CN113913042A - Magnesium silicate cement-based thin steel structure fireproof coating and use method thereof - Google Patents
Magnesium silicate cement-based thin steel structure fireproof coating and use method thereof Download PDFInfo
- Publication number
- CN113913042A CN113913042A CN202111118833.4A CN202111118833A CN113913042A CN 113913042 A CN113913042 A CN 113913042A CN 202111118833 A CN202111118833 A CN 202111118833A CN 113913042 A CN113913042 A CN 113913042A
- Authority
- CN
- China
- Prior art keywords
- coating
- magnesium silicate
- thin steel
- silicate cement
- steel structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000576 coating method Methods 0.000 title abstract description 61
- 239000011248 coating agent Substances 0.000 title abstract description 56
- 229910000831 Steel Inorganic materials 0.000 title abstract description 42
- 239000010959 steel Substances 0.000 title abstract description 42
- 239000004568 cement Substances 0.000 title abstract description 23
- 239000000391 magnesium silicate Substances 0.000 title abstract description 23
- 229910052919 magnesium silicate Inorganic materials 0.000 title abstract description 23
- 235000019792 magnesium silicate Nutrition 0.000 title abstract description 23
- 238000000034 method Methods 0.000 title abstract description 15
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 title abstract 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 abstract description 11
- 239000000395 magnesium oxide Substances 0.000 abstract description 8
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 abstract description 5
- 238000009413 insulation Methods 0.000 abstract description 4
- 238000005187 foaming Methods 0.000 abstract description 3
- 150000002736 metal compounds Chemical class 0.000 abstract description 2
- ZADYMNAVLSWLEQ-UHFFFAOYSA-N magnesium;oxygen(2-);silicon(4+) Chemical compound [O-2].[O-2].[O-2].[Mg+2].[Si+4] ZADYMNAVLSWLEQ-UHFFFAOYSA-N 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 239000000463 material Substances 0.000 description 13
- 239000003973 paint Substances 0.000 description 13
- 239000002994 raw material Substances 0.000 description 13
- 239000003063 flame retardant Substances 0.000 description 10
- 239000004088 foaming agent Substances 0.000 description 9
- 239000000835 fiber Substances 0.000 description 8
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 6
- 239000006260 foam Substances 0.000 description 6
- 239000010452 phosphate Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 229910021389 graphene Inorganic materials 0.000 description 5
- 229910021487 silica fume Inorganic materials 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000010425 asbestos Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 239000012779 reinforcing material Substances 0.000 description 4
- 229910052895 riebeckite Inorganic materials 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- -1 polyol phosphate Chemical class 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 239000000344 soap Substances 0.000 description 3
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 3
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 3
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 3
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 241000876852 Scorias Species 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 241001122767 Theaceae Species 0.000 description 2
- YYQRGCZGSFRBAM-UHFFFAOYSA-N Triclofos Chemical compound OP(O)(=O)OCC(Cl)(Cl)Cl YYQRGCZGSFRBAM-UHFFFAOYSA-N 0.000 description 2
- 239000013556 antirust agent Substances 0.000 description 2
- 230000001680 brushing effect Effects 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000004079 fireproofing Methods 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 235000014380 magnesium carbonate Nutrition 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 2
- 229930182490 saponin Natural products 0.000 description 2
- 150000007949 saponins Chemical class 0.000 description 2
- 235000019832 sodium triphosphate Nutrition 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 229960001147 triclofos Drugs 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 235000018553 tannin Nutrition 0.000 description 1
- 229920001864 tannin Polymers 0.000 description 1
- 239000001648 tannin Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
- C09D1/06—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances cement
- C09D1/08—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances cement with organic additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/18—Fireproof paints including high temperature resistant paints
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Building Environments (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
The invention relates to a magnesium silicate cement-based thin steel structure fireproof coating and a use method thereof, belonging to the technical field of coatings. The magnesium oxide is a high-temperature resistant metal compound, so that the magnesium silicate cement-based thin steel structure fireproof coating has good heat insulation capability, prevents heat conduction after foaming, and has good fireproof performance. The product can meet the requirement of fire protection with the fire endurance of 0.5 h-2.5 h, and is suitable for steel structural members with architectural design fire-proof rating.
Description
Technical Field
The invention relates to the technical field of coatings, in particular to a method for preparing a thin steel structure fireproof coating by taking magnesium silicate cement as a base material.
Background
Steel structure construction today has played an increasingly important role in construction engineering. The construction period of the steel structure building is short, the yield is fast, and the steel structure has very wide development prospect in China. However, steel as a building material has some defects which are difficult to avoid in the aspect of fire prevention, the strength of the steel is rapidly reduced in case of fire, and fire protection treatment is required to overcome the defects in the aspect of fire prevention in the practical application of the steel structure material. Up to now, the method of using fire-retardant coating to protect steel structure from fire is still considered by the industry as one of the most effective measures, and the steel structure fire-retardant coating plays an important role in fire prevention in 90% of steel structure engineering. The fire-proof paint is coated on the surface of a steel structure, has the decoration and protection functions of common paint, and also has the performances of corrosion resistance, rust resistance, acid and alkali resistance, salt fog resistance and the like, more importantly, because the paint has incombustibility or flame retardancy, the fire-proof paint can prevent the spread of flame and delay the expansion of fire, better protects a base material and avoids the collapse of a building caused by the loss of the support capability of the steel structure.
The steel structure fireproof paint in China is water paint, solvent paint, expanding paint, thick paint, indoor paint, outdoor paint, etc. The coating can be divided into two categories of organic and inorganic according to the difference of base materials, can be divided into two categories of expansion type and non-expansion type according to the state after combustion, and can be divided into three categories of ultra-thin type, thin type and thick type according to the thickness of the coating. The invention aims to apply the thin steel structure fireproof paint to paint the surface of a steel structure, and the coating expands and foams to form a fireproof heat insulation layer when meeting fire. Because of many kinds of inorganic fireproof materials, gypsum-based fireproof materials, magnesium hydroxide-based fireproof materials and the like have poor water resistance and reduced strength. Chinese patent CN 107117931A discloses a modified phosphate cement-based fireproof coating and a preparation method thereof, wherein the fireproof coating is prepared from dihydric phosphate, magnesium raw materials, a composite retarder, fibers and water. Chinese patent CN 108892983A discloses a nano-graphene modified water-based fireproof coating and a construction method thereof, wherein the fireproof coating is prepared from cement, expanded vermiculite, expanded vitrified micro-beads, expanded perlite, nano-graphene, fumed silica and a silane coupling agent solution. The modified phosphate cement-based fireproof coating effectively improves the high bonding strength characteristic of the fireproof coating, but has unobvious fire resistance, common water resistance and unobvious working performance. The nano-graphene modified water-based fireproof coating effectively improves the strength, the bonding force and the crack resistance of the fireproof coating, but contains graphite, and has the obvious defect that the graphite is easy to oxidize under an aerobic condition, so that the fireproof coating which is energy-saving and emission-reducing, has good fireproof performance, high bonding strength, good water resistance, excellent mechanical property and long service life needs to be improved and researched.
Disclosure of Invention
The invention aims to provide a magnesium silicate cement-based fireproof coating for a thin steel structure and a using method thereof, which overcome the defects of the prior art, ensure that the fire resistance, the bonding strength and the water resistance of the coating are superior to those of the prior art, can improve the fireproof grade of the thin steel structure, have excellent comprehensive performance and meet the standard of GB14907-2002 'general technical conditions for fireproof coatings for steel structures'.
In order to achieve the purpose, the invention adopts the following technical scheme:
the magnesium silicate cement-based fireproof coating for the thin steel structure is characterized by comprising the following raw materials in parts by weight: 30-50 parts of light-burned magnesia powder, 10-20 parts of light fine aggregate, 10-30 parts of silica fume, 0.1-1 part of a waterproof agent, 0.1-1 part of a reinforcing material, 0.1-10 parts of a flame retardant, 1-10 parts of a foaming agent, 0.1-5 parts of a foam stabilizer and 15-25 parts of water; the application method of the magnesium silicate cement-based fireproof coating for the thin steel structure comprises the following steps:
the method comprises the following steps: putting all the raw material components into a stirrer of 80-100 revolutions per minute according to the formula ratio for mixing and stirring, and uniformly stirring to obtain the magnesium silicate cement-based fireproof coating;
step two: polishing the surface of the thin steel structure to be coated by using gauze or a steel wire wheel, removing floating rust, and brushing an antirust agent;
step three: and (3) within one hour after the magnesium silicate cement-based fireproof coating is prepared, coating the fireproof coating on the surface of the thin steel structure by adopting a coating process, wherein the coating is performed for 2-3 times, the thickness of the coating in each time is not more than 2.5mm, the coating is brushed for the next time after the coating is completely dried, and the coating is naturally cured for 28 days conventionally.
The content of active magnesium oxide measured by a hydration method of the light-burned magnesium powder is not less than 65 percent,the fineness is 180-200 meshes; the fineness of the silica fume is less than 1 mu m, the average particle size is 0.1-0.3 mu m, and the specific surface area is 20-28 m2/g。
The reinforcing material is one or a mixture of asbestos fiber and steel fiber; wherein the asbestos fiber has a thermal conductivity of 0.198-0.244W (m.K) and a diameter of 20-50 nm; the length-diameter ratio of the steel fiber is 30-100, and the tensile strength is 300-2500 Mpa.
The light fine aggregate is any one or combination of more than two of light sand, scoria and pumice, and the apparent density is not more than 1950kg/m3The grain diameter is less than 4.75 mm.
The flame retardant is any one of industrial polyol phosphate and trichloroethyl phosphate.
The foaming agent is any one of a rosin soap foaming agent and a tea saponin foaming agent, forced mechanical stirring and foaming are adopted, and the stirring speed is 60-90 r/min.
The foam stabilizer is any one of polyacrylamide, polyvinyl alcohol and starch.
The waterproof agent is any one of sodium hexametaphosphate, sodium tripolyphosphate and tannin.
The components of the invention can form M-S-H gel products within the range of room temperature to 50 ℃, the main hydration product is hydrated magnesium silicate gel, when the magnesium silicate material is acted by a flame heat source, the flame heat source firstly slowly releases water in a crystalline phase into vapor, and the transfer of flame heat is effectively delayed. Magnesium oxide is a high-temperature-resistant metal compound, so that the magnesium silicate cement-based thin steel structure fireproof coating has good heat insulation capability, heat conduction is prevented after foaming of a foaming agent, foam stability is improved by a foam stabilizer, the magnesium silicate cement-based thin steel structure fireproof coating has good fireproof performance after a flame retardant is added, apparent density is reduced by a light fine aggregate, heat insulation performance is improved, and mechanical performance of the coating is improved after a reinforcing material is added.
Compared with the prior art, the invention has the beneficial effects that: 1) the raw materials are rich in source, the production process is simple, the raw materials belong to green and environment-friendly building materials, the excellent performance of the raw materials can be applied to more and more fields, the waste resources and wastes of magnesite tailings are recycled, and the new application of the magnesite tailing light-burned magnesia powder is developed. The magnesium silicate-based cementing material is used for preparing the fireproof coating, and has positive significance for the development of the future fireproof coating. 2) The product has good fire resistance, high bonding strength and long service life. The fireproof and flame-retardant coating has the advantages of good fireproof and flame-retardant effects, good water resistance, excellent mechanical properties, rich raw material sources and simple production process, greatly reduces the cost of raw materials of the whole process, saves energy, reduces emission and is environment-friendly.
The specific implementation mode is as follows:
the following examples are presented to further illustrate embodiments of the present invention:
exemplary embodiments of the present disclosure will be described in detail below, however, it should be understood that the present disclosure may be embodied in various forms and should not be limited by the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art.
Example 1
A magnesium silicate cement-based fireproof coating for a thin steel structure comprises the following raw materials: 40kg of light-burned magnesia powder, 20kg of silica fume, 16kg of light sand, 1kg of sodium hexametaphosphate, 1kg of polyol phosphate, 1kg of asbestos fiber, 5kg of rosin soap foaming agent, 1kg of polyacrylamide and 15kg of water. The using method comprises the following steps: the method comprises the following steps: putting all the raw material components into a stirrer of 100 revolutions per minute, mixing and stirring for 30 minutes, and uniformly stirring to obtain the magnesium silicate cement-based fireproof coating; step two: polishing the surface of the thin steel structure to be coated by using gauze or a steel wire wheel, removing floating rust, and brushing an antirust agent; step three: within one hour after the magnesium silicate cement-based fireproof coating is prepared, the fireproof coating is coated on the surface of the thin steel structure by adopting a coating process, the coating is brushed for the next time after the coating is completely dried, the coating is coated for 2-3 times, the thickness of the coating is 5-6.5 mm, and the coating is naturally cured for 28 days conventionally.
Example 2
A magnesium silicate cement-based fireproof coating for a thin steel structure comprises the following raw materials: 35kg of light-burned magnesium oxide, 25kg of silica fume, 16kg of light sand, 1kg of sodium tripolyphosphate, 1kg of steel fiber, 5kg of tea saponin foaming agent, 1kg of polyvinyl alcohol, 1kg of polyalcohol phosphate ester and 15kg of water. The procedure was as in example 1.
Example 3
A magnesium silicate cement-based fireproof coating for a thin steel structure comprises the following raw materials: 35kg of light-burned magnesium oxide, 20kg of silica fume, 16kg of scoria, 1kg of sodium hexametaphosphate, 1kg of asbestos fiber, 5kg of rosin soap foaming agent, 1kg of starch, 1kg of trichloroethyl phosphate and 20kg of water. The procedure was as in example 1.
Comparative example 1
A phosphate cement-based fireproof coating produced by Shenzhen, Weishenbang environmental protection materials Limited.
Comparative example 2
Yichang new nano graphene fireproof coating produced by Cixi division of graphite Limited liability company.
The above examples 1 to 3 were tested for the performance of the magnesium silicate cement-based fireproofing coating for thin steel structures according to the GB14907-2002 fireproofing coating for steel structures. The test results are shown in table 1 below, and a nano-graphene fire retardant coating and a phosphate cement-based fire retardant coating are used as comparative examples.
Table 1 results of performance test of experimental samples of each example
From the data in the above table, the thin steel structure fireproof coating prepared based on the magnesium silicate cementing material is prepared by taking a magnesium silicate cementing material as a main body, adding light fine aggregate, a reinforcing material, a flame retardant, a foaming agent, a foam stabilizer and water, mixing and stirring, and has the advantages of more excellent fireproof performance, good water resistance and excellent mechanical property, and the fireproof requirement is completely met. And the raw materials are easy to obtain, and the advantages and characteristics of the magnesium cementing material are fully utilized.
It is clear that the process according to the invention is only a preferred embodiment and is not intended to limit the scope of protection of the invention. Other variations and modifications will be apparent to persons skilled in the art in light of the above description. And are neither required nor exhaustive of all embodiments. And obvious variations or modifications therefrom are within the scope of the invention.
Claims (8)
1. The magnesium silicate cement-based fireproof coating for the thin steel structure is characterized by comprising the following raw materials in parts by weight: 30-50 parts of light-burned magnesia powder, 10-20 parts of light fine aggregate, 10-30 parts of silica fume, 0.1-1 part of a waterproof agent, 0.1-1 part of a reinforcing material, 0.1-10 parts of a flame retardant, 1-10 parts of a foaming agent, 0.1-5 parts of a foam stabilizer and 15-25 parts of water;
the application method of the magnesium silicate cement-based fireproof coating for the thin steel structure comprises the following steps:
the method comprises the following steps: putting all the raw material components into a stirrer of 80-100 revolutions per minute according to the formula ratio for mixing and stirring, and uniformly stirring to obtain the magnesium silicate cement-based fireproof coating;
step two: polishing the surface of the thin steel structure to be coated by using gauze or a steel wire wheel, removing floating rust, and brushing an antirust agent;
step three: and (3) within one hour after the magnesium silicate cement-based fireproof coating is prepared, coating the fireproof coating on the surface of the thin steel structure by adopting a coating process, wherein the coating is performed for 2-3 times, the thickness of the coating in each time is not more than 2.5mm, the coating is brushed for the next time after the coating is completely dried, and the coating is naturally cured for 28 days conventionally.
2. The magnesium silicate cement-based fireproof coating for the thin steel structure as claimed in claim 1, wherein the content of active magnesium oxide measured by hydration method of the light-burned magnesium powder is not less than 65%, and the fineness is 180-200 mesh; the fineness of the silica fume is less than 1 mu m, the average particle size is 0.1-0.3 mu m, and the specific surface area is 20-28 m2/g。
3. The fire retardant coating for magnesium silicate cement-based thin steel structure of claim 1, wherein the reinforcing material is one or a mixture of asbestos fiber and steel fiber; wherein the asbestos fiber has a thermal conductivity of 0.198-0.244W (m.K) and a diameter of 20-50 nm; the length-diameter ratio of the steel fiber is 30-100, and the tensile strength is 300-2500 Mpa.
4. The magnesium silicate cement-based fireproofing coating for thin steel structures, as recited in claim 1, wherein said lightweight aggregate is any one or a combination of two or more of light sand, scoria, pumice, and has apparent density of 1950kg/m or less3The grain diameter is less than 4.75 mm.
5. The magnesium silicate cement-based fireproofing coating for thin steel structures, as recited in claim 1, wherein said fireproofing agent is any one of technical polyol phosphate and trichloroethyl phosphate.
6. The magnesium silicate cement-based fireproof coating for the thin steel structure as claimed in claim 1, wherein the foaming agent is any one of rosin soap foaming agent and tea saponin foaming agent, and forced mechanical stirring foaming is adopted, and the stirring speed is 60-90 r/min.
7. The magnesium silicate cement-based fireproofing coating for thin steel structures, as recited in claim 1, wherein said foam stabilizer is any one of polyacrylamide, polyvinyl alcohol, and starch.
8. The magnesium silicate cement-based fireproofing coating for thin steel structures, as recited in claim 1, wherein said waterproofing agent is any one of sodium hexametaphosphate, sodium tripolyphosphate and tannin.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111118833.4A CN113913042A (en) | 2021-09-24 | 2021-09-24 | Magnesium silicate cement-based thin steel structure fireproof coating and use method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202111118833.4A CN113913042A (en) | 2021-09-24 | 2021-09-24 | Magnesium silicate cement-based thin steel structure fireproof coating and use method thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN113913042A true CN113913042A (en) | 2022-01-11 |
Family
ID=79235947
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202111118833.4A Pending CN113913042A (en) | 2021-09-24 | 2021-09-24 | Magnesium silicate cement-based thin steel structure fireproof coating and use method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN113913042A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116574398A (en) * | 2023-05-18 | 2023-08-11 | 安徽大学绿色产业创新研究院 | A kind of thermal insulation material with anti-corrosion function and its preparation method and application method |
| CN117105600A (en) * | 2023-08-08 | 2023-11-24 | 福建省明能新型建材有限公司 | Thick steel structure flame-retardant fireproof cement gum utilizing solid waste resources and preparation method thereof |
| CN117683377A (en) * | 2023-11-27 | 2024-03-12 | 沈阳化工大学 | Self-cleaning magnesium inorganic building coating |
| CN119505643A (en) * | 2025-01-21 | 2025-02-25 | 成都布雷德科技有限公司 | A universal anticorrosive coating for water-oil primer and preparation method thereof |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108559316A (en) * | 2018-05-03 | 2018-09-21 | 佛山市三水万瑞达环保科技有限公司 | A kind of fire-resistant coating for steel structure and preparation method thereof |
| CN109896808A (en) * | 2019-04-10 | 2019-06-18 | 辽宁科大中驰镁建材科技有限公司 | A kind of magnesium silicate system cementitious material and its application based on magnesite tailings preparation |
| CN110981406A (en) * | 2019-12-13 | 2020-04-10 | 辽宁科技大学 | A kind of low-cost heat-resistant magnesium cement and method for preparing block |
-
2021
- 2021-09-24 CN CN202111118833.4A patent/CN113913042A/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108559316A (en) * | 2018-05-03 | 2018-09-21 | 佛山市三水万瑞达环保科技有限公司 | A kind of fire-resistant coating for steel structure and preparation method thereof |
| CN109896808A (en) * | 2019-04-10 | 2019-06-18 | 辽宁科大中驰镁建材科技有限公司 | A kind of magnesium silicate system cementitious material and its application based on magnesite tailings preparation |
| CN110981406A (en) * | 2019-12-13 | 2020-04-10 | 辽宁科技大学 | A kind of low-cost heat-resistant magnesium cement and method for preparing block |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116574398A (en) * | 2023-05-18 | 2023-08-11 | 安徽大学绿色产业创新研究院 | A kind of thermal insulation material with anti-corrosion function and its preparation method and application method |
| CN117105600A (en) * | 2023-08-08 | 2023-11-24 | 福建省明能新型建材有限公司 | Thick steel structure flame-retardant fireproof cement gum utilizing solid waste resources and preparation method thereof |
| CN117683377A (en) * | 2023-11-27 | 2024-03-12 | 沈阳化工大学 | Self-cleaning magnesium inorganic building coating |
| CN119505643A (en) * | 2025-01-21 | 2025-02-25 | 成都布雷德科技有限公司 | A universal anticorrosive coating for water-oil primer and preparation method thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN113913042A (en) | Magnesium silicate cement-based thin steel structure fireproof coating and use method thereof | |
| CN103964776B (en) | fireproof mortar | |
| CN102249708B (en) | Preparation method of anticorrosion and fireproof integrated coating for thick steel structure | |
| CN111962794B (en) | A kind of external wall thermal insulation and decoration integrated composite board and preparation method thereof | |
| CN101723636B (en) | Coal mine underground coal bed waterproof paint | |
| CN113493340B (en) | Magnesium phosphate-based foam concrete heat-insulating material | |
| CN109133841B (en) | A kind of magnesium oxysulfide cement-based fireproof coating, preparation and construction method | |
| CN106867345A (en) | A kind of gypsum slag cement base thicker steel structure fireproofing, anti-corrosion, the preparation method of heat insulation integrated coating | |
| WO2019216518A1 (en) | Quasi-nonflammable finishing material composition, preparation method of same, and construction method using same | |
| CN111302722A (en) | Polymer anti-crack mortar | |
| CN104973840B (en) | A kind of fireproof bonding mortar and its preparation method and application | |
| CN102303964A (en) | Novel nonflammable fireproof composite thermal-insulation material | |
| CN115044232A (en) | Steel structure fireproof coating and preparation method and use method thereof | |
| CN111848058A (en) | Building energy-saving heat-insulating material and preparation method thereof | |
| CN115215627A (en) | Low-cost light plastering gypsum mortar and preparation method thereof | |
| CN102531465A (en) | High-performance microscopic microfiber building heat insulation and heat preservation slurry and using method thereof | |
| CN102775097A (en) | Inorganic fiber fireproof heat-retaining board | |
| CN109971223B (en) | A kind of environment-friendly fireproof coating prepared from the solid waste of iron and steel industry as raw material | |
| CN103387362B (en) | Flame-retardant polymer cement paper and preparation method thereof | |
| CN115073118B (en) | Gypsum-based flame-retardant composite material and preparation method thereof | |
| CN113929380A (en) | Low-shrinkage thermal insulation concrete and preparation method thereof | |
| CN115110651A (en) | Fiber concrete heat-insulation wall panel and preparation method thereof | |
| CN115849858B (en) | Heat preservation slurry of aerogel precursor composite magnesium-based gelatinizing agent | |
| CN119707434B (en) | Fireproof board and preparation method thereof | |
| CN104961409A (en) | Cast self-thermal-insulation wall doped with iron tailings and manufacturing method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220111 |
|
| RJ01 | Rejection of invention patent application after publication |
