CN113906701A - 用于WIFi OFDMA系统中的冲突解决的系统和方法 - Google Patents

用于WIFi OFDMA系统中的冲突解决的系统和方法 Download PDF

Info

Publication number
CN113906701A
CN113906701A CN202080040710.0A CN202080040710A CN113906701A CN 113906701 A CN113906701 A CN 113906701A CN 202080040710 A CN202080040710 A CN 202080040710A CN 113906701 A CN113906701 A CN 113906701A
Authority
CN
China
Prior art keywords
trigger
frame
sta
wtru
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080040710.0A
Other languages
English (en)
Inventor
娄汉卿
阿尔凡·沙欣
孙立祥
王晓飞
杨瑞
弗兰克·拉西塔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Patent Holdings Inc
Original Assignee
InterDigital Patent Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by InterDigital Patent Holdings Inc filed Critical InterDigital Patent Holdings Inc
Publication of CN113906701A publication Critical patent/CN113906701A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Basic Packing Technique (AREA)
  • Supplying Of Containers To The Packaging Station (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

本发明公开了方法和系统,其可用于基于正交频分多址接入(OFDMA)的随机接入的冲突检测。无线发射/接收单元(WTRU)可从接入点(AP)接收第一触发帧,该第一触发帧触发使用OFDMA的随机接入。该WTRU可响应于该第一触发帧而向该AP发射基于触发的帧,该基于触发的帧包括信号(SIG)字段中的用户特定控制信息。该WTRU可接收指示在该AP处成功检测到该基于触发的帧或未在该AP处成功检测到该基于触发的帧的确认/否定确认(ACK/NAK)消息。在UL传输被破坏时,该WTRU从该AP接收调度重传帧,该调度重传帧包括用于STA的重调度信息。在该调度重传帧指示检测到该基于触发的帧的冲突的条件下,该WTRU可重传该基于触发的帧。

Description

用于WIFi OFDMA系统中的冲突解决的系统和方法
相关申请的交叉引用
本申请要求2019年5月10日提交的美国临时申请号62/846,202和2020年2月7日提交的美国临时申请号62/971,635的权益,其内容以引用方式并入本文。
背景技术
建立了IEEE 802.11TM极高吞吐量(EHT)无线局域网(WLAN)研究组(SG)以探索可能未来修正的范围和目的,从而在许多使用场景中提供增强的吞吐量、增强的可靠性、减少的延迟和抖动以及提高的功率效率。IEEE标准委员会基于项目授权请求(PAR)和EHT SG中制定的标准开发准则(CSD)批准了IEEE 802.11be任务组(TG)。除了向需要高吞吐量和高频谱效率的应用程序提供支持之外,预期新一代WLAN设备还能向需要极低延迟的应用程序提供支持。有针对性地由下一代WLAN诸如802.11be支持并且需要低延迟通信的示例性应用程序可包括(但不限于包括)4K/8K视频、游戏、虚拟现实和增强现实、远程办公和/或云计算。在802.11bePAR中,作为要求之一提及了延迟,因为高吞吐量、低延迟应用程序将激增,诸如虚拟现实或增强现实、游戏、远程办公和/或云计算。
发明内容
方法和系统可用于基于正交频分多址接入(OFDMA)的随机接入的冲突检测。无线发射/接收单元(WTRU)可从接入点(AP)接收第一触发帧,该第一触发帧触发使用OFDMA的随机接入。该WTRU可响应于该第一触发帧而向该AP发射基于触发的帧,该基于触发的帧包括信号(SIG)字段中的用户特定控制信息。该WTRU可接收指示在该AP处成功检测到该基于触发的帧或未在该AP处成功检测到该基于触发的帧的确认/否定确认(ACK/NAK)消息。在UL传输被破坏时,该WTRU从该AP接收调度重传帧,该调度重传帧包括用于STA的重调度信息。在该调度重传帧指示检测到该基于触发的帧的冲突的条件下,该WTRU可重传该基于触发的帧。WTRU可使用带宽的一部分诸如部分资源单元(RU)来发射SIG字段,并且可使用整个带宽来发射除SIG字段之外的基于触发的帧的至少一个字段。
附图说明
由以下结合附图以举例的方式给出的描述可得到更详细的理解,其中附图中类似的附图标号指示类似的元件,并且其中:
图1A是示出在其中一个或多个所公开的实施方案可得以实现的示例性通信系统的系统图;
图1B是示出根据一个实施方案可在图1A所示的通信系统内使用的示例性无线发射/接收单元(WTRU)的系统图;
图1C是示出根据一个实施方案可在图1A所示的通信系统内使用的示例性无线电接入网络(RAN)和示例性核心网络(CN)的系统图;
图1D是示出根据一个实施方案可在图1A所示的通信系统内使用的另外一个示例性RAN和另外一个示例性CN的系统图;
图2示出了接入点(AP)与站(STA)之间的示例性多用户(MU)通信的框图,其中非冲突的空间流(SS)受到冲突的SS的影响;
图3示出了具有用于基于正交频分多址接入(OFDMA)的随机接入(UORA)的多个长训练字段(LTF)符号的示例性冲突感知过程的信令图;
图4示出了使用信号-B(SIG-B)字段作为用于随机触发冲突检测的用户特定控制信息字段的一部分的示例性冲突感知传输过程的信令图;并且
图5示出了使用PHY SIG-B字段中的用户特定控制信息的示例性冲突检测过程的流程图;并且
图6示出了包括执行随机接入的STA在内的无线网络的系统图。
具体实施方式
图1A是示出在其中一个或多个所公开的实施方案可得以实现的示例性通信系统100的示意图。通信系统100可为向多个无线用户提供诸如语音、数据、视频、消息、广播等内容的多址接入系统。通信系统100可使多个无线用户能够通过系统资源(包括无线带宽)的共享来访问此类内容。例如,通信系统100可采用一个或多个信道接入方法,诸如码分多址接入(CDMA)、时分多址接入(TDMA)、频分多址接入(FDMA)、正交FDMA(OFDMA)、单载波FDMA(SC-FDMA)、零尾唯一字离散傅里叶变换扩展OFDM(ZT-UW-DFT-S-OFDM)、唯一字OFDM(UW-OFDM)、资源块滤波OFDM、滤波器组多载波(FBMC)等。
如图1A所示,通信系统100可包括无线发射/接收单元(WTRU)102a、102b、102c、102d、无线电接入网络(RAN)104、核心网络(CN)106、公共交换电话网(PSTN)108、互联网110和其他网络112,但应当理解,所公开的实施方案设想了任何数量的WTRU、基站、网络和/或网络元件。WTRU 102a、102b、102c、102d中的每一者可以是被配置为在无线环境中操作和/或通信的任何类型的设备。作为示例,WTRU 102a、102b、102c、102d(其中任何一个均可被称为站(STA))可被配置为发射和/或接收无线信号,并且可包括用户装备(UE)、移动站、固定或移动用户单元、基于订阅的单元、寻呼机、蜂窝电话、个人数字助理(PDA)、智能电话、膝上型电脑、上网本、个人计算机、无线传感器、热点或Mi-Fi设备、物联网(IoT)设备、手表或其他可穿戴设备、头戴式显示器(HMD)、车辆、无人机、医疗设备和应用(例如,远程手术)、工业设备和应用(例如,在工业和/或自动处理链环境中操作的机器人和/或其他无线设备)、消费电子设备、在商业和/或工业无线网络上操作的设备等。WTRU 102a、102b、102c和102d中的任一者可互换地称为UE。
通信系统100还可包括基站114a和/或基站114b。基站114a、114b中的每一者可为任何类型的设备,其被配置为与WTRU 102a、102b、102c、102d中的至少一者无线对接以促进对一个或多个通信网络(诸如CN 106、互联网110和/或其他网络112)的访问。作为示例,基站114a、114b可为基站收发台(BTS)、NodeB、演进节点B(eNB)、家庭节点B、家庭演进节点B、下一代NodeB,诸如gNode B(gNB)、新无线电(NR)NodeB、站点控制器、接入点(AP)、无线路由器等。虽然基站114a、114b各自被描绘为单个元件,但应当理解,基站114a、114b可包括任何数量的互连基站和/或网络元件。
基站114a可以是RAN 104的一部分,该RAN还可包括其他基站和/或网络元件(未示出),诸如基站控制器(BSC)、无线电网络控制器(RNC)、中继节点等。基站114a和/或基站114b可被配置为在一个或多个载波频率上发射和/或接收无线信号,该基站可被称为小区(未示出)。这些频率可在许可频谱、未许可频谱或许可和未许可频谱的组合中。小区可向特定地理区域提供无线服务的覆盖,该特定地理区域可为相对固定的或可随时间改变。小区可进一步被划分为小区扇区。例如,与基站114a相关联的小区可被划分为三个扇区。因此,在一个实施方案中,基站114a可包括三个收发器,即,小区的每个扇区一个收发器。在一个实施方案中,基站114a可采用多输入多输出(MIMO)技术并且可针对小区的每个扇区利用多个收发器。例如,可使用波束成形在所需的空间方向上传输和/或接收信号。
基站114a、114b可通过空中接口116与WTRU 102a、102b、102c、102d中的一者或多者通信,该空中接口可为任何合适的无线通信链路(例如,射频(RF)、微波、厘米波、微米波、红外(IR)、紫外(UV)、可见光等)。可使用任何合适的无线电接入技术(RAT)来建立空中接口116。
更具体地讲,如上所指出,通信系统100可为多址接入系统,并且可采用一个或多个信道接入方案,诸如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等。例如,RAN 104中的基站114a和WTRU 102a、102b、102c可实现无线电技术诸如通用移动电信系统(UMTS)陆地无线电接入(UTRA),其可使用宽带CDMA(WCDMA)来建立空中接口116。WCDMA可包括诸如高速分组接入(HSPA)和/或演进的HSPA(HSPA+)之类的通信协议。HSPA可包括高速下行链路(DL)分组接入(HSDPA)和/或高速上行链路(UL)分组接入(HSUPA)。
在一个实施方案中,基站114a和WTRU 102a、102b、102c可实现诸如演进的UMTS陆地无线电接入(E-UTRA)之类的无线电技术,其可使用长期演进(LTE)和/高级LTE(LTE-A)和/或高级LTE Pro(LTE-A Pro)来建立空中接口116。
在一个实施方案中,基站114a和WTRU 102a、102b、102c可实现无线电技术诸如NR无线电接入,其可使用NR来建立空中接口116。
在一个实施方案中,基站114a和WTRU 102a、102b、102c可实现多种无线电接入技术。例如,基站114a和WTRU 102a、102b、102c可例如使用双连接(DC)原理一起实现LTE无线电接入和NR无线电接入。因此,WTRU 102a、102b、102c所利用的空中接口可由多种类型的无线电接入技术和/或向/从多种类型的基站(例如,eNB和gNB)发送的传输来表征。
在其他实施方案中,基站114a和WTRU 102a、102b、102c可实现诸如IEEE 802.11(即,无线保真(WiFi))、IEEE 802.16(即,全球微波接入互操作性(WiMAX))、CDMA2000、CDMA20001X、CDMA2000 EV-DO、暂行标准2000(IS-2000)、暂行标准95(IS-95)、暂行标准856(IS-856)、全球移动通信系统(GSM)、GSM增强数据率演进(EDGE)、GSM EDGE (GERAN)等无线电技术。
图1A中的基站114b可为例如无线路由器、家庭节点B、家庭演进节点B或接入点,并且可利用任何合适的RAT来促进诸如商业场所、家庭、车辆、校园、工业设施、空中走廊(例如,供无人机使用)、道路等局部区域中的无线连接。在一个实施方案中,基站114b和WTRU102c、102d可实现诸如IEEE 802.11之类的无线电技术以建立无线局域网(WLAN)。在一个实施方案中,基站114b和WTRU 102c、102d可实现诸如IEEE 802.15之类的无线电技术以建立无线个域网(WPAN)。在又一个实施方案中,基站114b和WTRU 102c、102d可利用基于蜂窝的RAT(例如,WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等)来建立微微小区或毫微微小区。如图1A所示,基站114b可具有与互联网110的直接连接。因此,基站114b可不需要经由CN106访问互联网110。
RAN 104可与CN 106通信,该CN可以是被配置为向WTRU 102a、102b、102c、102d中的一者或多者提供语音、数据、应用和/或互联网协议语音技术(VoIP)服务的任何类型的网络。数据可具有不同的服务质量(QoS)要求,诸如不同的吞吐量要求、延迟要求、误差容限要求、可靠性要求、数据吞吐量要求、移动性要求等。CN 106可提供呼叫控制、账单服务、基于移动位置的服务、预付费呼叫、互联网连接、视频分发等,和/或执行高级安全功能,诸如用户认证。尽管未在图1A中示出,但是应当理解,RAN 104和/或CN 106可与采用与RAN 104相同的RAT或不同RAT的其他RAN进行直接或间接通信。例如,除了连接到可利用NR无线电技术的RAN 104之外,CN 106还可与采用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi无线电技术的另一RAN(未示出)通信。
CN 106也可充当WTRU 102a、102b、102c、102d的网关,以访问PSTN 108、互联网110和/或其他网络112。PSTN 108可包括提供普通老式电话服务(POTS)的电路交换电话网络。互联网110可包括使用常见通信协议(诸如传输控制协议(TCP)、用户数据报协议(UDP)和/或TCP/IP互联网协议组中的互联网协议(IP))的互连计算机网络和设备的全球系统。网络112可包括由其他服务提供商拥有和/或操作的有线和/或无线通信网络。例如,网络112可包括连接到一个或多个RAN的另一个CN,其可采用与RAN 104相同的RAT或不同的RAT。
通信系统100中的一些或所有WTRU 102a、102b、102c、102d可包括多模式能力(例如,WTRU 102a、102b、102c、102d可包括用于通过不同无线链路与不同无线网络通信的多个收发器)。例如,图1A所示的WTRU 102c可被配置为与可采用基于蜂窝的无线电技术的基站114a通信,并且与可采用IEEE 802无线电技术的基站114b通信。
图1B是示出示例性WTRU 102的系统图。如图1B所示,WTRU 102可包括处理器118、收发器120、发射/接收元件122、扬声器/麦克风124、小键盘126、显示器/触摸板128、不可移动存储器130、可移动存储器132、电源134、全球定位系统(GPS)芯片组136和/或其他外围设备138等。应当理解,WTRU 102可包括前述元件的任何子组合,同时保持与实施方案一致。
处理器118可以是通用处理器、专用处理器、常规处理器、数字信号处理器(DSP)、多个微处理器、与DSP核心相关联的一个或多个微处理器、控制器、微控制器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、任何其他类型的集成电路(IC)、状态机等。处理器118可执行信号编码、数据处理、功率控制、输入/输出处理和/或任何其他功能,这些其他功能使WTRU 102能够在无线环境中工作。处理器118可耦合到收发器120,该收发器可耦合到发射/接收元件122。虽然图1B将处理器118和收发器120描绘为单独的部件,但是应当理解,处理器118和收发器120可在电子封装或芯片中集成在一起。
发射/接收元件122可被配置为通过空中接口116向基站(例如,基站114a)传输信号或从基站接收信号。例如,在一个实施方案中,发射/接收元件122可以是被配置为传输和/或接收RF信号的天线。在一个实施方案中,发射/接收元件122可以是被配置为传输和/或接收例如IR、UV或可见光信号的发射器/检测器。在又一个实施方案中,发射/接收元件122可被配置为传输和/或接收RF和光信号。应当理解,发射/接收元件122可被配置为传输和/或接收无线信号的任何组合。
尽管发射/接收元件122在图1B中被描绘为单个元件,但是WTRU 102可包括任何数量的发射/接收元件122。更具体地讲,WTRU 102可采用MIMO技术。因此,在一个实施方案中,WTRU 102可包括用于通过空中接口116传输和接收无线信号的两个或更多个发射/接收元件122(例如,多个天线)。
收发器120可被配置为调制将由发射/接收元件122传输的信号并且解调由发射/接收元件122接收的信号。如上所指出,WTRU 102可具有多模式能力。因此,收发器120可包括多个收发器,以便使WTRU 102能够经由多种RAT(诸如NR和IEEE 802.11)进行通信。
WTRU 102的处理器118可耦合到扬声器/麦克风124、小键盘126和/或显示器/触摸板128(例如,液晶显示器(LCD)显示单元或有机发光二极管(OLED)显示单元)并且可从其接收用户输入数据。处理器118还可将用户数据输出到扬声器/麦克风124、小键盘126和/或显示器/触摸板128。此外,处理器118可从任何类型的合适存储器(诸如不可移动存储器130和/或可移动存储器132)访问信息,并且将数据存储在任何类型的合适存储器中。不可移动存储器130可包括随机存取存储器(RAM)、只读存储器(ROM)、硬盘或任何其他类型的存储器存储设备。可移动存储器132可包括用户身份模块(SIM)卡、记忆棒、安全数字(SD)存储卡等。在其他实施方案中,处理器118可从未物理上定位在WTRU 102上(诸如,服务器或家用计算机(未示出)上)的存储器访问信息,并且将数据存储在该存储器中。
处理器118可从电源134接收电力,并且可被配置为向WTRU 102中的其他部件分配和/或控制电力。电源134可以是用于为WTRU 102供电的任何合适的设备。例如,电源134可包括一个或多个干电池组(例如,镍镉(NiCd)、镍锌(NiZn)、镍金属氢化物(NiMH)、锂离子(Li-ion)等)、太阳能电池、燃料电池等。
处理器118还可耦合到GPS芯片组136,该GPS芯片组可被配置为提供关于WTRU 102的当前位置的位置信息(例如,经度和纬度)。除了来自GPS芯片组136的信息之外或代替该信息,WTRU 102可通过空中接口116从基站(例如,基站114a、114b)接收位置信息和/或基于从两个或更多个附近基站接收到信号的定时来确定其位置。应当理解,在与实施方案保持一致的同时,该WTRU 102可通过任何合适的位置确定方法来获取位置信息。
处理器118还可耦合到其他外围设备138,该其他外围设备可包括提供附加特征、功能和/或有线或无线连接的一个或多个软件模块和/或硬件模块。例如,外围设备138可包括加速度计、电子指南针、卫星收发器、数字相机(用于照片和/或视频)、通用串行总线(USB)端口、振动设备、电视收发器、免提耳麦、
Figure BDA0003385602840000081
模块、调频(FM)无线电单元、数字音乐播放器、媒体播放器、视频游戏播放器模块、互联网浏览器、虚拟现实和/或增强现实(VR/AR)设备、活动跟踪器等。外围设备138可包括一个或多个传感器。传感器可为以下一者或多者:陀螺仪、加速度计、霍尔效应传感器、磁力计、方位传感器、接近传感器、温度传感器、时间传感器;地理位置传感器、测高计、光传感器、触摸传感器、磁力计、气压计、手势传感器、生物识别传感器、湿度传感器等。
WTRU 102可包括全双工无线电台,对于该全双工无线电台,一些或所有信号的发射和接收(例如,与用于UL(例如,用于发射)和DL(例如,用于接收)的特定子帧相关联)可为并发的和/或同时的。全双工无线电台可包括干扰管理单元,该干扰管理单元用于经由硬件(例如,扼流圈)或经由处理器(例如,单独的处理器(未示出)或经由处理器118)进行的信号处理来减少和/或基本上消除自干扰。在一个实施方案中,WTRU102可包括半双工无线电台,对于该半双工无线电台,发射和接收一些或所有信号(例如,与用于UL(例如,用于发射)或DL(例如,用于接收)的特定子帧相关联)。
图1C是示出根据一个实施方案的RAN 104和CN 106的系统图。如上所述,RAN 104可采用E-UTRA无线电技术通过空中接口116与WTRU 102a、102b、102c通信。RAN 104还可与CN 106通信。
RAN 104可包括演进节点B 160a、160b、160c,但是应当理解,RAN 104可包括任何数量的演进节点B,同时保持与实施方案一致。演进节点B160a、160b、160c各自可包括一个或多个收发器以便通过空中接口116与WTRU 102a、102b、102c通信。在一个实施方案中,演进节点B 160a、160b、160c可实现MIMO技术。因此,演进节点B 160a例如可使用多个天线来向WTRU 102a传输无线信号和/或从WTRU 102a接收无线信号。
演进节点B 160a、160b、160c中的每一者可与特定小区(未示出)相关联,并且可被配置为处理无线电资源管理决策、切换决策、UL和/或DL中的用户的调度等。如图1C所示,演进节点B 160a、160b、160c可通过X2接口彼此通信。
图1C所示的CN 106可包括移动性管理实体(MME)162、服务网关(SGW)164和分组数据网络(PDN)网关(PGW)166。虽然前述元件被描绘为CN 106的一部分,但是应当理解,这些元件中的任何元件可由除CN运营商之外的实体拥有和/或运营。
MME 162可经由S1接口连接到RAN 104中的演进节点B162a、162b、162c中的每一者,并且可用作控制节点。例如,MME 162可负责认证WTRU 102a、102b、102c的用户、承载激活/去激活、在WTRU 102a、102b、102c的初始附加期间选择特定服务网关等。MME 162可提供用于在RAN 104和采用其他无线电技术(诸如GSM和/或WCDMA)的其他RAN(未示出)之间进行切换的控制平面功能。
SGW164可经由S1接口连接到RAN 104中的演进节点B 160a、160b、160c中的每一者。SGW 164通常可向/从WTRU 102a、102b、102c路由和转发用户数据分组。SGW 164可执行其他功能,诸如在演进节点B间切换期间锚定用户平面、当DL数据可用于WTRU 102a、102b、102c时触发寻呼、管理和存储WTRU 102a、102b、102c的上下文等。
SGW 164可连接到PGW 166,该PGW可向WTRU 102a、102b、102c提供对分组交换网络(诸如互联网110)的访问,以促进WTRU 102a、102b、102c和启用IP的设备之间的通信。
CN 106可有利于与其他网络的通信。例如,CN 106可为WTRU 102a、102b、102c提供对电路交换网络(诸如,PSTN 108)的访问,以有利于WTRU 102a、102b、102c与传统传统陆线通信设备之间的通信。例如,CN 106可包括用作CN 106与PSTN 108之间的接口的IP网关(例如,IP多媒体子系统(IMS)服务器)或者可与该IP网关通信。另外,CN 106可向WTRU 102a、102b、102c提供对其他网络112的访问,该其他网络可包括由其他服务提供商拥有和/或运营的其他有线和/或无线网络。
尽管WTRU在图1A至图1D中被描述为无线终端,但是可以设想到,在某些代表性实施方案中,这种终端可(例如,临时或永久)使用与通信网络的有线通信接口。
在代表性实施方案中,其他网络112可为WLAN。
处于基础结构基本服务集(BSS)模式的WLAN可具有用于BSS的接入点(AP)以及与AP相关联的一个或多个站点(STA)。AP可具有至分配系统(DS)或将流量承载至和/或承载流量离开BSS的另一种类型的有线/无线网络的接入或接口。源自BSS外部并通向STA的流量可通过AP到达并且可被传递到STA。源自STA并通向BSS外部的目的地的流量可被发送到AP以被传递到相应目的地。BSS内的STA之间的流量可通过AP发送,例如,其中源STA可向AP发送流量,并且AP可将流量传递到目的地STA。BSS内的STA之间的流量可被视为和/或称为点对点流量。可利用直接链路建立(DLS)在源和目的地STA之间(例如,直接在它们之间)发送点对点流量。在某些代表性实施方案中,DLS可使用802.11e DLS或802.11z隧道DLS(TDLS)。使用独立BSS(IBSS)模式的WLAN可不具有AP,并且IBSS内或使用IBSS的STA(例如,所有STA)可彼此直接通信。IBSS通信模式在本文中有时可称为“ad-hoc”通信模式。
当使用802.11ac基础结构操作模式或相似操作模式时,AP可在固定信道(诸如主信道)上传输信标。主信道可为固定宽度(例如,20MHz宽带宽)或动态设置的宽度。主信道可为BSS的操作信道,并且可由STA用来建立与AP的连接。在某些代表性实施方案中,可例如在802.11系统中实现载波侦听多路访问/冲突避免(CSMA/CA)。对于CSMA/CA,STA(例如,每个STA)(包括AP)可侦听主信道。如果主信道被特定STA侦听/检测和/或确定为繁忙,则特定STA可退避。一个STA(例如,仅一个站)可在给定BSS中在任何给定时间传输。
高吞吐量(HT)STA可使用40MHz宽的信道进行通信,例如,经由主20MHz信道与相邻或不相邻的20MHz信道的组合以形成40MHz宽的信道。
极高吞吐量(VHT)STA可支持20MHz、40MHz、80MHz和/或160MHz宽的信道。40MHz和/或80MHz信道可通过组合连续的20MHz信道来形成。可通过组合8个连续的20MHz信道,或通过组合两个非连续的80MHz信道(这可被称为80+80配置)来形成160MHz信道。对于80+80配置,在信道编码之后,数据可通过可将数据分成两个流的段解析器。可单独地对每个流进行快速傅里叶逆变换(IFFT)处理和时间域处理。可将这些流映射到两个80MHz信道,并且可通过发射STA来传输数据。在接收STA的接收器处,可颠倒上述用于80+80配置的操作,并且可将组合的数据发送到介质访问控制(MAC)。
802.11af和802.11ah支持低于1GHz的操作模式。相对于802.11n和802.11ac中使用的那些,802.11af和802.11ah中减少了信道操作带宽和载波。802.11af支持电视白空间(TVWS)频谱中的5MHz、10MHz和20MHz带宽,并且802.11ah支持使用非TVWS频谱的1MHz、2MHz、4MHz、8MHz和16MHz带宽。根据代表性实施方案,802.11ah可支持仪表类型控制/机器类型通信(MTC),诸如宏覆盖区域中的MTC设备。MTC设备可具有某些能力,例如有限的能力,包括支持(例如,仅支持)某些带宽和/或有限的带宽。MTC设备可包括电池寿命高于阈值(例如,以保持非常长的电池寿命)的电池。
可支持多个信道的WLAN系统以及诸如802.11n、802.11ac、802.11af和802.11ah之类的信道带宽包括可被指定为主信道的信道。主信道可具有等于由BSS中的所有STA支持的最大公共操作带宽的带宽。主信道的带宽可由来自在BSS中操作的所有STA的STA(其支持最小带宽操作模式)设置和/或限制。在802.11ah的示例中,对于支持(例如,仅支持)1MHz模式的STA(例如,MTC型设备),主信道可为1MHz宽,即使AP和BSS中的其他STA支持2MHz、4MHz、8MHz、16MHz和/或其他信道带宽操作模式。载波侦听和/或网络分配向量(NAV)设置可取决于主信道的状态。如果主信道繁忙,例如,由于STA(仅支持1MHz操作模式)正在向AP传输,即使大多数可用频段保持空闲,全部可用频段也可被视为繁忙。
在美国,可供802.11ah使用的可用频段为902MHz至928MHz。在韩国,可用频段为917.5MHz至923.5MHz。在日本,可用频段为916.5MHz至927.5MHz。802.11ah可用的总带宽为6MHz至26MHz,具体取决于国家代码。
图1D是示出根据一个实施方案的RAN 104和CN 106的系统图。如上所指出,RAN104可采用NR无线电技术通过空中接口116与WTRU 102a、102b、102c通信。RAN 104还可与CN106通信。
RAN 104可包括gNB 180a、180b、180c,但是应当理解,RAN 104可包括任何数量的gNB,同时保持与实施方案一致。gNB 180a、180b、180c各自可包括一个或多个收发器以便通过空中接口116与WTRU 102a、102b、102c通信。在一个实施方案中,gNB 180a、180b、180c可实现MIMO技术。例如,gNB 180a、108b可利用波束成形来向gNB 180a、180b、180c传输信号和/或从gNB 180a、180b、180c接收信号。因此,gNB 180a例如可使用多个天线来向WTRU102a传输无线信号和/或从WTRU 102a接收无线信号。在一个实施方案中,gNB 180a、180b、180c可实现载波聚合技术。例如,gNB 180a可向WTRU 102a(未示出)传输多个分量载波。这些分量载波的子集可在免许可频谱上,而其余分量载波可在许可频谱上。在一个实施方案中,gNB 180a、180b、180c可实现协作多点(CoMP)技术。例如,WTRU 102a可从gNB 180a和gNB180b(和/或gNB 180c)接收协作传输。
WTRU 102a、102b、102c可使用与可扩展参数集相关联的传输来与gNB 180a、180b、180c通信。例如,OFDM符号间隔和/或OFDM子载波间隔可因不同传输、不同小区和/或无线传输频谱的不同部分而变化。WTRU 102a、102b、102c可使用各种或可扩展长度的子帧或传输时间间隔(TTI)(例如,包含不同数量的OFDM符号和/或持续变化的绝对时间长度)来与gNB180a、180b、180c通信。
gNB 180a、180b、180c可被配置为以独立配置和/或非独立配置与WTRU 102a、102b、102c通信。在独立配置中,WTRU 102a、102b、102c可与gNB 180a、180b、180c通信,同时也不访问其他RAN(例如,诸如演进节点B 160a、160b、160c)。在独立配置中,WTRU 102a、102b、102c可将gNB180a、180b、180c中的一者或多者用作移动性锚定点。在独立配置中,WTRU 102a、102b、102c可在未许可频带中使用信号与gNB 180a、180b、180c通信。在非独立配置中,WTRU 102a、102b、102c可与gNB 180a、180b、180c通信或连接,同时也与其他RAN(诸如,eNode-B160a、160b、160c)通信或连接。例如,WTRU 102a、102b、102c可实现DC原理以基本上同时与一个或多个gNB 180a、180b、180c和一个或多个演进节点B 160a、160b、160c通信。在非独立配置中,演进节点B 160a、160b、160c可用作WTRU 102a、102b、102c的移动性锚点,并且gNB 180a、180b、180c可提供用于服务WTRU 102a、102b、102c的附加覆盖和/或吞吐量。
gNB 180a、180b、180c中的每一者可与特定小区(未示出)相关联,并且可被配置为处理无线电资源管理决策、切换决策、UL和/或DL中的用户的调度、网络切片的支持、DC、NR和E-UTRA之间的互通、用户平面数据朝向用户平面功能(UPF)184a、184b的路由、控制平面信息朝向接入和移动性管理功能(AMF)182a、182b的路由等。如图1D所示,gNB 180a、180b、180c可通过Xn接口彼此通信。
图1D所示的CN 106可包括至少一个AMF 182a、182b、至少一个UPF 184a、184b、至少一个会话管理功能(SMF)183a、183b以及可能的数据网络(DN)185a、185b。虽然前述元件被描绘为CN 106的一部分,但是应当理解,这些元件中的任何元件可由除CN运营商之外的实体拥有和/或运营。
AMF 182a、182b可在RAN 104中经由N2接口连接到gNB 180a、180b、180c中的一者或多者,并且可用作控制节点。例如,AMF 182a、182b可负责认证WTRU 102a、102b、102c的用户、网络切片的支持(例如,具有不同要求的不同协议数据单元(PDU)会话的处理)、选择特定SMF 183a、183b、注册区域的管理、非接入层(NAS)信令的终止、移动性管理等。AMF 182a、182b可使用网络切片,以便基于WTRU 102a、102b、102c所使用的服务的类型来为WTRU102a、102b、102c定制CN支持。例如,可针对不同的用例(诸如,依赖超高可靠低延迟(URLLC)接入的服务、依赖增强型移动宽带(eMBB)接入的服务、用于MTC接入的服务等)建立不同的网络切片。AMF 182a、182b可提供用于在RAN 104和采用其他无线电技术(诸如LTE、LTE-A、LTE-APro和/或非第三代合作伙伴项目(3GPP)接入技术,诸如WiFi)的其他RAN(未示出)之间进行切换的控制平面功能。
SMF 183a、183b可经由N11接口连接到CN 106中的AMF 182a、182b。SMF 183a、183b还可经由N4接口连接到CN 106中的UPF 184a、184b。SMF 183a、183b可选择并控制UPF184a、184b,并且配置通过UPF 184a、184b进行的流量路由。SMF 183a、183b可执行其他功能,诸如管理和分配UE IP地址、管理PDU会话、控制策略实施和QoS、提供DL数据通知等。PDU会话类型可以是基于IP的、非基于IP的、基于以太网的等。
UPF 184a、184b可经由N3接口连接到RAN 104中的gNB 180a、180b、180c中的一者或多者,这些gNB可向WTRU 102a、102b、102c提供对分组交换网络(诸如互联网110)的访问,以促进WTRU 102a、102b、102c和启用IP的设备之间的通信。UPF 184、184b可执行其他功能,诸如路由和转发分组、实施用户平面策略、支持多宿主PDU会话、处理用户平面QoS、缓冲DL分组、提供移动性锚定等。
CN 106可有利于与其他网络的通信。例如,CN 106可包括用作CN 106与PSTN 108之间的接口的IP网关(例如,IP多媒体子系统(IMS)服务器)或者可与该IP网关通信。另外,CN106可向WTRU102a、102b、102c提供对其他网络112的访问,该其他网络可包括由其他服务提供商拥有和/或运营的其他有线和/或无线网络。在一个实施方案中,WTRU 102a、102b、102c可通过UPF 184a、184b经由至UPF 184a、184b的N3接口以及UPF 184a、184b与本地DN185a、185b之间的N6接口连接到DN 185a、185b。
鉴于图1A至图1D以及图1A至图1D的对应描述,本文参照以下中的一者或多者描述的功能中的一个或多个功能或全部功能可由一个或多个仿真设备(未示出)执行:WTRU102a-d、基站114a-b、演进节点B160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF182a-b、UPF 184a-b、SMF 183a-b、DN 185a-b和/或本文所述的任何其他设备。仿真设备可以是被配置为模仿本文所述的一个或多个或所有功能的一个或多个设备。例如,仿真设备可用于测试其他设备和/或模拟网络和/或WTRU功能。
仿真设备可被设计为在实验室环境和/或运营商网络环境中实现其他设备的一个或多个测试。例如,该一个或多个仿真设备可执行一个或多个或所有功能,同时被完全或部分地实现和/或部署为有线和/或无线通信网络的一部分,以便测试通信网络内的其他设备。该一个或多个仿真设备可执行一个或多个功能或所有功能,同时临时被实现/部署为有线和/或无线通信网络的一部分。仿真设备可直接耦合到另一个设备以用于测试目的和/或使用空中无线通信来执行测试。
该一个或多个仿真设备可执行一个或多个(包括所有)功能,同时不被实现/部署为有线和/或无线通信网络的一部分。例如,仿真设备可在测试实验室和/或非部署(例如,测试)有线和/或无线通信网络中的测试场景中使用,以便实现一个或多个部件的测试。该一个或多个仿真设备可为测试设备。经由RF电路(例如,其可包括一个或多个天线)进行的直接RF耦合和/或无线通信可由仿真设备用于传输和/或接收数据。
建立了IEEE 802.11TM极高吞吐量(EHT)WLAN研究组(SG)以探索可能未来修正的范围和目的,从而在许多使用场景中提供增强的吞吐量、增强的可靠性、减少的延迟和抖动以及提高的功率效率。IEEE标准委员会基于项目授权请求(PAR)和EHT SG中制定的标准开发准则(CSD)批准了IEEE 802.11be任务组(TG)。除了向需要高吞吐量和高频谱效率的应用程序提供支持之外,预期新一代WLAN设备还能向需要极低延迟的应用程序提供支持。有针对性地由下一代WLAN诸如802.11be支持并且需要低延迟通信的示例性应用程序可包括(但不限于包括)4K/8K视频、游戏、虚拟现实和增强现实、远程办公和/或云计算。在802.11be项目授权请求(PAR)中,作为要求之一提及了延迟,因为高吞吐量、低延迟应用程序将激增,诸如虚拟现实或增强现实、游戏、远程办公和/或云计算。
在802.11be标准开发准则(CSD)中,认为流量增长持续受到视频流量的显著增长的驱动。吞吐量需求随着4K和8K视频以及高吞吐量应用程序(诸如虚拟现实、增强现实、游戏、远程办公和云计算)的出现而不断演进。由于这些应用程序的吞吐量和实时需求,WLAN用户可能要求在许多环境中递送其应用程序时提高吞吐量和性能。
3GPP第五代(5G)新无线电(NR)还支持低延迟传输。5G NR网络被设计为支持至少以下示例性服务类别:增强移动宽带(eMBB)、大规模机器类通信(mMTC)和超可靠低延迟通信(URLLC)。被设计用于URLLC的机制和过程为延迟敏感设备或流量提供高级服务。5G NR中采用配置授权传输来减少gNB与WTRU之间的服务请求/响应的帧交换,以使得具有低延迟流量的WTRU能够在不请求传输资源的情况下在预配置的资源中发射流量。
在WLAN中,载波侦听多址接入/冲突避免(CSMA/CA)信道接入可用于多址接入。当站(STA)侦听共享介质一定时间段并且确定介质空闲时,STA可在不经相关联的接入点(AP)批准的情况下发射。例如,信道感测分辨率可为20MHz或以上。
在IEEE 802.11ax中,采用OFDMA进行下行链路和上行链路传输。定义机制和过程以使一个或多个STA能够并发地在不同频率单元中发射。在一个示例中,可由相关联的AP触发并调度一个或多个STA的并发ULOFDMA传输。可支持用于低延迟传输的示例性方法,诸如用于相关联和非相关联的STA的基于OFDMA的UL随机接入(UORA)和/或空数据分组(NDP)反馈报告过程。
在IEEE 802.11ax中,STA要么可使用CSMA/CA过程通过感测整个信道来执行自主上行链路传输,要么可使用UORA来执行自主上行链路传输。在UORA过程的示例中,AP可使用用于相关联的STA和/或非相关联的STA的一组资源单元来发射触发帧以发射上行链路流量。AP可分配上行链路调制和编码方案(MCS)、长度和/或其他相关物理层(PHY)参数。STA使用UORA过程来确定资源并且发射一个或多个基于触发的物理层会聚过程(PLCP)协议数据单元(PPDU)。AP可向STA发射确认(ACK),诸如一个或多个ACK或者多STA块确认(BA)。
表1中示出了用于802.11ax的示例性触发帧格式。表2中示出了来自触发帧的公共信息(info)字段的示例性扩展。表3中示出了触发帧(除了NDP反馈报告轮询(NFRP)触发帧之外)的用户信息(info)字段的示例性扩展。表1至3示出了以位计的字段大小(其中v指示可变长度)。
帧控制 持续时间 RA TA 公共信息 用户信息 ... 用户信息 填充 FCS
2 2 6 6 8或更多 5或更多 5或更多 V 4
表1:802.11ax中的示例性触发帧格式
Figure BDA0003385602840000171
表2:触发帧中的示例性公共信息字段
Figure BDA0003385602840000172
表3:触发帧(除了NFRP触发帧之外)中的示例性用户信息字段
触发帧可包括(但不限于包括)帧控制字段、持续时间字段、接收器地址(RA)字段、发射器地址(TA)字段、公共信息(info)字段、多个用户信息(info)字段、填充字段以及帧校验序列(FCS)字段中的任何一者。公共信息字段可包括(但不限于包括)公共信息字段、触发类型字段、UL长度字段、更多TF字段、CS所需字段、UL带宽(BW)字段、保护间隔(GI)和长训练字段(LTF)类型字段、多用户(MU)-MIMO LTF模式字段、高效率(HE)-LTF符号数量和中间码周期性字段、UL空时块码(STBC)字段、低密度奇偶校验(LDPC)额外符号段字段、AP发射(TX)功率字段、预前向纠错(FEC)填充因子字段、分组扩展(PE)消歧字段、UL空间复用字段、多普勒字段、UL HE SIG-A2保留字段、保留字段和/或触发依赖性公共信息字段中的任何一者。每个用户信息字段可包括(但不限于包括)用户信息字段、关联标识(ID)(AID12)字段、资源单元(RU)分配字段、UL FEC编码字段、UL MCS字段、UL双载波调制(DCM)字段、空间流(SS)分配/随机接入(RA)-RU信息字段、UL目标接收信号强度指示符(RSSI)字段、保留字段和/或触发依赖性用户信息字段中的任何一者。
在802.11ax中,可支持空数据分组(NDP)反馈报告(NFR)。例如,AP可使用触发类型NDP反馈报告轮询(NFRP)来发射触发帧,其中AP可指示反馈类型是资源请求。起始关联ID(AID)字段可包括在触发帧中。HE MU PPDU可不用于携带NFRP触发。STA可使用NFRP触发来获知其是否被调度以及如何发射NFR。STA可从管理帧获得NDP反馈报告参数。STA可遵循NFRP触发和NDP反馈报告参数中的指令来发射NFR。在一个示例中,对于NFR而言,可不将确认从AP发送到STA。
用于NFRP的触发帧可具有与表1中所示的相同的帧格式。公共信息(info)字段可与表2中相同。表4中示出了用于NFRP触发帧的示例性用户信息(info)字段。用于NFRP触发的用户信息字段可包括(但不限于包括)NFRP用户信息字段、起始AID字段、保留字段、反馈类型字段、另一个保留字段、UL目标RSSI字段和/或多路复用标志字段中的任何一者。
Figure BDA0003385602840000181
表4:用于NFRP触发的触发帧中的用户信息字段
由AP触发(例如,通过从AP接收触发帧)的STA可用基于触发的PPDU来响应。表5中示出了示例性基于触发的PPDU格式。基于触发的PPDU可包括(但不限于包括)传统短训练(L-STF)字段、传统长训练(L-LTF)字段、传统信号(L-SIG)字段、重复传统信号(RL-SIG)字段、HE-SIG-A字段、HE-STF字段、一个或多个HE-LTF字段、数据字段和/或PE字段中的任何一者。对UORA触发作出响应的传输可使用单个数据流。
L-STF L-LTF L-SIG RL-SIG HE-SIG-A HE-STF HE-LTF ... HE-LTF 数据 PE
表5:用于802.11ax的基于触发的PPDU格式
可能与UORA发生冲突。已在802.11ax中采用UORA,使得STA能够在未明确请求资源并等待调度的情况下使用OFDMA在UL中发射。然而,可由BSS中的任何STA使用为UORA分配的资源,因此有可能超过一个STA可使用相同资源来发射,并因此可发生冲突并且可不确认来自STA的传输。如果STA未接收到任何确认,则STA可能不知道其基于触发的(TB)PPDU(TB-PPDU)传输是否因冲突或低信噪比(SNR)而失败,或STA可能未能检测到并解码来自AP的确认。因此,STA可能只有执行重传的选项。此外,AP可能在冲突的情况下未能检测到传输,并且AP可能不知道哪些STA正在发射、冲突的STA的数量以及发射的流量的类型。从而,AP可能不能够基于STA/流量优先级来重调度传输并且AP可能不能够适当地执行网络拥塞控制。
在分离或解决UORA中的空域中的冲突时可能出现问题。在802.11ax UORA中,执行随机接入的非AP STA可使用TB-PPDU中的相同高效率长训练字段(HE-LTF)序列,因此在多个非AP STA在相同资源单元(RU)上发送时,即使AP具有许多天线,AP可能也不能够分离空域中的多个STA传输。单个LTF可防止AP单独地估计来自每个接入STA的信道。
在一个示例中,在UORA TB-PPDU中有多个LTF序列并且每个STA随机地选择一个或多个LTF序列的情况下,AP仍然可能因未知的信道而不能够分离空域中的不同STA信号。这可能在超过一个STA选择相同LTF序列的情况下发生。这在以下示例中示出。图2示出了AP203与STA 201和202之间的示例性UL MU接入200的框图,其中非冲突的空间流受到冲突的空间流的影响。在该示例中,H矩阵是AP 203与STA 201和202之间的物理MIMO信道系数矩阵,Hest是估计的信道矩阵,并且P=[p1 p2 p3 p4]是在发射器(例如,STA 201、202)和接收器(例如,AP 203)两者处已知的正交预编码矩阵(例如,如为LTF传输所定义)。每个STA 201和202具有两个天线并且知道AP 203具有四个天线。因此,每个STA 201、202可选择P矩阵中的两列作为预编码矩阵来发射其LTF。如果MU UL传输在没有来自AP 203的任何调度或协调的情况下使用随机接入,则所选择的P矩阵的一列或两列对于STA 201、202可相同。在该示例中,STA 201选择P矩阵列P1和P2,并且STA 202选择P矩阵列P2和P3以预编码其LTF符号。
因此,STA 201以两个使用随机选择的
Figure BDA0003385602840000191
Figure BDA0003385602840000192
的SS执行随机接入。STA 202以两个使用随机选择的
Figure BDA0003385602840000193
Figure BDA0003385602840000194
的SS执行随机接入。由于来自STA 201的SS和来自STA 202的SS使用相同
Figure BDA0003385602840000195
因此AP 203可能不能够分离这两个对应SS。与
Figure BDA0003385602840000201
相对应的SS被表示为冲突的SS,并且与
Figure BDA0003385602840000202
Figure BDA0003385602840000203
相对应的SS被表示为非冲突的SS。例如如果h1和h4不与[h2 h3]所跨越的空间正交,即使非冲突的SS使用不同LTF,AP 203也可能不能够分离与
Figure BDA0003385602840000204
Figure BDA0003385602840000205
相对应的SS中携带的信号。因此,用于计算Hest的接收器(例如,AP 203)信道估计过程包括使用P2的冲突。由于AP 203不知道该信道,因此AP 203使用信道估计Hest来解码所发射的数据x=[x1 x2 x3 x4],其中所解码的数据(d1,d4)=f(Hest,x)。
该示例还适用于来自STA 201的两个SS对应于使用
Figure BDA0003385602840000206
Figure BDA0003385602840000207
的两个不同STA,和/或来自STA 202的两个SS对应于使用
Figure BDA0003385602840000208
Figure BDA0003385602840000209
的两个不同STA的情况。在该后一场景中,经历SS冲突的各STA之间的冲突可引起AP 203错误地均衡来自没有冲突性SS的STA的流。
用于低延迟多链路接入和传输的过程可用于提高低延迟流量的性能。另外,网络链路负载测量值可用于链路评估。测量过程可被设计用于802.11ax中的基于调度的接入。
在一个示例中,冲突感知随机接入可用于缓和与UORA的冲突。为了支持低延迟小分组传输,可在没有资源请求或资源调度传输的情况下支持自主上行链路传输。在一个示例中,WLAN中的OFDM上行链路传输可在没有从AP接收到授权或调度的情况下使用自主传输。在这种情况下,该传输可以是单用户接入并且使用整个信道带宽,因此其他STA可等待整个介质空闲以执行传输。在另一个示例中,自主上行链路传输可涉及多上行链路接入。
在一个示例中,基于触发的自主上行链路传输可用于冲突感知随机接入。AP可发射修改的触发帧以便以冲突感知过程触发OFDMA随机接入。在上行链路传输之后,AP和/或STA可确定传输失败原因并且进一步确定补救措施。
在一个示例中,STA可发射附加LTF符号,以使得AP可能能够检测一个或多个STA可占用相同资源。STA可发射单独编码的用户特定控制信息,该控制信息可携带诸如STA标识(ID)和/或流量信息之类的信息。基于该控制信息,AP/STA可确定执行重传的方式。
可使用多个LTF符号和隐式重调度方法来执行冲突感知过程。使用多个LTF符号的冲突检测机制可包括以下动作中的任何一个或多个动作。STA可使用随机池中的所选择的RU上的NUL流在上行链路中发射数据。STA可使用正交格式来发射多个LTF符号,例如N个LTF符号,例如使用用于信道估计的N个OFDM符号并且通过使用正交矩阵的NUL行的元素将每个OFDM符号乘以大小N×N。AP可通过估计用于该正交矩阵的行数来估计RU上的STA数量。
在一个示例中,如果用于该正交矩阵中的总行数为NUL×NSTA,并且如果NSTA不是整数,则AP可宣告失败并且发射否定确认(NAK)。在一个示例中,可宣布估计的行或未使用的行的索引。从而,冲突的STA可了解该传输中使用的索引并且在下一次传输中基于规则或随机地更新它们对这些索引的选择。在这种情况下,在NUL>1的示例中,可在反馈中将使用索引i的STA重调度到另一个RUj。例如,如果STA1使用索引{1,2}并且STA2使用索引{2,3},则AP可因索引2上的冲突而不解码该分组。从而,AP可发射NAK分组及消息,该消息指示用于STA(例如使用索引1的STA、使用索引2的STA、使用索引2的STA和使用索引3的STA)的重调度信息对于下一次传输而言可分别在RU2、RU3和RU4上发射。STA可选择AP指示的RU之一。例如,STA1可使用RU2和RU3中的任一者并且STA2可使用RU3和RU4中的任一者,这降低了下一次传输中的冲突概率。在一个示例中,STA可在分配的RU上重复该传输。
在这种情况下,在NUL≥1的示例中,AP可在反馈中宣布一组RU以用于重调度使用扩展矩阵的索引i的STA。STA可在以下传输中选择RU之一。例如,如果STA1使用索引{1,2}并且STA2使用索引{2,3},则AP可因索引2上的冲突而不解码该分组。AP可发射NAK分组及消息,该消息指示使用索引1的STA、使用索引2的STA、使用索引2的STA和使用索引3的STA可使用下组中的RU:S1={RU2,RU3}、S2={RU5,RU6}、S3={RU7,RU8}。从而,在下一次传输中,STA1可使用S1∪S2中的RU之一,而STA1可使用S2∪S3中的RU之一。在一个示例中,STA可在分配的RU上重复该传输。
在另一个示例中,如果用于该正交矩阵中的总行数为NUL×NSTA,NSTA≥0并且NSTA为整数,则AP可尝试解码来自NSTA个STA的PPDU。在这种情况下,AP可执行以下操作中的任何一个或多个操作。如果解码成功,则AP可发射ACK。可在MAC层解码STA ID。还可将STA ID连同ACK一起发射。如果解码失败,则AP可为该RU发射NAK。失败的原因可能是因为该信道不能支持接入该信道的STA数量,例如,存在秩亏,或仍然存在冲突,但得到整数NSTA
在一个示例中,可宣布估计的行或未使用的行的索引。从而,冲突的STA可了解该传输中使用的索引并且在下一次传输中基于规则或随机地更新它们对这些索引的选择。如果在一个示例中NUL>1,可在反馈中将使用索引i的STA重调度到另一个RU j。例如,如果STA1使用索引{1,2}并且STA2使用索引{2,3},则AP可因索引2上的冲突而不解码该分组。从而,AP可发射NAK分组及消息,该消息指示用于STA(例如使用索引1的STA、使用索引2的STA、使用索引2的STA和使用索引3的STA)的重调度信息对于下一次传输而言可分别在RU2、RU3和RU4上发射。STA可选择AP指示的RU之一。例如,STA1可使用RU2和RU3中的任一者并且STA2可使用RU3和RU4中的任一者,这降低了下一次传输中的冲突概率。在一个示例中,STA可在分配的RU上重复该传输。
如果在一个示例中NUL≥1,AP可在反馈中宣布一组RU以用于重调度使用扩展矩阵的索引i的STA。一个或多个STA可在以下传输中选择RU之一。例如,如果STA1使用索引{1,2}并且STA2使用索引{2,3},则AP可因索引2上的冲突而不解码该分组。AP可发射NAK分组及消息,该消息指示使用索引1的STA、使用索引2的STA、使用索引2的STA和使用索引3的STA可使用下组中的RU:S1={RU2,RU3}、S2={RU5,RU6}、S3={RU7,RU8}。从而,在下一次传输中,STA1可使用S1∪S2中的RU之一,而STA1可使用S2S3中的RU之一。在一个示例中,STA可在分配的RU上重复该传输。本文描述了基于触发的过程和用于冲突感知检测的PPDU设计的详细示例。
图3示出了使用用于基于OFDMA的随机接入的多个LTF符号的示例性冲突感知过程300的信令图。根据示例性冲突感知过程300,AP 303可为多个STA 301和302发射触发帧304以随机地接入介质。AP 303可指示该组STA或所有STA 301和302可能能够响应于触发帧304,或AP 303可指示触发帧304用于OFDMA随机接入。AP 303可指示流量类型允许进入响应帧。例如,AP 303可指示触发了低延迟传输。AP 303可指示额外LTF符号可用于基于触发的PPDU中。例如,AP 303可指示待在基于触发的PPDU中使用的LTF符号数量。STA(例如,STA301和/或STA 302)从AP 303接收触发帧304并且可检查STA是否能够发射。例如,STA 301或302可需要满足以下条件中的一个或多个条件:STA 301或302可能能够进行UORA传输和/或冲突感知UORA传输;STA 301或302可在触发帧所识别的待响应的组内;STA 301或302可具有待发射的流量。如果触发帧304识别触发的流量类型或优先级,则STA 301或302可需要具有该类型或优先级的流量才能发射。可对触发帧作出响应的STA 301或302可执行UORA过程以选择要在其中发射的一个或多个RU。
在基于触发的PPDU 307或311中,STA 301或302可具有宽带传输部分306或310和/或窄带传输部分308或312。在采用宽带传输部分306或310时,可在整个带宽上发射OFDM符号,例如使用传统PLCP报头和/或信令字段的传统部分。宽带传输部分306或310在所有基于触发的PPDU传输307和311之中可相同,以使得AP 303可成功解码PPDU传输307和311。在一个示例中,宽带传输部分306或310可用于向后兼容检测和/或同步。
在采用窄带传输部分308和312时,可在窄带上发射OFDM符号,例如信令字段的EHTSTF、EHT LTF部分和/或数据字段。例如,可在一个或多个RU上发射符号。窄带传输部分308和312可被视为用户特定的。在一个示例中,可存在在窄带上发射的EHT-LTF或LTF字段。可在更多OFDM符号上发射EHT-LTF字段。例如,如果数据传输307和311使用单个SS传输,则可发射单个OFDM LTF字段。然而,具有基于正交矩阵的行的相位旋转的超过一个OFDM符号可用于EHT-LTF传输。附加EHT-LTF(A EHT-LTF)符号可用于冲突检测,或换句话讲,用于检测多个并发传输。例如,附加EHT-LTF字段可具有若干预定义的模式。每个STA 301和302可随机地选择一个模式来发射。数据字段可以是携带该流量的字段。
AP 303可从一个或多个STA 301和302接收上行链路传输307和311。AP 303可在为基于OFDMA的UL随机接入分配的RU上执行冲突检测。在一个示例中,AP 303可检测每个RU上的EHT-LTF字段。通过基于附加EHT-LTF字段上发射的正交矩阵的行来检测模式数量,AP303可能能够检测在RU上发射的并发STA 301和302的数量。在检测到超过一个STA 301或302的情况下,AP 303可检查数据字段。数据检测可因冲突而被破坏,例如超过一个STA 301和302可在RU之一上发射。在这种情况下,AP 303可记录所检测的EHT-LTF模式索引和RU索引。例如,AP 303可获知在具有LTF模式索引1的RUx上发射的STA 301可与在具有LTF模式索引2的RU x上发射的STA 302冲突。该信息可用于确认和重调度。在一个示例中,同时基于RU索引和LTF模式索引的信息可用于识别传输失败的STA 301或302。双索引[RU索引,LTF模式索引]可称为STA PHY ID。当两个或更多个STA 301或302可使用相同模式进行附加EHT-LTF传输时,该检测可能不准确。在这种情况下,AP 303可能不能够确定是否传输失败可能是由于冲突并且可在确认中使用简单NAK。
AP 303可向STA 301和302发射冲突感知ACK 314。在冲突感知ACK消息314中,AP303可在每个RU上发信号通知其检测结果。例如,可包括两个位图。第一位图可携带N位,其中N是为随机接入分配的RU数量。第一位图可指示是否可正确检测到RU。第二位图的长度可取决于RU上的失败传输的数量。例如,M个RU在第一位图中失败,因此第二位图可携带M位。每个位可指示是否在该RU上检测到冲突。AP 303可发射帧316以重调度被破坏的传输,例如确认314之后的帧间间隔(xIFS)时间。xIFS可为0或定义的或待定义的任何帧间间隔。在一个示例中,用于重调度的帧316可以是具有基于RU的冲突感知重调度的触发帧。在一个示例中,AP 303可使用一个位来指示基于RU的冲突感知重调度。当设定该位时,可修改AID字段以携带STA PHY ID,例如,先前失败的传输中的[RU索引,STF模式索引]。RU/资源分配机制可跟随(触发)帧316。STA 301和302可使用(例如,基于触发的)PPDU传输319和323对重调度帧316作出响应,PPDU传输319和323可分别包括宽带传输部分318和322,和/或窄带传输部分320和324。在本文所述的示例性过程中,这些步骤或机制中的任何一者或多者可省略或随后在另一个传输机会(TXOP)中发射。例如,过程300可在公共TXOP中包括触发帧、基于触发的PPDU和/或冲突感知ACK。AP 303可确定其是否可执行重调度(消息316),例如,重传是否可被重调度。在AP 303执行重调度的情况下,重调度触发帧316和任何后续帧可能在或可能不在相同TXOP中。
表6示出了示例性基于触发的PPDU格式,该格式响应于用于基于OFDMA的冲突感知随机接入的触发帧而可从STA发射到AP。
Figure BDA0003385602840000251
表6:使用附加LTF字段的基于OFDMA的冲突感知随机接入的PPDU格式
在一个示例中,在整个带宽上发射L-STF、L-LTF、L-SIG、RL-SIG和极高吞吐量信号A(EHT-SIG-A)字段。可由AP确定L-SIG、RL-SIG和EHT-SIG-A字段的内容,以使得来自不同STA的传输可具有相同内容和已调制的符号。如图3的示例中所示,可使用一个或多个RU的STA窄带传输可跟随STA宽带传输。在表6所示的示例中,可在RU x上发生窄带传输,但是其可扩展到一个或多个RU传输。在一个示例中,该传输可在所有RU上进行,因此在整个带宽上进行。窄带传输可包括以下示例性字段中的任何一个或多个字段的传输:可用于自动增益控制(AGC)调节的EHT-STF字段;可用于信道估计的EHT-LTF字段;和/或附加EHT-LTF字段(AEHT-LTF)。EHT-LTF字段可用于冲突检测。可在N个OFDM符号上发射A EHT-LTF字段。N可以是预定义的(例如,在标准中)或由AP预先确定。在一个示例中,AP可指示触发帧中的N。
在一个示例中,作为STA窄带传输的一部分,用于AEHT-LTF传输的方法可使用正交矩阵(例如,11ax中的P矩阵)。P矩阵在下面用作示例,但该方法可应用于其他类型的正交矩阵。根据正交矩阵方法,OFDM符号数量N的选择可为[1,2,4,6,8,16]。P矩阵可以是在802.11中为具有多个数据流的LTF传输定义的正交矩阵。P矩阵可具有大小N×N,并且P中的每个元素可被表示为Pij,其中i和j是1和N之间的整数。在选择其传输RU之后发射基于触发的PPDU的STA可随机地选择1和N之间的数量R。另选地,可在传输之前预先确定或在AP和STA之间协商数量R。例如,可在STA与AP相关联时确定R。可使用管理帧/控制帧修改并且在AP和STA之间重新协商值R。STA可使用P矩阵中的第R行来调制A EHT LTF符号。例如,在第k副载波和第mA EHT LTF符号上发射的LTF调制符号可被表示为skm。skm=PRm×LTFk,其中LTFk可以是LTF序列中的第k符号。从而,具有随机选择的不同R的STA可使用P矩阵的不同行来调制AEHTLTF。因此,接收AP可能能够检测RU上的并发STA的数量。P矩阵的每行可被视为LTF传输模式,并且行索引可用于LTF模式索引。在一个示例中,如果P的多个行用于多个流,则一些过程可扩展到多个流。
在另一个示例中,作为STA窄带传输的一部分,用于A EHT-LTF传输的方法可使用序列。在这种情况下,最小RU可具有M个副载波,并且序列长度可为M。考虑OFDM符号的数量N,总序列长度可被示出为M×N。因此,在给定序列长度例如M×N的情况下,可定义具有良好相关特性的一组序列。等幅序列可用于频域中并且OFDM符号的时域循环移位版本可用于不同流。良好相关特性可以是零互相关。该组可包括Z个预定义的序列。发射基于触发的PPDU的STA可随机地选择1和Z之间的整数R。STA可使用该序列来发射所选择的RU中的LTF序列。
STA窄带传输还可包括数据字段。数据字段的传输可与EHT-LTF字段相同,以使得使用EHT-LTF字段进行的信道估计可应用于数据字段。STA窄带传输还可包括PE字段。PE字段可用于对齐该传输并且为接收器给予足够的时间来处理所接收的传输。在一个示例中,使用表6所示的格式发射EHT-LTF字段和A-EHT-LTF字段。在一个示例中,可不发射EHT-LTF字段并且可发射A-EHT-LTF字段。
在作为冲突感知过程(例如,图3所示的冲突感知过程300)的一部分的冲突感知ACK消息中,AP可在每个RU上发信号通知其检测结果。冲突感知ACK帧可以是以下示例性帧类型中的任何一种或多种类型。例如,冲突感知ACK可以是介质访问控制(MAC)帧,其中接收地址(例如,RA字段)可以是广播MAC地址。在另一个示例中,冲突感知ACK帧可不含任何AID或单独MAC地址。在一个示例中,冲突感知ACK帧可携带STAPHY ID。STA PHY ID可由STA在最近/先前基于触发的传输或其他类型的传输中使用的位置和/或空间流来定义。例如,STAPHY ID可以是[RU索引,LTF模式索引]或RU索引与LTF模式索引的组合。
在一个示例中,位图可用于冲突感知确认。位图大小可取决于NRU×Npattern,其中NRU可以是可用于OFDMA随机接入的RU数量,Npattern可以是可用于该RU上的传输的模式数量。例如,Npattern可指待使用的LTF模式数量。每个位可表示该RU和模式上的检测结果。例如,当使用该模式在该RU上检测到的能量可高于阈值时,该位图的位可被设定为1,否则其可被设定为0。同时,可为数据检测结果发射块ACK(BA)或多STA BA。在一个示例中,可能未接收肯定确认的STA可检查冲突感知确认。STA可需要获知STA用于先前传输的RU和模式。STA可检查位图中的对应位以及与相同RU相关的所有其他位。基于位图结果,STA可确定该RU上是否可存在冲突。例如,如果STA检测到具有相同RU索引的多个图案可被设定为1,则STA可指示可发生冲突。
在另一个示例中,两个位图可用于冲突感知确认。该方法可假定每个RU中携带单个数据流。第一位图可携带N位,其中N是为随机接入分配的RU数量。位图可指示是否可正确检测到RU上的数据。例如,如果可正确地解码该数据,则位可被设定为1,否则被设定为0。第二位图的长度可取决于第一位图中的NAK数量。在一个示例中,假定M个RU在第一位图中失败(例如,0),第二位图可携带M位。每个位可指示是否在该RU上检测到冲突。例如,如果在该RU中检测到超过一个模式,则位可被设定为1。
STA可检查第一位图并且确定先前数据传输是否被成功解码。如果先前传输失败,则STA可检查第二位图以确定是否可能在该RU中发生冲突。所提出的基于STA PHY ID的冲突感知确认可在块ACK帧中实现,诸如在表7所示的示例性BA帧格式中实现。BA类型值可用于指示基于STA PHY ID的冲突感知ACK,如表7所示。
BA类型 BA帧变型
0 基本
1 扩展压缩
2 压缩
3 多TID
4-5 保留
6 CGCR
7-9 保留
10 GLK-GCR
11 多STA
12 冲突感知
13-15 保留
表7:示例性BA帧变型编码
用于冲突感知ACK的BA信息(info)字段可如表8那样定义,其中位图用于冲突感知确认。
RU的数量 模式的数量 基于RU和模式的位图
表8:用于冲突感知ACK的示例性BA信息字段,其中位图用于冲突感知确认
RU数量子字段可指示冲突感知确认可用于发信号通知的RU数量。模式数量子字段可指示用于每个RU传输的模式数量。基于RU和模式的位图子字段为基于RU和模式的确认提供位图。可通过RU的数量乘以模式的数量来确定位图的大小。
根据双位图冲突感知确认方法,BA帧格式可如表9所示。BA类型值可指示如表7所示的基于STA PHY ID的冲突感知ACK,并且用于冲突感知ACK的BA信息(info)字段可如表9中那样定义。
RU的数量 Bitmap1 Bitmap2
表9:用于冲突感知ACK并具有两个位图的BA信息字段
RU数量子字段可指示冲突感知确认可用于发信号通知的RU数量。位图1可具有被设定为RU数量的大小。位图可指示是否可正确检测到RU上的数据。位图2可具有一定大小,该大小可取决于位图1中的NAK数量。每个位可指示是否在该RU上检测到冲突。
例如在随机接入冲突之后,可使用机制来调度UL重传。在一个示例中,AP可使用STA PHY ID来调度一个或多个UL重传。STA PHY ID的定义可以是可配置的。例如,AP可将具有STA PHY ID x的STA分配到RUy。在一个示例中,AP可使用触发帧来调度UL重传。可针对基于STA PHY ID的触发来修改触发帧。表10中示出了具有UL重传轮询的示例性触发帧。触发帧中的公共信息(info)字段可如表2所示。在公共信息字段中,可存在触发类型子字段。可在触发帧中指示UL重传轮询触发类型以例如使用如表10所示的保留值来调度UL重传。
触发类型子字段值 触发帧变型
0 基本
1 BF报告轮询(BFRP)
2 MU-BAR
3 MU-RTS
4 缓冲区状态报告轮询(BSRP)
5 GCR MU-BAR
6 带宽查询报告轮询(BQRP)
7 NDP反馈报告轮询(NFRP)
8 UL重传轮询
9-15 保留
表10:具有UL重传轮询的触发类型
用户信息(info)字段可与表3中所示的相同,并且AID12字段可用于携带STA PHYID。触发依赖性用户信息子字段可携带STA PHY ID定时信息。STA PHY ID定时信息可用于指示何时生成STA PHY ID。例如,STA PHY ID定时信息可用于识别STA用于以对应STA PHYID、RU和模式执行基于OFDMA的UL随机接入的时间。在一个示例中,STA PHY ID定时信息可以是用于先前UL传输或DL传输的时间戳或压缩时间戳。
在一个示例中,UORA过程中的控制信息可以是用户特定的。可因基于OFDMA的随机接入而触发的STA可发射单独编码的用户特定控制信息,该控制信息可携带诸如但不限于STA ID和/或流量信息之类的信息。基于该控制信息,AP/STA可确定执行重传的方式。
是否要执行UL重传的确定可使用用于冲突检测的用户特定控制信息。即使在数据传输可能因冲突而失败的情况下,用户特定控制信息仍可检测。例如,在频域中,可在N个频率单元上发射数据,并且可在单个或M个频率单元上发射用户特定控制信息,其中M<N。频率单元可以是RU或一组副载波。每个STA可随机地选择1和N之间的起始点S,并且可将STA的用户特定控制信息从S个频率单元发射到S+M或mod(S+M,N)个频率单元。可允许N个频率单元之中的循环分配。不同STA可在N个RU中具有不重叠、部分重叠或重叠的分配。在它们不重叠或部分重叠的情况下,AP可能能够检测全部或部分用户特定信息。因此,即使当数据传输冲突时,用户特定控制信息也可为可编码的并递送有用信息。
在时域中,数据传输和用户特定控制信息可使用相同数量的频率单元。用户特定控制信息可占用该帧中的M个OFDM符号,其中可为用户特定控制信息传输分配N个OFDM符号并且N>M。每个STA可随机地选择1和N之间的起始点S,并且将其用户特定控制信息从S个OFDM符号发射到S+M或mod(S+M,N)个OFDM符号。可允许N个OFDM符号之中的循环分配。不同STA可在N个RU中具有不重叠或部分重叠或重叠的分配。在它们不重叠或部分重叠的情况下,AP可能能够检测全部或部分用户特定信息。因此,即使当数据传输冲突时,用户特定控制信息也可为可编码的并且可将有用信息从STA递送到AP。
在码域中,数据传输和用户特定控制信息传输可使用相同频率单元并且没有用于控制信息传输的额外未分配OFDM符号。在这种情况下,可使用比数据更低的数据速率来发射用户特定控制信息。在一个示例中,可使用扩频码或覆盖码来编码用户特定控制信息。可在该系统中预定义一组扩频码/覆盖码。这些码可为正交的或具有零互相关特性。STA可随机地选择码或可由AP为STA分配码。AP可使用保存在该系统中的码来检测控制信息。
在空域中,数据传输和用户特定控制信息传输可使用相同频率单元并且没有用于控制信息传输的额外未分配OFDM符号。然而,可假定AP和STA可具有多个天线。数据传输可使用N个数据流传输并且用户特定控制信息可使用M个流传输。此处M<N。A STA可在N个流之中随机地选择M个流来发射。
用户特定控制信息可包括(但不限于包括)以下示例性参数中的任何一个或多个参数:STA ID、压缩STA ID和/或包括流量参数在内的字段。可单独地编码用户特定控制信息字段并保护这些字段以免受到数据字段的影响。在一个示例中,可在SIG-B字段(EHT-SIG-B字段)中携带用户特定控制信息字段。
通过对来自STA的用户特定控制信息执行检测,AP可确定用于对应数据传输的STAID、流量类型和/或对应RU。AP可尝试解码数据字段。如果AP未能解码数据字段,则AP可基于用于STA ID的流量类型来调度重传。例如,如果该流量具有低延迟要求,则AP可立即调度重传。如果该流量要求一个或多个周期性资源分配(例如半永久性资源分配),则AP可调度周期性传输。
使用用户特定控制信息的冲突检测机制可包括以下示例性过程中的任何过程。在一个示例中,AP可为多个STA发射触发帧以使用OFDMA随机地接入介质/信道。AP可指示用户特定控制信息包括在基于触发的PPDU中。可对触发帧作出响应的STA可执行UORA过程以选择一个或多个RU来发射。在基于触发的PPDU中,STA可能已包括以下信息字段中的任何字段:用户特定控制信息字段和/或数据字段。STA可随机地选择时域/频域/空域/码域资源进行UL传输。AP可从一个或多个STA接收上行链路传输。AP可在为基于OFDMA的UL随机接入分配的RU上执行冲突检测。如果AP能够检测UL传输中的用户特定控制信息字段和数据字段两者,则AP可向STA发送肯定确认。如果AP能够检测用户特定控制信息字段但未能检测UL传输的数据字段,则AP可从控制字段读取STA ID和流量参数。在这种情况下,AP可使用STA ID向STA发送否定确认。AP可指示传输失败可能是由于信道中的冲突。AP可隐式地或显式地指示AP知晓资源请求并且可随后对其进行调度。AP可基于流量参数来为STA分配资源以重传该数据。如果AP未检测到用户特定控制信息字段或数据字段,则AP可向STA发送肯定确认而没有冲突检测结果。接收到确认的STA可随后发射资源请求或可等待稍后时间的随机接入机会。
AP可向STA发射冲突感知ACK。在冲突感知ACK中,AP可在每个RU上或在每个所检测的STA ID上发信号通知其检测结果。例如,可使用基于RU的冲突感知确认。传输可以是基于STA ID的。对于每个所检测的STA ID而言,AP可发信号通知其是否已成功检测到数据字段。STA可检查确认。如果确认中不包括STA的STA ID,则STA可认为控制信息字段和数据字段的传输丢失(例如,由于冲突)。如果确认中包括STA ID,但对于该STA而言接收到否定确认,则该STA可确定控制信息被成功递送到AP,但数据部分可能丢失。STA可知晓AP获知来自STA的传输请求并且STA可预期随后获得资源分配。如果确认中包括STA ID,并且对于该STA而言接收到肯定确认,则该STA可确定数据传输成功。
图4示出了使用SIG-B字段作为用于随机触发冲突检测的用户特定控制信息字段的一部分的示例性冲突感知传输过程400的信令图。可包括本文所述方法和帧格式的任何部分作为示例性冲突感知传输过程400的一部分。根据示例性冲突感知过程400,AP 403可为多个STA 401和402发射触发帧404以随机地接入介质(信道)。STA 401和402可分别用基于触发的PPDU帧406和408来响应。基于触发的PPDU帧406和408可包括以下字段,这些字段可包括在宽带传输部分中:L-STF、L-LTF、L-SIG、RL-SIG、HE-和/或SIG-A。基于触发的PPDU帧406和408可包括以下字段,这些字段可包括在窄带传输部分中(例如,在被占用的RU上发射,使得这些RU可由STA 401/402随机地选择):EHT-STF(例如,RU x中)、EHT-LTF(例如,RUx中)、SIG-B(例如,部分RU诸如一半RU上)、数据(例如,RU x上或一个或多个RU上)和/或PE(例如,与数据字段相同的RU上)。EHT-LTF字段可实现对SIG-B和/或数据字段的冲突感知信道估计。SIG-B字段可使用基于RU的传输并且可包括STA ID信息。例如,可在一个或多个RU上或在部分RU上发射SIG-B字段(例如,使用用户特定覆盖码以避免冲突)。AP 403可向STA401和402发射一个或多个RU上的SIG-B字段中检测到的STA的冲突感知ACK/NAK 410。AP403可向STA 401和402发射调度重传帧412以重调度被破坏的传输。
图5示出了使用PHY SIG字段(例如,SIG-B字段)中的用户特定控制信息的示例性冲突检测过程500的流程图,该冲突检测过程可由UORA系统中的STA(例如,多个并行的STA)执行。可包括本文所述方法和帧格式的任何部分作为示例性冲突检测过程500的一部分。在502处,STA可从AP接收触发帧,该触发帧触发使用OFDMA的随机接入。可由AP将触发帧发射到多个STA。触发帧可包括(但不限于包括)让STA使用具有用户特定控制信息的SIG字段的请求。在504处,STA可向AP发射基于触发的帧(例如,基于触发的PPDU),该基于触发的帧包括信号(SIG)字段中的用户特定控制信息。在一个示例中,SIG字段是SIG-B字段,但可使用任何其他类型的信号(SIG)字段。STA可发射基于触发的帧作为UL MU传输的一部分,同时由其他STA发射基于触发的帧。基于触发的帧可包括(但不限于包括)用户特定控制信息中的STA ID、流量负载信息(流量负载指示)、流量延迟信息和/或其他流量服务质量(QoS)相关信息。可使用部分RU来发射SIG字段。可使用该字段中的覆盖码来发射SIG字段。
在506处,STA从AP接收确认/否定确认(ACK/NAK),该ACK/NAK指示在AP处成功检测到STA的基于触发的帧(ACK)或未在AP处成功检测到基于触发的帧(例如,检测到STA的基于触发的帧的冲突)(NAK)。在一个示例中,STA可能未从AP接收到NAK,但可在一定时间段之后未接收到ACK时假定发生了STA的基于触发的帧的冲突。在508处,在UL传输被破坏时,STA从AP接收调度重传帧,该调度重传帧包括用于STA的重调度信息。调度重传帧可以是触发帧。在510处,在调度重传帧指示检测到STA的基于触发的帧的冲突的条件下,STA可重传基于触发的帧。因此,示例性冲突检测过程500中的SIG-B字段的使用使AP能够快速检测STA的传输并调度对应重传。
在一个示例中,可在空域中分离和/或隔离冲突。例如,具有超过一个天线的STA可预编码随机接入传输,使得冲突的SS中的STA的信号可被分离,或STA的信号与冲突的SS隔离。冲突的SS是具有相同信道估计序列的SS,但携带来自超过一个STA的数据(例如,超过一个STA可能在向AP发射时使用相同LTF)。例如,与图2中所述的P2相对应的SS是冲突的SS的示例。
在携带用于随机接入的触发帧的PPDU中,AP可发射m个LTF序列。值m可对应于AP的天线/扇区的数量。在假设信道互易性的情况下,非APSTA i可使用携带触发帧的PPDU来执行从STA到AP的信道估计,作为Hi,其是m×n矩阵,其中n是STA i的天线的数量。AP可宣布m×l矩阵V=[V1 V2...Vl],其中l≤m。V1...Vl是线性无关向量。在一个示例中,矩阵V可由非AP STA隐式地理解并且可不需要从AP发信号通知V。在这种情况下,AP和非AP STA可共享公共种子,该公共种子用于基于时间/频率资源的索引来独立地在AP和非AP STA处生成V。
图6示出了包括执行随机接入的STA 601、602和603在内的无线网络600的系统图。在一个示例中,如果STA 601使用LTFx发射UL帧,并且STA 602和603使用LTFy发射UL帧,并且如果AP 604为所有STA 601、602、603估计信道并分离信号,则AP 604可分离冲突的SS。在另一个示例中,如果STA 601使用LTFx发射UL帧,并且STA 602和603使用LTFy发射UL帧,并且如果AP为STA 601估计信道并且将来自STA 601的UL信号与来自STA 602和604的UL信号分离,则AP可隔离冲突的SS。
在一个示例中,可执行基于奇异值分解(SVD)的随机接入STA预编码。非AP STA i可根据公式1来执行信道的SVD分解:
Figure BDA0003385602840000341
根据下文所述的方法,STA可选择Wi的一列来预编码用于随机接入的SS。
在示例性方法中,可采用基于SVD的预编码来分离冲突的SS。只有观察到与V的任何列匹配的STA的Ui的第j列的非AP STA i可执行随机接入。STA可使用Wi的第j列来预编码STA的传输以形成SS。具有与V的g列匹配的其Ui的g>1列的STA i可发送用Wi的对应列预编码的g SS。如果两个STA i和j基于V的不同列x和y来预编码,则AP可能能够执行单独信道估计并且分离冲突的SS信号,其中z是接收信号:
z=(Uiida+Ujjdb)=(Vxσi,a+Vyσj,b) 公式2
Ui,a=Vx且Uj,b=Vy,并且Ui,a是Ui的第a列,Uj,b是Uj的第b列,并且da是n×1向量,其中第a元素等于1。其余元素可被设定为等于0。σi,a是∑i中的第a列和第a行的元素,并且z是接收信号,因为Vx和Vy是线性无关的,可求解σi,a和σj,b以估计来自两个STA i和j的信道。根据该示例性方法,只有选择V的相同列进行预编码的STA可冲突。AP可分离使用相同LTF但基于V的不同列进行预编码的STA。
不同STA可使用公共LTF序列。在一个示例中,STA可随机地挑选LTF序列,使得如果超过一个STA选择相同Vj,则AP可估计涉及该冲突的STA数量的下界。在每个随机接入STA仅具有一个天线并且V是正交矩阵的情况下,AP可使用VH的行将TF中的LTF预编码为扇区,和/或从仅一个AP扇区接收触发帧的STA可执行随机接入。
在另一个示例性方法中,基于SVD的预编码可用于隔离冲突的SS。在这种情况下,V的列可被分成V=[Ua1,Ua2,...Uaq],其中每个Uai可由一个或多个m×1正交或线性无关列向量组成。对于Uai的任何列和Uaj的任何列而言,这两个列对于任何i≠j是线性无关的。该子空间分离为随机接入STA所知。只有观察到完全在Uas,s∈{1..q}所跨越的子空间内的其Ui的第j列的非AP STA i可执行随机接入。STA使用Wi的第j列来预编码其传输以形成SS。STA可为该SS选择随机LTF序列。具有完全在Uas所跨越的子空间内的其Ui的g1>1列的STA i可发送用Wi的对应列预编码的g1 SS,其中g1SS使用不同LTF序列。具有各自完全在不同
Figure BDA0003385602840000351
所跨越的g2子空间内的其Ui的g2>1列的STA i可发送用Wi的对应列预编码的g2 SS,其中g2 SS使用相同或不同LTF序列。
如果两个STA i和j选择相同LTF序列k,但基于V的不同Uax和Uay的列进行预编码,则AP可能能够执行单独信道估计以分离冲突的SS,其中z是接收信号:
z=(Uiidf+Ujjde)=(Uaxcxσi,f+Uaycyσj,e) 公式3
其中Ui,f=Uaxcx,Uj,e=Uaycy,并且Ui,f是Ui的第f列,Uj,e是Uj的第e列。由于Uax和Uay是线性无关的,因此可求解
Figure BDA0003385602840000352
和cyσj,e以估计来自这两个STA i和j的信道。在该方法中,选择相同LTF序列和相同Uai进行预编码的STA可冲突。然而,该冲突可不影响另一个选择相同LTF序列但不同Uaj进行预编码的STA。在随机接入STA仅具有一个天线并且V是正交矩阵的情况下,AP可使用VH的行来将触发帧中的LTF预编码为扇区。从所定义的AP扇区子组中的仅一个子组中的AP接收触发帧的STA可执行随机接入。在子组1具有扇区1、2并且子组2具有扇区3、4的示例中,接收扇区1或2或两者但不接收扇区3、4的STA可在信道上执行随机接入。
在另一个示例性方法中,随机接入STA预编码可基于信道反转以隔离冲突的SS。在该方法中,非AP STA具有等于或大于V的行的天线数量。非AP STA i可将用于一个SS的其随机接入信号预编码为V的列之一:
Vj=HiPi,j 公式4
其中对于V中的任何j,k列,||Vj||=||Vk||。Pi,j是基于Vj的STA i的预编码向量:
Figure BDA0003385602840000361
STA i可选择具有最小范数的Pi,j以节省功率。否则,STA i可随机地挑选j,其可由此求解Pi,j。在包括STA1、STA2、STA3的示例中,STA1可选择V的第1列并且STA2和STA3可选择V的第2列进行预编码,其中z是接收信号:
Figure BDA0003385602840000362
在该示例中,STA2和STA3可遇到冲突。由于通向AP的STA2和STA3的信道对齐,因此AP仍可求解来自STA1的s1。在该方法中,选择相同Vj的STA将冲突,但该冲突不会影响另一个选择不同Vi的STA。不同STA可使用公共LTF序列。另选地,STA可随机地挑选LTF序列,使得如果超过一个STA选择相同Vj,则AP可估计涉及该冲突的STA数量的下界。
过程可用于低延迟多链路接入。增强低延迟流量性能在无线通信系统中很重要。多链路传输已被认为是该问题的潜在解决方案。在以下示例性过程中,可假定AP或非APSTA可能能够并发地在多个链路上操作,并且AP或非AP STA可能能够获取一个或多个链路。链路可与信道和/或(频)带互换使用。
在一个示例中,可执行网络链路负载测量。在采用多链路操作时,STA/AP可需要获知链路负载状况,然后选择要在其上发射的一个或多个链路。链路负载状况可指示链路上的现有流量和/或预期流量的量。可使用以下任何示例性测量方法来指示链路负载状况。
示例性测量方法可基于UORA(例如,802.11ax中)的使用比率。UORA过程可使AP能够为具有UL流量的STA和/或请求随机地接入介质的STA分配资源。AP所分配的资源可由STA使用或可不由STA使用。UORA过程的使用比率可被定义为给定时间间隔期间所使用的资源相对于所分配的资源的平均比率。例如,AP可在持续时间T内分配N个RU。AP可检查所分配的RU的使用情况,使得可使用M个RU,M≤N。在该示例中,时间段T内的使用比率为M/N。AP可收集K个时间段内的使用比率统计并且平均值可用作使用比率。在一个示例中,可使用滑动窗口内的使用比率的平均值。在一个示例中,可使用多个时间段内的使用比率的加权平均值(例如,与更早的时间段相比,可为最近时间段分配更大的权重)。
另一个示例性测量方法可基于UORA(例如,802.11ax中)的冲突比率。UORA过程可使AP能够为具有UL流量的STA和/或请求随机地接入介质的STA分配资源。AP所分配的资源可由STA使用或可不由STA使用。超过一个STA可选择使用相同资源单元来发射,从而导致冲突。AP可检测到冲突(例如,通过AP检测资源单元上的能量级别高于预定义/预先确定的阈值),和/或AP可能未能检测到资源单元上的帧。UORA过程的冲突比率可被定义为给定时间间隔期间冲突的资源相对于所分配的资源的平均比率。例如,AP可在时间T内分配N个RU。AP可确定M个RU可能冲突,M≤N。在这种情况下,时间段T内的冲突比率可为M/N。AP可收集K个时间段内的该比率并且平均值可用作冲突比率。在一个示例中,可使用滑动窗口内的平均值。在另一个示例中,可使用加权平均值(例如,与更早的时间段相比,可为最近时间段分配更大的权重)。
另一个示例性测量方法可基于空间复用组(SRG)PPDU的比率。SRG可用于允许密集部署的系统中的空间复用传输。SRG PPDU的比率可被定义为SRGPPDU和非SRGPPDU的数量之间的平均比率。例如,AP(或非APSTA)可在时间T内观察到M个非SRG PPDU和N个SRG PPDU。该间隔内的比率可被定义为M/N。该设备可收集K个时间段内的该比率并且平均值可用作使用比率。在一个示例中,可使用滑动窗口内的平均值。在另一个示例中,可使用加权平均值。更大的比率可指示网络更忙(例如,具有更多流量)。在一个示例中,可为最近时隙分配更大的权重。在另一个示例中,可使用非SRG PPDU和SRG PPDU的数量之间的归一化差值。例如,AP(或非AP STA)可在时间T内观察到M个非SRG PPDU和N个SRG PPDU。归一化差值可被定义为
Figure BDA0003385602840000371
更小的归一化差值可指示网络更忙。该参数可进一步由BSS中的支持SRG的STA的比率来归一化。
另一个示例性测量方法可基于截断的TXOP的数量。当可能未完全使用TXOP时,可通过发送无竞争期结束(CF-END)帧来截断TXOP。固定长度时间段内的截断的TXOP的数量可指示信道/链路是否为完全负载的。例如,更大数量的截断的TXOP可指示信道(链路)不太忙(例如,没有许多流量)。
另一个示例性测量方法可基于队列占用率。基于队列占用率的测量可在固定时间段内和/或按照接入类别(AC)进行。设备可为信道/链路中的AC保持队列。在一个示例中,在时间T内,设备可检查作为N1、N2、N3、N4的四个AC内的其队列的最大/平均长度。于是这四个AC的队列占用率可为N1/T、N2/T、N3/T、N4/T。尽管作为示例给出了四个AC,但是可类似地使用任何数量的AC。
基于一个或多个网络链路负载测量值,可为某些传输或具有某些要求的传输(例如,低延迟传输)选择一个或多个链路。一些测量值可在AP和STA之间交换。AP可在对应链路和/或所有链路中的信标帧或其他管理/控制帧中包括和/或请求所收集或所处理的测量值。STA可在对应链路和/或所有链路中的管理/控制帧中或与上行链路数据帧聚合地包括和/或请求所收集或所处理的测量值。
根据示例性链路选择过程,在一个或多个链路上,AP可请求STA测量一个或多个链路负载测量值。AP可发送链路测量请求字段/元素/帧,其可携带于管理帧(诸如信标帧、探查响应帧或控制帧)中。AP可指示所请求的测量值以及建议在其上执行这些测量的对应参数和/或链路。例如,AP可请求链路1、2和3上的队列占用率测量值。AP可指示相关测量参数,诸如持续时间T、最大队列大小或平均队列大小和/或AC请求。在一个示例中,可预定义一个或一组链路负载测量值,并且所有STA都可能需要测量它们。可省略测量请求的传输。
AP可通过发送链路测量报告请求字段/元素/帧来请求STA报告测量值,该链路测量报告请求字段/元素/帧可携带于一个或多个链路上的管理帧(诸如信标帧、探查响应帧或控制帧)中。AP可指示所请求的测量值、链路和对应参数。例如,AP可在链路1上发射请求并且要求在链路1、2、3上测量。接收到测量报告请求的STA可将该报告发送给AP。在一个示例中,该报告可包括在MAC报头中(例如,HE-控制字段中)。在这种情况下,可以在可包括在MAC报头中的HE-控制字段中定义链路/信道选择/自适应字段,以使得STA可将该测量值连同数据字段或其他类型的控制字段一起发射。在一个示例中,可定义链路负载测量报告帧。STA可独立地或与其他帧聚合地发射该帧。该报告的传输可在一个或多个链路上进行。例如,STA可在链路1上发射该报告,这可包括对链路1、2、3的测量值。
AP可从STA收集足够信息。AP可处理所收集的链路负载测量值并且确定或更新链路负载指示符。AP可在信标帧中包括更新的链路负载指示符。在一个示例中,AP可在链路/信道2上发射的信标帧中包括链路/信道1的链路负载指示符。在一个示例中,AP可在一个链路/信道上发射的信标帧中包括所有操作链路/信道的链路负载指示符。AP可进一步为信标间隔中的某些类型的传输选择一个或多个链路/信道。例如,AP可为低延迟传输选择具有最少流量的两个链路/信道。AP可在信标帧中宣布所选择的链路。
可为低延迟传输选择一个或多个链路/信道。在一个示例中,低延迟流量可形成可放在所有所选择的链路/信道中的低延迟(LL)队列。可在第一可用链路/信道上发射该队列中的第一帧。可在第二可用链路/信道上发射该队列中的第二帧,以此类推。可在不同链路/信道上发射该队列中的帧。可将低延迟帧放到所有所选择的链路/信道中的LL队列中,以使得该帧可具有更好的机会接入至少一个链路/信道。可在多个链路上重复地发射低延迟帧。以下给出的过程可用于控制重复传输。
多个链路上的示例性低延迟传输过程可包括重复的低延迟多链路传输。例如,STA、AP STA或非AP STA可形成具有低延迟流量的LL队列。STA可将该队列放在一个或多个所选择的链路/信道中。该队列可在多个链路上携带相同LL帧。多个链路可共享低延迟队列。在每个链路中,STA可使用队列相关增强型分布式信道接入(EDCA)参数为每个队列执行具有退避的CSMA/CA。如果该链路可用于LL队列传输,则可发射LL队列中的帧。除非可在至少一个链路中接收到该帧的肯定确认,否则该帧可保留在其余链路中的LL队列中,或由于其可能未在给定时间段内成功递送,可丢弃该帧。因此,可在接收到肯定确认之前在多个链路上发射该帧多次。重复传输可为该帧提供更高的可靠性。因此,链路选择和队列形成还可基于可靠性要求。例如,LL队列可以是低延迟和高可靠性的流量队列。
多个链路上的另一个示例性低延迟传输过程可包括NAK触发的低延迟多链路传输。例如,STA、AP STA或非AP STA可在多个所选择的链路/信道上形成具有低延迟流量的LL队列。该队列可在多个链路上携带不同LL帧。可在没有肯定确认的情况下在链路1上发射链路1中的一个LL队列中的帧。可将该帧复制并添加到用于其他链路的队列,从而增加该帧在其他链路上重传的机会。在一个示例中,可将一个链路中失效的帧添加到其他链路中的LL队列的开始(前端)。因此,失效的帧有机会先在其他链路上发射。
在上述示例性低延迟传输过程中,帧可能有机会在多个链路上发射。不同链路中使用的调制和编码方案可不同。诸如波束成形、MIMO之类的传输方案在不同链路中可不同。可执行HARQ合并以实现更可靠的传输。因此,HARQ相关参数(例如,HARQ ID、HARQ过程ID、其他HARQ相关参数)可用于指示多个链路上的传输可携带相同帧。
过程可用于EDCA参数调节。可基于一个或多个网络链路负载测量值(例如,最小竞争窗口(CWmin)、最大竞争窗口(CWmax)、仲裁帧间间隔(AIFS)、TXOP限值)来在一个或多个链路上修改EDCA参数。一些测量值可在AP和STA之间交换。AP可在对应链路和/或所有链路中的信标帧中包括所收集或所处理的测量值。AP可在链路k上发射的信标帧中包括用于链路k的EDCA参数集元素。在一个示例中,AP可在链路上发射的信标帧中包括用于所有链路的EDCA参数集元素。
尽管上文以特定组合描述了特征和元件,但是本领域的普通技术人员将理解,每个特征或元件可单独使用或以与其他特征和元件的任何组合来使用。另外,本文所述的方法可在结合于计算机可读介质中以供计算机或处理器执行的计算机程序、软件或固件中实现。计算机可读介质的示例包括电子信号(通过有线或无线连接传输)和计算机可读存储介质。计算机可读存储介质的示例包括但不限于只读存储器(ROM)、随机存取存储器(RAM)、寄存器、高速缓存存储器、半导体存储器设备、磁介质(诸如内置硬盘和可移动磁盘)、磁光介质和光介质(诸如CD-ROM磁盘和数字通用光盘(DVD))。与软件相关联的处理器可用于实现用于WTRU、UE、终端、基站、RNC或任何主计算机的射频收发器。

Claims (20)

1.一种无线发射/接收单元(WTRU),包括:
接收器,所述接收器被配置为从接入点(AP)接收第一触发帧,所述第一触发帧触发使用正交频分多址接入(OFDMA)的随机接入:
发射器,所述发射器被配置为响应于所述第一触发帧而向所述AP发射基于触发的帧,所述基于触发的帧包括信号(SIG)字段中的用户特定控制信息;并且
所述接收器被配置为接收指示在所述AP处成功检测到所述基于触发的帧或未在所述AP处成功检测到所述基于触发的帧的确认/否定确认(ACK/NAK)消息。
2.根据权利要求1所述的WTRU,其中所述第一触发帧包括让所述WTRU使用具有用户特定控制信息的所述SIG字段的请求。
3.根据权利要求1所述的WTRU,其中所述基于触发的帧是基于触发的物理层会聚过程(PLCP)协议数据单元(TB-PPDU)。
4.根据权利要求1所述的WTRU,其中所述SIG字段是SIG-B字段。
5.根据权利要求1所述的WTRU,其中所述用户特定控制信息包括WTRU标识(ID)、流量负载信息、流量延迟信息或流量服务质量(QoS)信息中的至少一者。
6.根据权利要求1所述的WTRU,其中所述发射器被配置为发射所述基于触发的帧作为上行链路(UL)多用户(MU)传输的一部分。
7.根据权利要求1所述的WTRU,其中所述发射器被配置为使用部分资源单元(RU)来发射所述SIG字段。
8.根据权利要求1所述的WTRU,其中所述发射器被配置为使用带宽的一部分来发射所述SIG字段,并且使用整个带宽来发射除所述SIG字段之外的所述基于触发的帧的至少一个字段。
9.根据权利要求1所述的WTRU,其中:
所述接收器进一步被配置为在UL传输冲突时从所述AP接收调度重传帧,所述调度重传帧包括用于至少一个WTRU的重调度信息;并且
在所述调度重传帧指示检测到所述基于触发的帧的冲突的条件下,所述发射器被配置为重传所述基于触发的帧。
10.根据权利要求1所述的WTRU,所述WTRU被配置为非AP站(STA)。
11.一种由无线发射/接收单元(WTRU)执行的方法,所述方法包括:
从接入点(AP)接收第一触发帧,所述第一触发帧触发使用正交频分多址接入(OFDMA)的随机接入;
响应于所述第一触发帧而向所述AP发射基于触发的帧,所述基于触发的帧包括信号(SIG)字段中的用户特定控制信息;以及
接收指示在所述AP处成功检测到所述基于触发的帧或未在所述AP处成功检测到所述基于触发的帧的确认/否定确认(ACK/NAK)消息。
12.根据权利要求11所述的方法,其中所述第一触发帧包括让所述WTRU使用具有用户特定控制信息的所述SIG字段的请求。
13.根据权利要求11所述的方法,其中所述基于触发的帧是基于触发的物理层会聚过程(PLCP)协议数据单元(TB-PPDU)。
14.根据权利要求11所述的方法,其中所述SIG字段是SIG-B字段。
15.根据权利要求11所述的方法,其中所述用户特定控制信息包括WTRU标识(ID)、流量负载信息、流量延迟信息或流量服务质量(QoS)信息中的至少一者。
16.根据权利要求11所述的方法,其中发射所述基于触发的帧作为上行链路(UL)多用户(MU)传输的一部分。
17.根据权利要求11所述的方法,其中使用部分资源单元(RU)来发射所述SIG字段。
18.根据权利要求11所述的方法,其中使用带宽的一部分来发射所述SIG字段,并且使用整个带宽来发射除所述SIG字段之外的所述基于触发的帧的至少一个字段。
19.根据权利要求11所述的方法,还包括:
在UL传输冲突时从所述AP接收调度重传帧,所述调度重传帧包括用于至少一个WTRU的重调度信息;以及
在所述调度重传帧指示检测到所述基于触发的帧的冲突的条件下,重传所述基于触发的帧。
20.根据权利要求11所述的方法,其中所述WTRU被配置为非AP站(STA)。
CN202080040710.0A 2019-05-10 2020-05-04 用于WIFi OFDMA系统中的冲突解决的系统和方法 Pending CN113906701A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962846202P 2019-05-10 2019-05-10
US62/846,202 2019-05-10
US202062971635P 2020-02-07 2020-02-07
US62/971,635 2020-02-07
PCT/US2020/031301 WO2020231661A1 (en) 2019-05-10 2020-05-04 Systems and methods for collision resolution in a wifi ofdma system

Publications (1)

Publication Number Publication Date
CN113906701A true CN113906701A (zh) 2022-01-07

Family

ID=70779967

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080040710.0A Pending CN113906701A (zh) 2019-05-10 2020-05-04 用于WIFi OFDMA系统中的冲突解决的系统和方法

Country Status (6)

Country Link
US (1) US20220330344A1 (zh)
EP (1) EP3966978A1 (zh)
KR (1) KR20220017897A (zh)
CN (1) CN113906701A (zh)
TW (1) TWI824144B (zh)
WO (1) WO2020231661A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102653133B1 (ko) * 2020-12-11 2024-04-01 단국대학교 산학협력단 Mu-mimo 전송을 위한 장치 및 방법
EP4305897A4 (en) * 2021-03-12 2024-07-24 Panasonic Ip Corp America COMMUNICATION APPARATUS AND COMMUNICATION METHOD FOR IMPROVED RANDOM ACCESS
CN115333908B (zh) * 2021-05-10 2024-03-08 苏州速通半导体科技有限公司 无线局域网中的发射器及由其执行的方法
EP4369683A1 (en) * 2022-11-10 2024-05-15 MediaTek Inc. Wi-fi device and associated transmission control method
CN118301782A (zh) * 2024-03-29 2024-07-05 重庆赛力斯凤凰智创科技有限公司 一种多路访问方法和装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170079071A1 (en) * 2015-09-16 2017-03-16 Qualcomm Incorporated Systems, methods, and devices for enhanced ofdma random access
CN106576102A (zh) * 2014-08-10 2017-04-19 Lg 电子株式会社 在无线通信系统中使站能够接收信号的方法和设备
CN107005381A (zh) * 2014-11-27 2017-08-01 Lg电子株式会社 在无线lan中基于不同的导频音图案发送数据的方法和装置
CN107046460A (zh) * 2016-02-06 2017-08-15 华为技术有限公司 一种无线局域网中信道指示的方法和装置
CN107645737A (zh) * 2016-07-21 2018-01-30 中兴通讯股份有限公司 一种信道测量的方法、无线通信装置及设备
US20180092032A1 (en) * 2015-07-09 2018-03-29 Lg Electronics Inc. Random access of station operating in wireless lan system
CN108029143A (zh) * 2015-09-11 2018-05-11 交互数字专利控股公司 用于无线无线局域网(wlan)的多用户并发随机接入的方法和设备
CN108141876A (zh) * 2015-10-20 2018-06-08 Lg电子株式会社 在无线lan系统中发送触发帧的方法和使用该方法的终端
WO2018124725A1 (ko) * 2016-12-27 2018-07-05 주식회사 윌러스표준기술연구소 Ofdma 랜덤 액세스를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
CN109218243A (zh) * 2017-07-04 2019-01-15 华为技术有限公司 一种数据处理方法和装置
CN109586889A (zh) * 2017-09-28 2019-04-05 华为技术有限公司 一种数据处理方法及设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9433018B2 (en) * 2013-09-05 2016-08-30 Futurewei Technologies, Inc. System and method for using SIC to solve WiFi collisions
US10091822B2 (en) * 2014-12-23 2018-10-02 Mediatek Inc. Allocation of uplink resources in orthogonal frequency-division multiple access (OFDMA) wireless networks
EP3163783B1 (en) * 2015-10-30 2019-12-18 Kabushiki Kaisha Toshiba Wireless communication device and wireless communication method
US10356784B2 (en) * 2016-06-14 2019-07-16 Lg Electronics Inc. Method and apparatus for constructing control field including information regarding resource unit in wireless local area network system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106576102A (zh) * 2014-08-10 2017-04-19 Lg 电子株式会社 在无线通信系统中使站能够接收信号的方法和设备
CN107005381A (zh) * 2014-11-27 2017-08-01 Lg电子株式会社 在无线lan中基于不同的导频音图案发送数据的方法和装置
US20180092032A1 (en) * 2015-07-09 2018-03-29 Lg Electronics Inc. Random access of station operating in wireless lan system
CN108029143A (zh) * 2015-09-11 2018-05-11 交互数字专利控股公司 用于无线无线局域网(wlan)的多用户并发随机接入的方法和设备
US20170079071A1 (en) * 2015-09-16 2017-03-16 Qualcomm Incorporated Systems, methods, and devices for enhanced ofdma random access
CN108141876A (zh) * 2015-10-20 2018-06-08 Lg电子株式会社 在无线lan系统中发送触发帧的方法和使用该方法的终端
CN107046460A (zh) * 2016-02-06 2017-08-15 华为技术有限公司 一种无线局域网中信道指示的方法和装置
CN107645737A (zh) * 2016-07-21 2018-01-30 中兴通讯股份有限公司 一种信道测量的方法、无线通信装置及设备
WO2018124725A1 (ko) * 2016-12-27 2018-07-05 주식회사 윌러스표준기술연구소 Ofdma 랜덤 액세스를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
CN109218243A (zh) * 2017-07-04 2019-01-15 华为技术有限公司 一种数据处理方法和装置
CN109586889A (zh) * 2017-09-28 2019-04-05 华为技术有限公司 一种数据处理方法及设备

Also Published As

Publication number Publication date
KR20220017897A (ko) 2022-02-14
TW202110260A (zh) 2021-03-01
EP3966978A1 (en) 2022-03-16
TWI824144B (zh) 2023-12-01
US20220330344A1 (en) 2022-10-13
WO2020231661A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
US11943783B2 (en) Methods, devices and systems for grant-less uplink multiple access
US11700637B2 (en) Methods, apparatuses and systems for supporting multi-user transmissions in a wireless local area network (WLAN) system
CN111587550B (zh) 与非授权频谱相关联的数据传输和harq-ack
CN110800220B (zh) Mimo信道接入
US10218463B2 (en) Method and system for wireless local area network (WLAN) long symbol duration migration
CN112291045B (zh) 用于响应于接收到的帧而传送确认的方法和装置
US12003441B2 (en) Backward compatible physical layer convergence procedure (PLCP) protocol data unit (PPDU) design in wireless local area network (WLAN) system
TWI824144B (zh) 站(sta)及由該站執行的方法
CN113039735A (zh) 用于无线网络中的harq的方法和装置
US11838938B2 (en) Collision mitigation procedures for grant-less uplink multiple access
CN113647192A (zh) 用于在未许可频谱中竞争窗口大小的调整的方法
CN113287278B (zh) 提供wlan的范围扩展的方法和wtru
CN115399055A (zh) Wlan系统中的多ru多ap传输
US20240322962A1 (en) Backward compatible physical layer convergence procedure (plcp) protocol data unit (ppdu) design in wireless local area network (wlan) system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination