CN113902956B - 融合模型的训练方法、图像融合方法、装置、设备及介质 - Google Patents
融合模型的训练方法、图像融合方法、装置、设备及介质 Download PDFInfo
- Publication number
- CN113902956B CN113902956B CN202111168236.2A CN202111168236A CN113902956B CN 113902956 B CN113902956 B CN 113902956B CN 202111168236 A CN202111168236 A CN 202111168236A CN 113902956 B CN113902956 B CN 113902956B
- Authority
- CN
- China
- Prior art keywords
- training
- image
- fusion
- alignment
- attribute
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012549 training Methods 0.000 title claims abstract description 329
- 230000004927 fusion Effects 0.000 title claims abstract description 226
- 238000000034 method Methods 0.000 title claims abstract description 62
- 238000007500 overflow downdraw method Methods 0.000 title claims abstract description 30
- 230000006870 function Effects 0.000 claims abstract description 83
- 230000009466 transformation Effects 0.000 claims abstract description 49
- 238000012545 processing Methods 0.000 abstract description 11
- 238000013473 artificial intelligence Methods 0.000 abstract description 3
- 238000013135 deep learning Methods 0.000 abstract description 2
- 238000004891 communication Methods 0.000 description 11
- 238000004590 computer program Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 241001465754 Metazoa Species 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- 230000003042 antagnostic effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/24—Aligning, centring, orientation detection or correction of the image
- G06V10/245—Aligning, centring, orientation detection or correction of the image by locating a pattern; Special marks for positioning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/774—Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20221—Image fusion; Image merging
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Multimedia (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Evolutionary Biology (AREA)
- Mathematical Physics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Image Analysis (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
Abstract
本公开提供了融合模型的训练方法、图像融合方法、装置、电子设备、存储介质以及程序产品,涉及人工智能技术领域,尤其涉及计算机视觉和深度学习技术领域,可应用于人脸图像处理和人脸识别等场景。具体实现方案为:将训练源图像和训练模板图像输入至融合模型中,得到训练融合图像;对训练融合图像进行属性对齐变换,得到训练对齐图像,训练对齐图像的属性信息和训练源图像的属性信息一致;以及利用身份损失函数训练融合模型,身份损失函数是针对训练源图像和训练对齐图像生成的。
Description
技术领域
本公开涉及人工智能技术领域,尤其涉及计算机视觉和深度学习技术领域,可应用于人脸图像处理和人脸识别等场景,具体涉及融合模型的训练方法、图像融合方法、装置、电子设备、存储介质以及程序产品。
背景技术
图像融合可以是指将两幅或者多幅图像综合成一幅新的图像的技术。图像融合能够利用多幅图像之间的相关性和互补性,使得融合后得到的新的图像有更全面、清晰的内容展示,从而有利于识别和探测。为公共安全、信息安全、金融安全层面的应用发展提供巨大帮助。
发明内容
本公开提供了一种融合模型的训练方法、图像融合方法、装置、电子设备、存储介质以及程序产品。
根据本公开的一方面,提供了一种融合模型的训练方法,包括:将训练源图像和训练模板图像输入至融合模型中,得到训练融合图像;对所述训练融合图像进行属性对齐变换,得到训练对齐图像,其中,所述训练对齐图像的属性信息和所述训练源图像的属性信息一致;以及利用身份损失函数训练所述融合模型,其中,所述身份损失函数是针对所述训练源图像和所述训练对齐图像生成的。
根据本公开的另一方面,提供了一种图像融合方法,包括:将待融合图像和模板图像输入至融合模型中,得到融合图像;其中,所述融合模型利用根据如上所述的融合模型的训练方法训练得到。
根据本公开的另一方面,提供了一种融合模型的训练装置,包括:训练融合模块,用于将训练源图像和训练模板图像输入至融合模型中,得到训练融合图像;属性变换模块,用于对所述训练融合图像进行属性对齐变换,得到训练对齐图像,其中,所述训练对齐图像的属性信息和所述训练源图像的属性信息一致;以及训练模块,用于利用身份损失函数训练所述融合模型,其中,所述身份损失函数是针对所述训练源图像和所述训练对齐图像生成的。
根据本公开的另一方面,提供了一种图像融合装置,包括:融合模块,用于将待融合图像和模板图像输入至融合模型中,得到融合图像;其中,所述融合模型利用如上所述的融合模型的训练方法训练得到。
根据本公开的另一方面,提供了一种电子设备,包括:至少一个处理器;以及与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上所述的方法。
根据本公开的另一方面,提供了一种存储有计算机指令的非瞬时计算机可读存储介质,其中,所述计算机指令用于使所述计算机执行如上所述的方法。
根据本公开的另一方面,提供了一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现如上所述的方法。
应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。
附图说明
附图用于更好地理解本方案,不构成对本公开的限定。其中:
图1示意性示出了根据本公开实施例的可以应用图像融合方法及装置的示例性系统架构;
图2示意性示出了根据本公开实施例的融合模型的训练方法的流程图;
图3示意性示出了根据本公开另一实施例的融合模型的训练方法的流程示意图;
图4示意性示出了根据本公开另一实施例的融合模型的训练方法的流程示意图;
图5示意性示出了根据本公开实施例的图像融合方法的流程图;
图6示意性示出了根据本公开另一实施例的图像融合方法的流程图;
图7示意性示出了根据本公开实施例的融合模型的训练装置的框图;
图8示意性示出了根据本公开实施例的图像融合装置的框图;以及
图9示意性示出了根据本公开实施例的适于实现图像融合方法的电子设备的框图。
具体实施方式
以下结合附图对本公开的示范性实施例做出说明,其中包括本公开实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本公开的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。
本公开提供了一种融合模型的训练方法、图像融合方法、装置、电子设备、存储介质以及程序产品。
根据本公开的实施例,融合模型的训练方法可以包括:将训练源图像和训练模板图像输入至融合模型中,得到训练融合图像;对训练融合图像进行属性对齐变换,得到训练对齐图像,其中,训练对齐图像的属性信息和训练源图像的属性信息一致;以及利用身份损失函数训练融合模型,其中,身份损失函数是针对训练源图像和训练对齐图像生成的。
根据本公开的实施例,图像融合的方法,将待融合图像和模板图像输入至融合模型中,得到融合图像,其中,融合模型利用本公开实施例提供的融合模型的训练方法训练得到。
本公开的技术方案中,所涉及的用户个人信息的收集、存储、使用、加工、传输、提供和公开等处理,均符合相关法律法规的规定,且不违背公序良俗。
图1示意性示出了根据本公开实施例的可以应用图像融合方法及装置的示例性系统架构。
需要注意的是,图1所示仅为可以应用本公开实施例的系统架构的示例,以帮助本领域技术人员理解本公开的技术内容,但并不意味着本公开实施例不可以用于其他设备、系统、环境或场景。例如,在另一实施例中,可以应用图像融合方法及装置的示例性系统架构可以包括终端设备,但终端设备可以无需与服务器进行交互,即可实现本公开实施例提供的图像融合方法及装置。
如图1所示,根据该实施例的系统架构100可以包括终端设备101、102、103,网络104和服务器105。网络104用以在终端设备101、102、103和服务器105之间提供通信链路的介质。网络104可以包括各种连接类型,例如有线和/或无线通信链路等等。
用户可以使用终端设备101、102、103通过网络104与服务器105交互,以发送源图像和模板图像,接收融合图像。终端设备101、102、103上可以安装有各种通讯客户端应用,例如加载有图像融合方法的应用程序等(仅为示例)。
终端设备101、102、103可以是具有显示屏并且具有摄像装置的各种电子设备,包括但不限于智能手机、平板电脑、膝上型便携计算机和台式计算机等等。
服务器105可以是提供各种服务的服务器,例如对用户利用终端设备101、102、103所上传的源图像和模板图像提供支持的后台管理服务器(仅为示例)。后台管理服务器可以对源图像和模板图像进行图像融合处理,得到融合图像,并将融合图像反馈给终端设备。
需要说明的是,本公开实施例所提供的图像融合方法一般可以由终端设备101、102、或103执行。相应地,本公开实施例所提供的图像融合装置也可以设置于终端设备101、102、或103中。
或者,本公开实施例所提供的图像融合方法一般也可以由服务器105执行。相应地,本公开实施例所提供的图像融合装置一般可以设置于服务器105中。本公开实施例所提供的图像融合方法也可以由不同于服务器105且能够与终端设备101、102、103和/或服务器105通信的服务器或服务器集群执行。相应地,本公开实施例所提供的图像融合装置也可以设置于不同于服务器105且能够与终端设备101、102、103和/或服务器105通信的服务器或服务器集群中。
应该理解,图1中的终端设备、网络和服务器的数目仅仅是示意性的。根据实现需要,可以具有任意数目的终端设备、网络和服务器。
图2示意性示出了根据本公开实施例的融合模型的训练方法的流程图。
如图2所示,该方法包括操作S210~S230。
在操作S210,将训练源图像和训练模板图像输入至融合模型中,得到训练融合图像。
在操作S220,对训练融合图像进行属性对齐变换,得到训练对齐图像,其中,训练对齐图像的属性信息和训练源图像的属性信息一致。
在操作S230,利用身份损失函数训练融合模型,其中,身份损失函数是针对训练源图像和训练对齐图像生成的。
根据本公开的实施例,训练源图像可以是待融合的图像,训练源图像中可以包括源人脸对象,但是并不局限于此,还可以包括源动物脸对象、或者其他源对象。
根据本公开的实施例,训练模板图像可以是目标图像,训练模板图像中可以包括目标人脸对象,但是并不局限于此,还可以包括目标动物脸对象、或者其他目标对象。
需要说明的是,训练模板图像的数量不做限定。例如可以是1个,也可以是多个。只要是能够与训练源图像同时输入至融合模型中,得到训练融合图像即可。
根据本公开的实施例,利用融合模型,可以将训练源图像和训练模板图像进行融合,生成训练融合图像。
例如,利用融合模型,将训练源图像的身份信息迁移到训练模板图像中,同时保留训练模板图像的属性信息不变。
根据本公开的实施例,可以通过约束训练对齐图像的身份信息与训练源图像的身份信息之间的身份相似度来训练融合模型。例如,生成针对训练对齐图像与训练源图像的身份损失函数,利用身份损失函数来训练融合模型。
根据本公开的实施例,可以利用属性对齐变换的方式,对训练融合图像的属性信息进行属性对齐变换,生成训练对齐图像。训练对齐图像的属性信息与训练源图像的属性信息一致。进而在利用身份损失函数来计算训练对齐图像的身份信息与训练源图像的身份信息之间的身份损失值的情况下,已经将二者之间的属性信息的干扰排出,仅涉及身份信息。由此可以使得在利用身份损失函数训练融合模型的过程中,不会产生因属性信息不一致而引入的对抗噪声,进而提高融合模型训练的可实施性以及稳定性。
在本公开的实施例中,涉及人脸对象的训练源图像和训练模板图像通过各种公开、合法合规的方式获取,例如可以来自于公开数据集,或者是经过了人脸图像对应的用户的授权的图像。
需要说明的是,在本公开的实施例中融合模型不是针对某一特定用户的融合模型,并不能反映出某一特定用户的个人信息。融合模型的构建是在经用户授权后执行的,其构建过程符合相关法律法规。
下面结合具体实施例,并参考图3~图6对例如图2所示的融合模型的训练方法做进一步说明。
根据本公开的实施例,操作S220中,对训练融合图像进行属性对齐变换,得到训练对齐图像。其中,属性对齐变换可以包括例如姿态属性对齐变换、妆容属性对齐变换、表情属性对齐变换中的一项或多项。但是并不局限于此。还可以包括年龄属性对齐变换、头型属性对齐变换等。
根据本公开的实施例,姿态属性对齐变换可以是更改脸部姿态,例如仿真不同的脸部姿态,将脸部进行正脸化等变换。
根据本公开的实施例,妆容属性对齐变换可以是更改妆容,例如妆容的迁移。
根据本公开的实施例,表情属性对齐变换可以指更改脸部的表情,包括嘴唇、鼻子等对合成表情有意义的图像区域的表情。
根据本公开的实施例,可以采用各种属性变换网络对训练融合图像进行属性对齐变换。
根据本公开的示例性实施例,可以利用多属性的对齐变换模型。例如,利用StyleGAN(风格属性生成对抗网络)与3DMM(3D Morphable Model,三维可变人脸模型)结合而形成的多属性的对齐变换模型。
利用本公开实施例提供的多属性的对齐变换模型来对训练融合图像进行属性对齐变换,能够快速地对多种属性信息进行属性对齐变化的编辑处理。使得生成的训练对齐图像与训练源图像能够同时满足姿态属性信息一致、妆容属性信息一致、以及表情属性信息一致。
根据本公开的实施例,可以同时将训练融合图像和训练源图像的属性特征向量作为输入数据输入至多属性的对齐变换模型中,得到经属性对齐变换处理的训练对齐图像。训练对齐图像经训练源图像的属性特征向量约束,使得训练对齐图像的属性信息与训练源图像的属性信息保持一致。进而利用训练对齐图像的身份信息与训练源图像的身份信息得到的身份损失值不会引入额外的属性信息,降低属性信息的干扰,提高融合图像的训练成功率。
根据本公开的实施例,操作S230中,在利用身份损失函数训练融合模型的过程中,可以根据实际需要获取多个训练样本,每个训练样本可以包括:训练源图像和训练模板图像。其中,训练源图像中的源对象和训练模板图像中的目标对象之间可以类别相同(例如同为人脸或者动物脸的类别)、属性信息不同、以及身份信息不同。
根据本公开的实施例,可以利用针对训练对齐图像与训练源图像生成的身份损失函数来计算训练对齐图像的身份信息与训练源图像的身份信息之间的身份损失值,基于身份损失值调整融合模型的参数,直至身份损失值满足预定身份损失阈值。将身份损失值满足预定身份损失阈值的融合模型作为经训练的融合模型,例如身份损失值大于或等于预定身份损失阈值的融合模型作为经训练的融合模型,以便将经训练的融合模型作为图像融合的应用模型。
根据本公开的示例性实施例,还可以利用身份损失函数和属性损失函数结合的方式来训练融合模型。使得训练对齐图像的身份信息能够与训练源图像的身份信息保持一致,并且训练融合图像的属性信息能够与训练模板图像的属性信息保持一致。
图3示意性示出了根据本公开另一实施例的融合模型的训练方法的流程示意图。
如图3所示,可以将训练源图像310和训练模板图像320输入至融合模型330中,得到训练融合图像340。对训练融合图像340进行属性对齐变换,例如可以是将训练融合图像340输入至属性变换网络350得到训练对齐图像360。针对训练源图像310和训练对齐图像360生成身份损失函数370。针对训练融合图像340和训练模板图像320生成属性损失函数380。基于身份损失函数370和属性损失函数380,确定联合损失函数。利用联合损失函数训练融合模型。
根据本公开的实施例,属性损失函数可以是生成对抗网络系列中的特征匹配损失函数(GAN Feature Matching),但是并不局限于此,还可以是其他特征匹配损失函数。只要是能够用来约束训练模板图像的属性信息与训练融合图像属性信息之间的属性一致性的损失函数即可。
根据本公开的实施例,身份损失函数可以是ArcFace(弧面)损失函数,但是并不局限于此,还可以是其他特征匹配损失函数。只要是能够用来约束训练源图像的身份信息与训练对齐图像身份信息之间的身份一致性的损失函数即可。
根据本公开的实施例,联合损失函数L可以是属性损失函数L1与身份损失函数L2结合例如相加确定。例如,L=L1+L2。但是并不局限于此。还可以为属性损失函数与身份损失函数配置权重,将属性损失函数与身份损失函数并结合各自对应的权重W1和W2来确定联合损失函数。例如,L=W1*L1+W2*L2。
根据本公开的实施例,利用联合损失函数训练融合模型可以包括如下操作。
例如,获取训练源图像的第一身份信息和训练对齐图像的第二身份信息;将第一身份信息和第二身份信息输入至身份损失函数中,得到身份损失值;获取训练模板图像的第一属性信息和训练融合图像的第二属性信息;将第一属性信息和第二属性信息输入至身份损失函数中,得到属性损失值;以及基于身份损失值和属性损失值,训练融合模型。
根据本公开的实施例,基于身份损失值和属性损失值,训练融合模型可以包括如下操作。
例如,基于身份损失值与属性损失值,得到联合损失值。将联合损失值与预定联合损失阈值进行比较,在联合损失值不满足预定联合损失阈值的情况下,可以调整融合模型的参数。在联合损失值满足预定联合损失阈值的情况下,例如在联合损失值大于或等于预定联合损失阈值的情况下,可以表明融合模型训练完成。
还例如,基于身份损失值与属性损失值,得到联合损失值。基于联合损失值,调整融合模型的参数,直至联合损失值收敛。在联合损失值收敛的情况下,表明融合模型的训练完成。
根据本公开的实施例,训练对齐图像的身份信息可以与训练源图像的身份信息一致,训练完成的融合模型输出的训练融合图像的属性信息可以与训练模板图像的属性信息一致,进而使得训练融合图像与融合训练源图像保留有身份相似性,并且训练融合图像与训练模板图像保留有属性相似性。
根据本公开的示例性实施例,可以基于生成对抗网络(GAN),将融合模型作为生成器,再结合鉴别器,采用生成对抗网络的训练方式对融合模型做进一步地训练。
根据本公开的实施例,鉴别器可以基于神经网络构建。例如深度神经网络(DeepNeural Network,DNN)、卷积神经网络(Convolutional Neural Network,CNN)、循环神经网络(Recurrent NeuralNetwork,RNN)等,在此不做限定,只要能与融合模型匹配,实现生成对抗网络即可。
根据本公开的实施例,生成对抗网络的训练过程可以包括如下操作。例如,可以固定融合模型的参数,训练鉴别器。可以利用融合模型输出的训练融合图像和训练源图像作为鉴别器的鉴别训练数据,用鉴别训练数据来训练鉴别器。循环训练多次鉴别器后,训练一次融合模型,使得鉴别器尽可能区分不开训练融合图像和训练源图像。
根据本公开的实施例,经过多次训练迭代后,使得鉴别器的输出概率为0.5,即可认为融合模型训练完成。
根据本公开的实施例,融合模型作为生成器经过生成对抗网络的方式训练,提高融合模型输出的融合图像的真实度,使得融合图像贴合真实图像。
图4示意性示出了根据本公开另一实施例的融合模型的训练方法的流程示意图。
如图4所示的融合模型的训练方法与如图3所示的融合模型的训练方法的不同之处在于,对训练源图像和训练模板图像分别进行关键点对齐预处理。例如,可以对训练源图像411进行关键点对齐,得到训练对齐源图像412;对训练模板图像421进行关键点对齐,得到训练对齐模板图像422;以及将训练对齐源图像412和训练对齐模板图像422输入至融合模型330中,得到训练融合图像340。对训练融合图像340进行属性对齐变换,例如可以是将训练融合图像340输入至属性变换网络350得到训练对齐图像360。针对训练对齐源图像412和训练对齐图像360生成身份损失函数370。针对训练融合图像340和训练对齐模板图像422生成属性损失函数380。基于身份损失函数370和属性损失函数380,确定联合损失函数。利用联合损失函数训练融合模型。
根据本公开的示例性实施例,可以对训练源图像利用脸部5点关键点检测,再通过ArcFace裁剪方式得到被裁剪的关键点对齐的训练对齐源图像。
根据本公开的示例性实施例,可以对训练模板图像利用脸部72点关键点检测,再通过FFHQ(Flickr-Faces-High-Quality,高清人脸数据集)裁剪方式得到被裁剪的关键点对齐的训练对齐模板图像。
利用本公开实施例提供的关键点对齐预处理操作,使得输入至融合模型的两个图像的图像关键点对齐例如分辨率等信息一致,有利于融合模型的训练融合图像的生成,加快融合模型的训练速度。而且,也有利于从训练对齐模板图像中提取属性信息,以及从训练对齐源图像中提取身份信息,方便身份损失值以及属性损失值的计算。
图5示意性示出了根据本公开实施例的图像融合方法的流程图。
如图5所示,该方法包括操作S510。
操作S510,将待融合图像和模板图像输入至融合模型中,得到融合图像,其中,融合模型利用本公开实施例提供的融合模型的训练方法训练得到。
根据本公开的实施例,待融合图像中可以包括源人脸对象,但是并不局限于此,还可以包括源动物脸对象、或者其他源对象。
根据本公开的实施例,模板图像可以是目标图像,模板图像中可以包括目标人脸对象,但是并不局限于此,还可以包括目标动物脸对象、或者其他目标对象。
需要说明的是,模板图像的数量不做限定。例如可以是1个,也可以是多个。只要是能够与待融合图像同时输入至融合模型中,得到融合图像即可。
根据本公开的实施例,利用融合模型,可以将待融合图像和模板图像进行融合,生成融合图像。
利用本公开实施例提供的图像融合方法,利用本公开实施例提供的融合模型的训练方法训练得到的融合模型来生成融合图像,提高融合图像与待融合图像的身份相似度,并且可以减少融合图像中由于属性信息干扰而导致的伪影等问题。
下面参考图6,结合具体实施例对例如图5所示的图像融合方法做进一步说明。
图6示意性示出了根据本公开另一实施例的图像融合方法的流程示意图。
如图6所示,对待融合图像611进行关键点对齐,得到对齐待融合图像612;对模板图像621进行关键点对齐,得到对齐模板图像622;以及将对齐待融合图像612和对齐模板图像622输入至融合模型630中,得到融合图像640。
根据本公开的示例性实施例,可以对待融合图像利用脸部5点关键点检测,再通过ArcFace裁剪方式得到被裁剪的关键点对齐的对齐待融合图像。
根据本公开的示例性实施例,可以对模板图像利用脸部72点关键点检测,再通过FFHQ(Flickr-Faces-High-Quality,高清人脸数据集)裁剪方式得到被裁剪的关键点对齐的对齐模板图像。
利用本公开实施例提供的关键点对齐预处理操作,使得输入至融合模型的两个图像的图像关键点对齐例如分辨率等信息一致,有利于融合模型的融合图像的生成,加快处理速度,并提高融合图像的真实度。
图7示意性示出了根据本公开实施例的融合模型的训练装置的框图。
如图7所示,融合模型的训练装置700可以包括训练融合模块710、属性变换模块720、训练模块730。
训练融合模块710,用于将训练源图像和训练模板图像输入至融合模型中,得到训练融合图像。
属性变换模块720,用于对训练融合图像进行属性对齐变换,得到训练对齐图像,其中,训练对齐图像的属性信息和训练源图像的属性信息一致。
训练模块730,用于利用身份损失函数训练融合模型,其中,身份损失函数是针对训练源图像和训练对齐图像生成的。
根据本公开的实施例,训练模块可以包括联合单元、训练单元。
联合单元,用于基于身份损失函数和属性损失函数,确定联合损失函数,其中,属性损失函数是针对训练融合图像和训练模板图像生成的。
训练单元,用于利用联合损失函数训练融合模型。
根据本公开的实施例,训练单元可以包括第一获取子单元、第一输入子单元、第二获取子单元、第二输入子单元、训练子单元。
第一获取子单元,用于获取训练源图像的第一身份信息和训练对齐图像的第二身份信息。
第一输入子单元,用于将第一身份信息和第二身份信息输入至身份损失函数中,得到身份损失值。
第二获取子单元,用于获取训练模板图像的第一属性信息和训练融合图像的第二属性信息。
第二输入子单元,用于将第一属性信息和第二属性信息输入至身份损失函数中,得到属性损失值。
训练子单元,用于基于身份损失值和属性损失值,训练融合模型。
根据本公开的实施例,训练融合模块可以包括第一训练对齐单元、第二训练对齐单元、训练融合单元。
第一训练对齐单元,用于对训练源图像进行关键点对齐,得到训练对齐源图像。
第二训练对齐单元,用于对训练模板图像进行关键点对齐,得到训练对齐模板图像。
训练融合单元,用于将训练对齐源图像和训练对齐模板图像输入至融合模型中,得到训练融合图像。
根据本公开的实施例,属性对齐变换包括以下至少一项:姿态属性对齐变换、妆容属性对齐变换、表情属性对齐变换。
图8示意性示出了根据本公开实施例的图像融合装置的框图。
如图8所示,图像融合装置800可以包括融合模块810。
融合模块810,用于将待融合图像和模板图像输入至融合模型中,得到融合图像。
根据本公开的实施例,融合模型可以利用融合模型的训练方法训练得到。
根据本公开的实施例,融合模块可以包括第一对齐单元、第二对齐单元、融合单元。
第一对齐单元,用于对待融合图像进行关键点对齐,得到对齐待融合图像。
第二对齐单元,用于对模板图像进行关键点对齐,得到对齐模板图像。
融合单元,用于将对齐待融合图像和对齐模板图像输入至融合模型中,得到融合图像。
根据本公开的实施例,本公开还提供了一种电子设备、一种可读存储介质和一种计算机程序产品。
根据本公开的实施例,一种电子设备,包括:至少一个处理器;以及与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行如上所述的方法。
根据本公开的实施例,一种存储有计算机指令的非瞬时计算机可读存储介质,其中,计算机指令用于使计算机执行如上所述的方法。
根据本公开的实施例,一种计算机程序产品,包括计算机程序,计算机程序在被处理器执行时实现如上所述的方法。
图9示出了可以用来实施本公开的实施例的示例电子设备900的示意性框图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本公开的实现。
如图9所示,设备900包括计算单元901,其可以根据存储在只读存储器(ROM)902中的计算机程序或者从存储单元908加载到随机访问存储器(RAM)903中的计算机程序,来执行各种适当的动作和处理。在RAM 903中,还可存储设备900操作所需的各种程序和数据。计算单元901、ROM 902以及RAM 903通过总线904彼此相连。输入/输出(I/O)接口905也连接至总线904。
设备900中的多个部件连接至I/O接口905,包括:输入单元906,例如键盘、鼠标等;输出单元907,例如各种类型的显示器、扬声器等;存储单元908,例如磁盘、光盘等;以及通信单元909,例如网卡、调制解调器、无线通信收发机等。通信单元909允许设备900通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。
计算单元901可以是各种具有处理和计算能力的通用和/或专用处理组件。计算单元901的一些示例包括但不限于中央处理单元(CPU)、图形处理单元(GPU)、各种专用的人工智能(AI)计算芯片、各种运行机器学习模型算法的计算单元、数字信号处理器(DSP)、以及任何适当的处理器、控制器、微控制器等。计算单元901执行上文所描述的各个方法和处理,例如图像融合方法或者融合模型的训练方法。例如,在一些实施例中,图像融合方法或者融合模型的训练方法可被实现为计算机软件程序,其被有形地包含于机器可读介质,例如存储单元908。在一些实施例中,计算机程序的部分或者全部可以经由ROM 902和/或通信单元909而被载入和/或安装到设备900上。当计算机程序加载到RAM 903并由计算单元901执行时,可以执行上文描述的图像融合方法或者融合模型的训练方法的一个或多个步骤。备选地,在其他实施例中,计算单元901可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行图像融合方法或者融合模型的训练方法。
本文中以上描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、芯片上系统的系统(SOC)、负载可编程逻辑设备(CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。
用于实施本公开的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,也可以是分布式系统的服务器,或者是结合了区块链的服务器。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。
上述具体实施方式,并不构成对本公开保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本公开的精神和原则之内所作的修改、等同替换和改进等,均应包含在本公开保护范围之内。
Claims (16)
1.一种融合模型的训练方法,包括:
将训练源图像和训练模板图像输入至融合模型中,得到训练融合图像;
对所述训练融合图像进行属性对齐变换,得到训练对齐图像,其中,所述训练对齐图像的属性信息和所述训练源图像的属性信息一致;以及
利用身份损失函数训练所述融合模型,其中,所述身份损失函数是针对所述训练源图像和所述训练对齐图像生成的;
其中,所述身份损失函数通过计算所述训练源图像的第一身份信息和所述训练对齐图像的第二身份信息之间的身份损失值训练所述融合模型。
2.根据权利要求1所述的方法,其中,所述利用身份损失函数训练所述融合模型包括:
基于所述身份损失函数和属性损失函数,确定联合损失函数,其中,所述属性损失函数是针对所述训练融合图像和所述训练模板图像生成的;以及
利用所述联合损失函数训练所述融合模型。
3.根据权利要求2所述的方法,其中,所述利用所述联合损失函数训练所述融合模型包括:
获取所述训练源图像的第一身份信息和所述训练对齐图像的第二身份信息;
将所述第一身份信息和所述第二身份信息输入至所述身份损失函数中,得到身份损失值;
获取所述训练模板图像的第一属性信息和所述训练融合图像的第二属性信息;
将所述第一属性信息和所述第二属性信息输入至所述属性损失函数中,得到属性损失值;以及
基于所述身份损失值和所述属性损失值,训练所述融合模型。
4.根据权利要求1所述的方法,其中,所述将训练源图像和训练模板图像输入至融合模型中,得到训练融合图像包括:
对所述训练源图像进行关键点对齐,得到训练对齐源图像;
对所述训练模板图像进行关键点对齐,得到训练对齐模板图像;以及
将所述训练对齐源图像和所述训练对齐模板图像输入至所述融合模型中,得到所述训练融合图像。
5.根据权利要求1所述的方法,其中,所述属性对齐变换包括以下至少一项:
姿态属性对齐变换、妆容属性对齐变换、表情属性对齐变换。
6.一种图像融合方法,包括:
将待融合图像和模板图像输入至融合模型中,得到融合图像;
其中,所述融合模型利用根据权利要求1-5任一项所述的融合模型的训练方法训练得到。
7.根据权利要求6所述的方法,其中,所述将待融合图像和模板图像输入至融合模型中,得到融合图像包括:
对所述待融合图像进行关键点对齐,得到对齐待融合图像;
对所述模板图像进行关键点对齐,得到对齐模板图像;以及
将所述对齐待融合图像和所述对齐模板图像输入至所述融合模型中,得到所述融合图像。
8.一种融合模型的训练装置,包括:
训练融合模块,用于将训练源图像和训练模板图像输入至融合模型中,得到训练融合图像;
属性变换模块,用于对所述训练融合图像进行属性对齐变换,得到训练对齐图像,其中,所述训练对齐图像的属性信息和所述训练源图像的属性信息一致;以及
训练模块,用于利用身份损失函数训练所述融合模型,其中,所述身份损失函数是针对所述训练源图像和所述训练对齐图像生成的;
其中,所述身份损失函数通过计算所述训练源图像的第一身份信息和所述训练对齐图像的第二身份信息之间的身份损失值训练所述融合模型。
9.根据权利要求8所述的装置,其中,所述训练模块包括:
联合单元,用于基于所述身份损失函数和属性损失函数,确定联合损失函数,其中,所述属性损失函数是针对所述训练融合图像和所述训练模板图像生成的;以及
训练单元,用于利用所述联合损失函数训练所述融合模型。
10.根据权利要求9所述的装置,其中,所述训练单元包括:
第一获取子单元,用于获取所述训练源图像的第一身份信息和所述训练对齐图像的第二身份信息;
第一输入子单元,用于将所述第一身份信息和所述第二身份信息输入至所述身份损失函数中,得到身份损失值;
第二获取子单元,用于获取所述训练模板图像的第一属性信息和所述训练融合图像的第二属性信息;
第二输入子单元,用于将所述第一属性信息和所述第二属性信息输入至所述属性损失函数中,得到属性损失值;以及
训练子单元,用于基于所述身份损失值和所述属性损失值,训练所述融合模型。
11.根据权利要求8所述的装置,其中,所述训练融合模块包括:
第一训练对齐单元,用于对所述训练源图像进行关键点对齐,得到训练对齐源图像;
第二训练对齐单元,用于对所述训练模板图像进行关键点对齐,得到训练对齐模板图像;以及
训练融合单元,用于将所述训练对齐源图像和所述训练对齐模板图像输入至所述融合模型中,得到所述训练融合图像。
12.根据权利要求8所述的装置,其中,所述属性对齐变换包括以下至少一项:
姿态属性对齐变换、妆容属性对齐变换、表情属性对齐变换。
13.一种图像融合装置,包括:
融合模块,用于将待融合图像和模板图像输入至融合模型中,得到融合图像;
其中,所述融合模型利用根据权利要求1-5任一项所述的融合模型的训练方法训练得到。
14.根据权利要求13所述的装置,其中,所述融合模块包括:
第一对齐单元,用于对所述待融合图像进行关键点对齐,得到对齐待融合图像;
第二对齐单元,用于对所述模板图像进行关键点对齐,得到对齐模板图像;以及
融合单元,用于将所述对齐待融合图像和所述对齐模板图像输入至所述融合模型中,得到所述融合图像。
15.一种电子设备,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-5中任一项所述的融合模型的训练方法或者权利要求6-7中任一项所述的图像融合方法。
16.一种存储有计算机指令的非瞬时计算机可读存储介质,其中,所述计算机指令用于使所述计算机执行根据权利要求1-5中任一项所述的融合模型的训练方法或者权利要求6-7中任一项所述的图像融合方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111168236.2A CN113902956B (zh) | 2021-09-30 | 2021-09-30 | 融合模型的训练方法、图像融合方法、装置、设备及介质 |
US18/020,891 US20240331093A1 (en) | 2021-09-30 | 2022-06-09 | Method of training fusion model, method of fusing image, device, and storage medium |
PCT/CN2022/097872 WO2023050868A1 (zh) | 2021-09-30 | 2022-06-09 | 融合模型的训练方法、图像融合方法、装置、设备及介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111168236.2A CN113902956B (zh) | 2021-09-30 | 2021-09-30 | 融合模型的训练方法、图像融合方法、装置、设备及介质 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113902956A CN113902956A (zh) | 2022-01-07 |
CN113902956B true CN113902956B (zh) | 2023-04-07 |
Family
ID=79190440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111168236.2A Active CN113902956B (zh) | 2021-09-30 | 2021-09-30 | 融合模型的训练方法、图像融合方法、装置、设备及介质 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240331093A1 (zh) |
CN (1) | CN113902956B (zh) |
WO (1) | WO2023050868A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113902956B (zh) * | 2021-09-30 | 2023-04-07 | 北京百度网讯科技有限公司 | 融合模型的训练方法、图像融合方法、装置、设备及介质 |
CN114926322B (zh) * | 2022-05-12 | 2024-03-15 | 北京百度网讯科技有限公司 | 图像生成方法、装置、电子设备和存储介质 |
CN115345782A (zh) * | 2022-08-12 | 2022-11-15 | 腾讯科技(深圳)有限公司 | 图像处理方法、装置、计算机、可读存储介质及程序产品 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111860167A (zh) * | 2020-06-18 | 2020-10-30 | 北京百度网讯科技有限公司 | 人脸融合模型获取及人脸融合方法、装置及存储介质 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11734955B2 (en) * | 2017-09-18 | 2023-08-22 | Board Of Trustees Of Michigan State University | Disentangled representation learning generative adversarial network for pose-invariant face recognition |
CN109146830A (zh) * | 2018-07-17 | 2019-01-04 | 北京旷视科技有限公司 | 用于生成训练数据的方法、装置、系统和存储介质 |
CN111353546B (zh) * | 2020-03-09 | 2022-12-23 | 腾讯科技(深圳)有限公司 | 图像处理模型的训练方法、装置、计算机设备和存储介质 |
CN111783647B (zh) * | 2020-06-30 | 2023-11-03 | 北京百度网讯科技有限公司 | 人脸融合模型的训练方法、人脸融合方法、装置及设备 |
CN112766160B (zh) * | 2021-01-20 | 2023-07-28 | 西安电子科技大学 | 基于多级属性编码器和注意力机制的人脸替换方法 |
CN113361387A (zh) * | 2021-06-03 | 2021-09-07 | 湖南快乐阳光互动娱乐传媒有限公司 | 人脸图像融合方法及装置、存储介质及电子设备 |
CN113902956B (zh) * | 2021-09-30 | 2023-04-07 | 北京百度网讯科技有限公司 | 融合模型的训练方法、图像融合方法、装置、设备及介质 |
-
2021
- 2021-09-30 CN CN202111168236.2A patent/CN113902956B/zh active Active
-
2022
- 2022-06-09 US US18/020,891 patent/US20240331093A1/en active Pending
- 2022-06-09 WO PCT/CN2022/097872 patent/WO2023050868A1/zh active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111860167A (zh) * | 2020-06-18 | 2020-10-30 | 北京百度网讯科技有限公司 | 人脸融合模型获取及人脸融合方法、装置及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN113902956A (zh) | 2022-01-07 |
US20240331093A1 (en) | 2024-10-03 |
WO2023050868A1 (zh) | 2023-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113902956B (zh) | 融合模型的训练方法、图像融合方法、装置、设备及介质 | |
WO2019233421A1 (zh) | 图像处理方法及装置、电子设备、存储介质 | |
CN113420719B (zh) | 生成动作捕捉数据的方法、装置、电子设备以及存储介质 | |
CN109034069B (zh) | 用于生成信息的方法和装置 | |
CN109564575A (zh) | 使用机器学习模型来对图像进行分类 | |
CN113656582B (zh) | 神经网络模型的训练方法、图像检索方法、设备和介质 | |
CN112966742A (zh) | 模型训练方法、目标检测方法、装置和电子设备 | |
CN113052962B (zh) | 模型训练、信息输出方法,装置,设备以及存储介质 | |
CN114494784A (zh) | 深度学习模型的训练方法、图像处理方法和对象识别方法 | |
CN113326852A (zh) | 模型训练方法、装置、设备、存储介质及程序产品 | |
CN112580666A (zh) | 图像特征的提取方法、训练方法、装置、电子设备及介质 | |
CN112507090A (zh) | 用于输出信息的方法、装置、设备和存储介质 | |
CN113011309A (zh) | 图像识别方法、装置、设备、介质及程序产品 | |
CN114066790A (zh) | 图像生成模型的训练方法、图像生成方法、装置和设备 | |
CN114494747A (zh) | 模型的训练方法、图像处理方法、装置、电子设备及介质 | |
CN114220163A (zh) | 人体姿态估计方法、装置、电子设备及存储介质 | |
CN113379594A (zh) | 脸型变换模型训练、脸型变换方法及相关装置 | |
CN114926322B (zh) | 图像生成方法、装置、电子设备和存储介质 | |
CN113591969B (zh) | 面部相似度评测方法、装置、设备以及存储介质 | |
CN113360672B (zh) | 用于生成知识图谱的方法、装置、设备、介质和产品 | |
CN114398434A (zh) | 结构化信息抽取方法、装置、电子设备和存储介质 | |
CN113408632A (zh) | 提高图像分类准确性的方法、装置、电子设备及存储介质 | |
CN115471840B (zh) | 生成、模型的训练、识别方法、装置、电子设备及介质 | |
CN113378773A (zh) | 手势识别方法、装置、设备、存储介质以及程序产品 | |
CN115641355A (zh) | 用于检测骨架的方法、装置、设备、介质和产品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |