh) 基于近红外双峰pcf折射率与应力双参量传感系统
CN112432924A (zh) 基于spr的方孔光子晶体光纤折射率传感装置及方法
CN208043656U (zh) 一种基于温度自补偿的spr光纤传感器
Sharmin et al. A simple gold-coated photonic crystal fiber based plasmonic biosensor
Gamal et al. Plasmonic dual D-shaped PCF sensor for low refractive index applications
CN114062309B (zh) 基于近红外波段双峰pcf浓度与磁场双参量传感系统
CN113933264B (zh) 基于近红外双峰pcf折射率与磁场双参量传感系统
CN112432923B (zh) 三角形气孔的d型光子晶体光纤折射率传感器装置及方法
Zhang et al. High-sensitivity optical fiber SPR sensor with cascaded biconical fiber and hetero-core structure for simultaneous measurement of seawater salinity and temperature
Li et al. Dual-resonant-peak single-mode fiber surface plasmon resonance gas sensor with V-groove for methane detection
CN114062310B (zh) 基于近红外波段双峰pcf浓度与应力双参量传感系统
CN114136484B (zh) 基于近红外波段双峰pcf温度与应力双参量传感系统
Fu et al. A highly sensitive six-conjoined-tube anti-resonance optical fiber temperature sensor based on surface plasmon resonance
Liu et al. Surface plasmon resonance refractive index sensor based on photonic crystal fiber with silver film and titanium dioxide film
Xu et al. High-sensitivity ring-core photonic crystal fiber sensor based on surface plasmon resonance for ultra-low refractive index detection
CN114136919B (zh) 基于近红外波段双峰pcf湿度与应力双参量传感系统
Zhang et al. Double-sided Polishing Photonic Crystal Fiber Biosensor Based on Surface Plasmon Resonance
Paul et al. Hybrid cladding structured gold coated photonic crystal fiber biosensor based on surface plasmon resonance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant