CN113904948B - 基于跨层的多维参数的5g网络带宽预测系统及方法 - Google Patents

基于跨层的多维参数的5g网络带宽预测系统及方法 Download PDF

Info

Publication number
CN113904948B
CN113904948B CN202111337402.7A CN202111337402A CN113904948B CN 113904948 B CN113904948 B CN 113904948B CN 202111337402 A CN202111337402 A CN 202111337402A CN 113904948 B CN113904948 B CN 113904948B
Authority
CN
China
Prior art keywords
value
prediction
data
network
bandwidth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111337402.7A
Other languages
English (en)
Other versions
CN113904948A (zh
Inventor
陈锋
毛豪滨
陈平平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202111337402.7A priority Critical patent/CN113904948B/zh
Publication of CN113904948A publication Critical patent/CN113904948A/zh
Application granted granted Critical
Publication of CN113904948B publication Critical patent/CN113904948B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/147Network analysis or design for predicting network behaviour
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/145Network analysis or design involving simulating, designing, planning or modelling of a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5003Managing SLA; Interaction between SLA and QoS
    • H04L41/5009Determining service level performance parameters or violations of service level contracts, e.g. violations of agreed response time or mean time between failures [MTBF]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提出一种基于跨层的多维参数的5G网络带宽预测系统及方法,包括:发送端、预测模型以及接收端;所述发送端采集不同基站服务区的流量数据,进行分类,并选取一组数据发送至预测模型;所述预测模型训练神经网络进行误差梯度下降时,反馈最新的误差数据给发送端;发送端进行精度分析以确定模型的预测效果和当前的物理层信息,随后对所发数据进行校正;所述接收端共有两个数据缓冲区,一个用于存储发送端发送给预测模型的实际流量数据,另一个用于存储预测模型所预测的数据;计算两者的MSE大小,再通过查阅奖励值r表,根据MES的大小给出相应的r值,与新预测状态一同反馈给预测网络的神经网络训练部分。能减少因位置变化造成突发流量而失准。

Description

基于跨层的多维参数的5G网络带宽预测系统及方法
技术领域
本发明属于移动通信技术领域,涉及一种基于跨层的多维参数的5G网络带宽预测系统及方法。
背景技术
随着5G网络的发展和应用,移动终端和网络设备对带宽要求更为严格,用户体验质量(QoE)显得尤为重要。在5G高速高带宽的网络背景下,拥塞控制显得尤为重要,网络资源的合理分配更离不开精确的带宽预测。
传统的带宽预测方法是通过向网络内部注入探测包,分为主动探测和被动探测。利用传输过程中的探测包延时信息进行带宽预测。但在高速且带宽波动性强的5G网络下,单层的预测方法在面对突发流量时就显得捉襟见肘了。
现有技术中,包括:一种基于带宽预测的无线Ad Hoc网络实时视频传输方法,CN101345756A;一种基于RNN神经网络的RTT预测方法,CN111404751A;基于电力业务需求的通信带宽预测方法及装置,CN102938742A;基于电力业务需求的通信带宽预测方法及装置,CN102938742A;等方案虽然有考虑到采用预测模型或机器学习的方式对带宽进行处理,但仍有很大改进空间,且难以直接应用于5G高速高带宽的网络模型当中或效果不佳。
发明内容
考虑到现有技术存在的空白和不足,本发明的目的在于提供一种基于跨层的多维参数的5G网络带宽预测系统及方法。
其搭建一个基于多维参数的5G网络带宽预测模型:发送端采集不同基站服务区数据集,并与接收端共同构建基于深度强化学习的带宽预测模型。借助多维参数,实现跨层预测有效带宽,避免了单层预测因突发流量而导致的预测失准。实时性好,应用范围较广。在5G网络高速高带宽情况下仍可保持较好的预测精度,对于视频会议,多路传输的拥塞控制以及在线游戏的高带宽低延迟的需求,可以提前估计未来带宽,应用设备可以利用该估计来调整其数据传输策略,并显著提高用户QoE。
在实现上是基于物理层的无线信号强度、基站距离,以及上层的数据发包量,采用深度强化学习,建立带宽预测模型。采集多元的数据集(该数据集的采集来自于各个带宽波动情况不同的服务区),对预测模型进行训练。训练完成的带宽预测模型即可应用不同基站服务区的带宽预测。模型使用的多维参数,可以有效避免因位置切换出现突发流量,而导致带宽预测失准,并且模型的预测精度可以在不断的训练中愈发精确,更符合当今5G网络高速高带宽的应用背景。
其具体采用以下技术方案:
一种基于跨层的多维参数的5G网络带宽预测系统,其特征在于,包括:发送端、预测模型以及接收端;
所述发送端采集不同基站服务区的流量数据,进行分类,并选取一组数据发送至预测模型;
所述预测模型训练神经网络进行误差梯度下降时,反馈最新的误差数据给发送端;发送端进行精度分析以确定模型的预测效果和当前的物理层信息,随后对所发数据进行校正;
所述接收端共有两个数据缓冲区,一个用于存储发送端发送给预测模型的实际流量数据,另一个用于存储预测模型所预测的数据;计算两者的MSE大小,再通过查阅奖励值r表,根据MES的大小给出相应的r值,与新预测状态一同反馈给预测网络的神经网络训练部分。
进一步地,所述发送端传输至预测模型的数据包括:位置信息、无线信号强度以及数据发包量;
所述预测模型采用神经网络预测下一时刻的带宽值以及给出每个预测带宽值的预测价值;当记忆库的存储的数据达到训练条件时,神经网络根据记忆库的打包数据,对预测网络误差下降以及目标网络更新;并选取最优价值对应的预测带宽值报告给接收端;
所述接收端根据接收到的预测带宽值,提供新时刻的状态输入S’,并计算预测值与真实值的MSE大小,根据MSE的奖励规则,输出该预测带宽值MSE所对应的奖励值r;
其中,新时刻的状态值S’用于更新旧状态的观测值S。
进一步地,在所述接收端中的具有存储功能的记忆库,负责存储前N时刻的预测带宽值,当存储数据满足训练条件(N,1)时,记忆库调用当前全部所存信息,打包输送给神经网络进行优化;并且,当下一时刻的数据输入时,新记忆挤掉旧记忆。
进一步地,所述神经网络接收来自记忆库的数据信息,同时根据状态S的物理层信息-基站距离和无线信号强度确定带宽区域,以避免因为位置切换出现突发流量而导致带宽预测失准;确定带宽区域后,确定目标网络的Target Q值,以保持强化学习的稳定性;新状态S’导入预测网络,获取预测值的Q值;通过损失函数来不断降低预测误差,当迭代一定次数N时,满足目标网络更换条件,通过预测网络更新目标网络。
一种基于跨层的多维参数的5G网络带宽预测方法,其特征在于,基于如权利要求4所述的基于跨层的多维参数的5G网络带宽预测系统,包括以下步骤:
步骤S1:对神经网络的带宽区间预测部分设置初始区间;根据采集的数据为不同流量波动区域设置区间初始值;输入采集数据,初始状态值S设为采集数据首位;
步骤S2:预测网络根据所接收的数据预测下一时刻的带宽值,并反馈于接收端,与接收端数据存储区下一状态值的带宽值进行比较,计算MSE数值大小;根据计算所得的MSE大小,给出新奖励r;
步骤S3:新状态更新旧状态,同时记忆库存储新旧状态和奖励值;当存储的数据量满足训练条件,记忆库打包发送所存储的数据至神经网络;旧状态输入至预测网络,获取新一时刻的预测值和Q值;其中Q(s,a)←Q(s,a)+α(r+γ*max Q(s',a')-Q(s,a)),γ为学习率;
目标网络得出的未来预测值和目标Q值:Target Q=r+γ*max Q(s',a');
与预测值进行误差分析,计算其误差函数:L(θ)=E[Target Q(s',a')-Q(s,a)];
进行误差梯度下降,从而更新预测参数以训练得到新的预测网络;当训练次数达到N时,即可更新目标网络;
步骤S4:多次输入采集数据,对模型进行训练,使预测网络与目标网络之间的误差函数降低,提高预测精度。
进一步地,学习率γ设置为0.8。
进一步地,在步骤S2中,根据MSE大小设置奖励r值表,数值位于(0,10)设置为5;(10,30)设置为4;(30,60)设置为3;(60,80)设置为3;(80,90)设置为2;(90,100)设置为1;超过100的设置为0。
与现有技术相比,本发明及其优选方案具有应用场景多、适用范围较大,能减少因位置变化造成突发流量而失准的优点。根据本地数据集进行训练的模型,在实际5G网络场景中多次训练亦可达到不错的效果。
附图说明
下面结合附图和具体实施方式对本发明进一步详细的说明:
图1为本发明实施例系统和模型整体框架示意图。
图2为本发明实施例预测模型和接收端数据交互和工作流程示意图。
图3为本发明实施例训练神经网络过程示意图。
图4为本发明实施例整体工作流程示意图。
图5为本发明实施例工作流程步骤一示意图。
图6为本发明实施例工作流程步骤二示意图。
图7为本发明实施例工作流程步骤三示意图。
图8为本发明实施例神经网络结构简要示意图。
具体实施方式
为让本专利的特征和优点能更明显易懂,下文特举实施例,作详细说明如下:
如图1-图8所示,本实施例所包含的技术方案包括所构建的系统模型,分为三个部分:发送端、预测模型以及接收端。
发送端:采集不同基站服务区的流量数据,进行分类,并选取一组数据发送至预测模型。预测模型中训练神经网络,再进行误差下降时,反馈最新的误差数据给发送端,发送端进行精度分析以确定模型的预测效果和当前的物理层信息。随后对所发数据进行校正更新,使得预测模型的范围确定更为合理。
接收端:接收端共有两个数据缓冲区,一个用于存储发送端发送给预测模型的实际流量数据,另一个用于存储预测模型所预测的数据。计算两者的MSE大小,再通过查阅奖励值r表,根据MES的大小给出相应的r值,与新预测状态一同反馈给预测网络的神经网络训练部分。
本实施例预测模型和接收端数据交互和工作流程如图2所示,包括以下步骤和内容:
1:初始状态值,包含位置信息、无线信号强度以及数据发包量。本地训练时,采用数据集的初始时刻数据。
2:深度神经网络,用于预测下一时刻的带宽值以及给出每个预测带宽值的预测价值。当记忆库的存储的数据达到训练条件时,神经网络即可根据记忆库的打包数据,对预测网络误差下降以及目标网络更新。
3:根据预测网络所得的预测价值表,选取最优价值对应的预测带宽值报告给接收端。
4:接收端根据接收到的预测带宽值,提供新时刻的状态输入S’,并计算预测值与真实值的MSE大小,根据MSE的奖励规则,输出该预测带宽值MSE所对应的奖励值r。
5:接收端接收信号,给出新时刻的新状态值S’。
6:接收端接收信号,给出对上一时刻反馈值的奖励r。
7:新时刻的状态值S’更新旧状态的观测值S。
8:具有存储功能的记忆库,负责存储前N时刻的预测带宽值,当存储数据满足训练条件(N,1)时,记忆库调用当前全部所存信息,打包输送给9进行神经网络的优化。并且,当下一时刻的数据输入时,新记忆挤掉旧记忆。
9:如图3所示,接收来自记忆库的数据信息,同时根据状态S的物理层信息-基站距离和无线信号强度确定带宽区域,以避免因为位置切换出现突发流量而导致带宽预测失准。确定带宽区域后,确定目标网络的Target Q值,以保持强化学习的稳定性。新状态S’导入预测网络,获取预测值的Q值。通过损失函数来不断降低预测误差,当迭代一定次数N时,满足目标网络更换条件,通过预测网络更新目标网络。
参照图4,基于以上模型设计,本实施例提供的基于跨层的多维参数的5G网络带宽预测方法,包括以下步骤:
首先对该模型进行本地训练时,需要采集不同基站服务区的流量数据,其中包含学校、商场等公共场所以及地铁、公交等公共交通设施。还有网络覆盖相对较差的郊区地带。
步骤一:如图5所示,设置对神经网络的带宽区间预测部分设置初始区间。根据采集的数据为不同流量波动区域设置合适的区间初始值。输入采集数据,初试状态值S设为采集数据首位。
步骤二:如图6所示,预测网络根据接收数据,进行预测。预测下一时刻的带宽值。反馈于接收端,与接收端数据存储区下一状态值的带宽值进行比较,计算MSE数值大小。环境根据计算所得的MSE大小,给出新奖励r。根据MSE大小设置奖励r值表,数值位于(0,10)设置为5;(10,30)设置为4;(30,60)设置为3;(60,80)设置为3;(80,90)设置为2;(90,100)设置为1;超过100的设置为0。
步骤三:如图7所示,新状态更新旧状态,同时记忆库存储新旧状态和奖励值。当存储的数据量满足训练条件,记忆库打包发送所存储的数据至神经网络。旧状态输入至预测网络,获取新一时刻的预测值和Q值。其中Q(s,a)←Q(s,a)+α(r+γ*max Q(s',a')-Q(s,a)),此处学习率γ设置为0.8。
目标网络得出的未来预测值和目标Q值Target Q=r+γ*max Q(s',a')
与预测值进行误差分析,计算其误差函数L(θ)=E[Target Q(s',a')-Q(s,a)]
进行误差梯度下降,从而更新预测参数以训练得到新的预测网络。当训练次数达到N时,即可更新目标网络,从而获得更为稳定的目标网络和更稳定的学习过程。
步骤四:多次输入采集数据,对模型进行训练,使得预测网络与目标网络之间的误差函数降低,不断提高预测精度。进一步的,将本地数据集训练完成的模型,即可放置在5G网络中进行真实环境的数据训练。以提高模型的预测精度,来满足5G网络下的精准带宽预测要求。
本专利不局限于上述最佳实施方式,任何人在本专利的启示下都可以得出其它各种形式的基于跨层的多维参数的5G网络带宽预测系统及方法,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本专利的涵盖范围。

Claims (7)

1.一种基于跨层的多维参数的5G网络带宽预测系统,其特征在于,包括:发送端、预测模型以及接收端;
所述发送端采集不同基站服务区的流量数据,进行分类,并选取一组数据发送至预测模型;
所述预测模型训练神经网络进行误差梯度下降时,反馈最新的误差数据给发送端;发送端进行精度分析以确定模型的预测效果和当前的物理层信息,随后对所发数据进行校正;
所述接收端共有两个数据缓冲区,一个用于存储发送端发送给预测模型的实际流量数据,另一个用于存储预测模型所预测的数据;计算两者的MSE大小,再通过查阅奖励值r表,根据MES的大小给出相应的r值,与新预测状态一同反馈给预测网络的神经网络训练部分。
2.根据权利要求1所述的基于跨层的多维参数的5G网络带宽预测系统,其特征在于:
所述发送端传输至预测模型的数据包括:位置信息、无线信号强度以及数据发包量;
所述预测模型采用神经网络预测下一时刻的带宽值以及给出每个预测带宽值的预测价值;当记忆库的存储的数据达到训练条件时,神经网络根据记忆库的打包数据,对预测网络误差下降以及目标网络更新;并选取最优价值对应的预测带宽值报告给接收端;
所述接收端根据接收到的预测带宽值,提供新时刻的状态输入S’,并计算预测值与真实值的MSE大小,根据MSE的奖励规则,输出该预测带宽值MSE所对应的奖励值r;
其中,新时刻的状态值S’用于更新旧状态的观测值S。
3.根据权利要求2所述的基于跨层的多维参数的5G网络带宽预测系统,其特征在于:在所述接收端中的具有存储功能的记忆库,负责存储前N时刻的预测带宽值,当存储数据满足训练条件(N,1)时,记忆库调用当前全部所存信息,打包输送给神经网络进行优化;并且,当下一时刻的数据输入时,新记忆挤掉旧记忆。
4.根据权利要求3所述的基于跨层的多维参数的5G网络带宽预测系统,其特征在于:所述神经网络接收来自记忆库的数据信息,同时根据状态S的物理层信息-基站距离和无线信号强度确定带宽区域,以避免因为位置切换出现突发流量而导致带宽预测失准;确定带宽区域后,确定目标网络的Target Q值,以保持强化学习的稳定性;新状态S’导入预测网络,获取预测值的Q值;通过损失函数来不断降低预测误差,当迭代一定次数N时,满足目标网络更换条件,通过预测网络更新目标网络。
5.一种基于跨层的多维参数的5G网络带宽预测方法,其特征在于,基于如权利要求4所述的基于跨层的多维参数的5G网络带宽预测系统,包括以下步骤:
步骤S1:对神经网络的带宽区间预测部分设置初始区间;根据采集的数据为不同流量波动区域设置区间初始值;输入采集数据,初始状态值S设为采集数据首位;
步骤S2:预测网络根据所接收的数据预测下一时刻的带宽值,并反馈于接收端,与接收端数据存储区下一状态值的带宽值进行比较,计算MSE数值大小;根据计算所得的MSE大小,给出新奖励r;
步骤S3:新状态更新旧状态,同时记忆库存储新旧状态和奖励值;当存储的数据量满足训练条件,记忆库打包发送所存储的数据至神经网络;旧状态输入至预测网络,获取新一时刻的预测值和Q值;其中Q(s,a)←Q(s,a)+α(r+γ*max Q(s',a')-Q(s,a)),γ为学习率;
目标网络得出的未来预测值和目标Q值:Target Q=r+γ*max Q(s',a');
与预测值进行误差分析,计算其误差函数:L(θ)=E[Target Q(s',a')-Q(s,a)];进行误差梯度下降,从而更新预测参数以训练得到新的预测网络;当训练次数达到N时,即可更新目标网络;
步骤S4:多次输入采集数据,对模型进行训练,使预测网络与目标网络之间的误差函数降低,提高预测精度。
6.根据权利要求5所述的基于跨层的多维参数的5G网络带宽预测方法,其特征在于:学习率γ设置为0.8。
7.根据权利要求5所述的基于跨层的多维参数的5G网络带宽预测方法,其特征在于:在步骤S2中,根据MSE大小设置奖励r值表,数值位于(0,10)设置为5;(10,30)设置为4;(30,60)设置为3;(60,80)设置为3;(80,90)设置为2;(90,100)设置为1;超过100的设置为0。
CN202111337402.7A 2021-11-12 2021-11-12 基于跨层的多维参数的5g网络带宽预测系统及方法 Active CN113904948B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111337402.7A CN113904948B (zh) 2021-11-12 2021-11-12 基于跨层的多维参数的5g网络带宽预测系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111337402.7A CN113904948B (zh) 2021-11-12 2021-11-12 基于跨层的多维参数的5g网络带宽预测系统及方法

Publications (2)

Publication Number Publication Date
CN113904948A CN113904948A (zh) 2022-01-07
CN113904948B true CN113904948B (zh) 2023-11-03

Family

ID=79194107

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111337402.7A Active CN113904948B (zh) 2021-11-12 2021-11-12 基于跨层的多维参数的5g网络带宽预测系统及方法

Country Status (1)

Country Link
CN (1) CN113904948B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114245420B (zh) * 2022-01-26 2024-04-09 中国联合网络通信集团有限公司 基站控制方法、核心网及存储介质
CN114827132B (zh) * 2022-06-27 2022-09-09 河北东来工程技术服务有限公司 一种船务文件传输控制方法、系统、装置和存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236337A (ja) * 2000-02-22 2001-08-31 Fuji Electric Co Ltd ニューラルネットワークによる予測装置
CN105703954A (zh) * 2016-03-17 2016-06-22 福州大学 一种基于arima模型的网络数据流预测方法
CN111243269A (zh) * 2019-12-10 2020-06-05 福州市联创智云信息科技有限公司 基于融合时空特征的深度网络的交通流预测方法
CN111404751A (zh) * 2020-03-20 2020-07-10 南京大学 一种基于rnn神经网络的rtt预测方法
CN112053560A (zh) * 2020-08-27 2020-12-08 武汉理工大学 基于神经网络的短时交通流量预测方法、系统和存储介质
CN112235164A (zh) * 2020-11-05 2021-01-15 全球能源互联网研究院有限公司 一种基于控制器的神经网络流量预测装置
CN112668235A (zh) * 2020-12-07 2021-04-16 中原工学院 基于离线模型预训练学习的ddpg算法的机器人控制方法
CN113179175A (zh) * 2021-03-16 2021-07-27 国家电网有限公司信息通信分公司 一种电力通信网业务的实时带宽预测方法及装置
WO2021169577A1 (zh) * 2020-02-27 2021-09-02 山东大学 一种基于加权联邦学习的无线业务流量预测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9203764B2 (en) * 2012-07-11 2015-12-01 Telefonaktiebolaget L M Ericsson (Publ) Quality of experience enhancement through feedback for adjusting the quality of service in communication networks
SG10201903974UA (en) * 2019-04-06 2020-11-27 Avanseus Holdings Pte Ltd Method and system for accelerating convergence of recurrent neural network for machine failure prediction
US11055616B2 (en) * 2019-11-18 2021-07-06 UMNAI Limited Architecture for an explainable neural network

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236337A (ja) * 2000-02-22 2001-08-31 Fuji Electric Co Ltd ニューラルネットワークによる予測装置
CN105703954A (zh) * 2016-03-17 2016-06-22 福州大学 一种基于arima模型的网络数据流预测方法
CN111243269A (zh) * 2019-12-10 2020-06-05 福州市联创智云信息科技有限公司 基于融合时空特征的深度网络的交通流预测方法
WO2021169577A1 (zh) * 2020-02-27 2021-09-02 山东大学 一种基于加权联邦学习的无线业务流量预测方法
CN111404751A (zh) * 2020-03-20 2020-07-10 南京大学 一种基于rnn神经网络的rtt预测方法
CN112053560A (zh) * 2020-08-27 2020-12-08 武汉理工大学 基于神经网络的短时交通流量预测方法、系统和存储介质
CN112235164A (zh) * 2020-11-05 2021-01-15 全球能源互联网研究院有限公司 一种基于控制器的神经网络流量预测装置
CN112668235A (zh) * 2020-12-07 2021-04-16 中原工学院 基于离线模型预训练学习的ddpg算法的机器人控制方法
CN113179175A (zh) * 2021-03-16 2021-07-27 国家电网有限公司信息通信分公司 一种电力通信网业务的实时带宽预测方法及装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Buffer- driven rate control and packet distribution for real-time videos in heterogeneous wireless networks;F. Chen等;《IEEE Access》;第7卷;27401–27415 *
Perm: Neural adaptive video streaming with multi-path transmission;Y. Guan等;《IEEE INFOCOM 2020-IEEE Conference on Computer Communications》;1103–1112 *
基于改进Elman神经网络的网络流量预测;党小超;郝占军;;计算机应用(第10期);全文 *
基于流量倾斜分类的网络调度算法仿真;刘岩;;计算机仿真(第11期);全文 *
实时视频传输的帧级别前向纠错信道编码;陈平平等;《厦门大学学报》;第59卷(第6期);965-968 *
构无线网络下实时视频传输码率控制策略;陈锋等;《计算机工程与设计》;第40卷(第12期);3408-3411 *

Also Published As

Publication number Publication date
CN113904948A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
CN113904948B (zh) 基于跨层的多维参数的5g网络带宽预测系统及方法
CN110809306A (zh) 一种基于深度强化学习的终端接入选择方法
EP3847841B1 (en) Procedure for optimization of self-organizing network
CN109587519B (zh) 基于q学习的异构网络多径视频传输控制系统及方法
CN111132192B (zh) 一种无人机基站在线轨迹优化方法
Zemouri et al. An altruistic prediction-based congestion control for strict beaconing requirements in urban VANETs
CN114595632A (zh) 一种基于联邦学习的移动边缘缓存优化方法
CN103607737A (zh) 一种异构网络业务分流方法及系统
CN111245670A (zh) 一种测量链路实时丢包率的方法和系统
CN108391143A (zh) 一种基于q学习的无线网络视频传输自适应控制方法
CN105992252A (zh) 用户设备ue的ue上下文的处理方法和装置
CN110896565B (zh) 一种短波智能信道选择方法
CN111526592B (zh) 一种用于无线干扰信道中的非协作多智能体功率控制方法
CN103841605B (zh) 一种实现多个bbu设备间基带信号协同处理的方法与设备
CN104168596A (zh) 用于lte网络中基于移动用户分组设置切换参数的移动优化方法
CN113950113B (zh) 一种基于隐马尔科夫的车联网切换决策方法
CN113316087B (zh) 一种lte系统中基于终端位置预测的动态寻呼方法
CN107241754A (zh) 自适应上行参考信号传输方法及相应的功能单元
CN104219090A (zh) 一种媒体多径中继传输业务体验质量协同评价系统及方法
Bhadauria et al. QoS based deep reinforcement learning for V2X resource allocation
CN101917753B (zh) 一种异构网络联合呼叫控制策略的确定方法
CN108770025B (zh) 基于ran切片的异构无线网络切换方法
CN116133082A (zh) 一种提高航空自组网拓扑持续时间的多跳分簇方法
CN114125962B (zh) 一种自适应网络切换方法、系统及存储介质
CN113115355B (zh) 一种d2d系统中基于深度强化学习的功率分配方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant