CN113898372A - 一种污水深隧的全生命周期健康监测系统 - Google Patents

一种污水深隧的全生命周期健康监测系统 Download PDF

Info

Publication number
CN113898372A
CN113898372A CN202111023106.XA CN202111023106A CN113898372A CN 113898372 A CN113898372 A CN 113898372A CN 202111023106 A CN202111023106 A CN 202111023106A CN 113898372 A CN113898372 A CN 113898372A
Authority
CN
China
Prior art keywords
data
tunnel
monitoring
data acquisition
sewage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111023106.XA
Other languages
English (en)
Inventor
陈建斌
饶世雄
张鹏
吴立鹏
杨卫星
卢方伟
王翔
刘钢
来颖
焦阳阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Municipal Engineering Design and Research Institute Co Ltd
Original Assignee
Wuhan Municipal Engineering Design and Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Municipal Engineering Design and Research Institute Co Ltd filed Critical Wuhan Municipal Engineering Design and Research Institute Co Ltd
Priority to CN202111023106.XA priority Critical patent/CN113898372A/zh
Publication of CN113898372A publication Critical patent/CN113898372A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/08Lining with building materials with preformed concrete slabs
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D7/00Shaft equipment, e.g. timbering within the shaft
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

本发明公开了一种污水深隧的全生命周期健康监测系统,该全生命周期健康监测系统包括:现场设备采集单元,包括数据采集传感器,用于采集隧道中多个监测断面的变形和受力数据;监测单元,包括上位机和多个数据采集仪,各数据采集仪通过传输电缆对应与各监测断面内的数据采集传感器相连,多个数据采集仪通过通信网络与上位机相连,用于将采集到的数据无线发送至上位机进行监测;数据分析单元,包括数据服务器,数据服务器分施工期及运营期对监测数据进行计算和分析,对隧道主体结构的健康状态进行实时监控、评估及预警。本发明采用主动监测技术对隧道结构进行长期监测,可对隧道主体结构的健康状态进行实时监控、评估和预警。

Description

一种污水深隧的全生命周期健康监测系统
技术领域
本发明属于污水深隧监测技术领域,更具体地,涉及一种污水深隧的全生命周期健康监测系统。
背景技术
污水深隧主要包括多个竖井和贯穿设置在多个竖井底部之间的隧道。隧道通常采用复合式设置的一次衬砌和二次衬砌结构,其中,一次衬砌是指紧贴围岩的喷射混凝土结构;二次衬砌是指紧贴一次衬砌的模注混凝土结构。隧道施工时,需在竖井中配合吊盘运输施工人员和出渣,施工环境复杂,目前对施工环境的监测还停留在人工采集和判断阶段,很容易因检测数据不全面或人工判断错误,增加事故风险。
发明内容
针对现有技术的缺陷,本发明的目的在于提供一种能对隧道结构进行自动化实时监控、评估及预警的污水深隧的全生命周期健康监测系统。
为实现上述目的,本发明提供了一种污水深隧的全生命周期健康监测系统,所述污水深隧中的隧道采用叠合式设置的一次衬砌和二次衬砌结构,所述一次衬砌采用预制管片结构,所述二次衬砌采用钢筋混凝土现浇结构;所述全生命周期健康监测系统包括:
现场设备采集单元,包括数据采集传感器,用于采集隧道中多个监测断面的变形和受力数据;其中,多个所述监测断面的位置对应靠近深隧中各竖井位置设置;
监测单元,包括上位机和多个数据采集仪,多个数据采集仪对应设置在靠近各竖井顶部的地面处,各数据采集仪通过传输电缆对应与各监测断面内的数据采集传感器相连,传输电缆对应设置在各竖井内预埋的走线孔内;多个数据采集仪通过通信网络与所述上位机相连,用于将采集到的数据无线发送至所述上位机进行监测;
数据分析单元,包括数据服务器,所述数据服务器与所述上位机相连,所述数据服务器分施工期及运营期对监测数据进行计算和分析,对隧道主体结构的健康状态进行实时监控、评估及预警。
在其中一个实施例中,所述数据采集传感器包括土压力计、孔隙水压力计和混凝土应变计,所述数据采集传感器在现场浇注管片混凝土前预先固定在钢筋上。
在其中一个实施例中,所述管片结构为5或6分块结构,每块管片结构的外侧均设有一土压力计、一孔隙水压力计和一混凝土应变计,每块管片结构的内侧均设有一混凝土应变计;且所述二次衬砌对应所述一次衬砌的相同位置设有相同类型和数量的传感器。
在其中一个实施例中,所述土压力计、所述孔隙水压力计和所述混凝土应变计均采用振弦式传感器。
在其中一个实施例中,所述数据采集仪内配备有一个或多个结构监测数据终端,所述结构监测数据终端包括CPU模块、数据存储模块、频率采集模块、数据处理模块和数据传输接口,所述频率采集模块通过传输电缆与所述数据采集传感器相连,所述频率采集模块依次通过所述数据处理模块、所述数据传输接口与所述上位机进行无线通信,所述CPU模块分别与所述数据存储模块、所述频率采集模块、所述数据处理模块、所述数据传输接口相连。
在其中一个实施例中,所述数据传输接口包括RS232、RS485/422、以太网和光纤接口。
在其中一个实施例中,所述数据采集仪和所述上位机上均配置一光交换机,各所述数据采集仪分别通过光纤或无线基站与所述上位机进行无线通信。
在其中一个实施例中,所述数据采集仪和所述上位机之间采用1芯光纤通信。
在其中一个实施例中,所述数据采集仪内还安装有尾纤盒、尾子排、小型变压器、光交换机和视频交换机,所述尾纤盒依次通过所述尾子排、所述小型变压器、所述光交换机与所述视频交换机相连。
在其中一个实施例中,所述数据服务器通过采用灰色绝对关联法建立区域内隧道断面与道典型监测断面的相关性,通过推演法则的建立实现对区域内隧道主体结构在运营期间各阶段健康状态的实时监控、评估及预警。
本发明提供的污水深隧的全生命周期健康监测系统,采用主动监测技术对隧道结构进行长期监测,即通过现场安装、埋设传感器(如压力传感器、钢筋计、混凝土应变计等)来监测隧道结构的变形或受力变化,分施工期及运营期通过计算和分析来确定隧道受力特点和安全及健康性能,可对隧道主体结构的健康状态进行实时监控、评估和预警。
附图说明
图1是一实施例中污水深隧中隧道的结构示意图;
图2是一实施例中污水深隧的全生命周期监控监测系统的架构图;
图3是一实施例中监测断面的布置示意图;
图4是一实施例中结构监测数据终端的架构图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供了一种污水深隧的全生命周期健康监测系统,适用于对隧道采用双层叠合式衬砌结构的深隧进行自动化实时监控、评估及预警,参见图1,双层叠合式衬砌结构包括叠合式设置的一次衬砌和二次衬砌结构,一次衬砌采用预制管片结构,管片结构为5或6分块结构;二次衬砌采用钢筋混凝土现浇结构。采用该种结构的隧道能够承受高内外水压荷载,相比于传统的复合式结构更具经济型。
为实现对上述污水深隧的自动化实时监控、评估及预警,本发明提供的全生命周期健康系统包括现场设备采集单元100、监测单元200和数据分析单元300,参见图2。
其中,现场设备采集单元100,包括数据采集传感器,用于采集隧道中多个监测断面的变形和受力数据;其中,多个监测断面的位置对应靠近深隧中各竖井位置设置。
具体地,数据采集传感器包括土压力计、孔隙水压力计和混凝土应变计,数据采集传感器在现场浇筑管片混凝土前预先固定在钢筋上,用于采集盾构隧道管片衬砌及二次衬砌的外部水压力、土压力、盾构结构内力等。
监测单元200,包括上位机和多个数据采集仪,多个数据采集仪对应设置在靠近各竖井顶部的地面处,各数据采集仪通过传输电缆对应与各监测断面内的数据采集传感器相连,传输电缆对应设置在各竖井内预埋的走线孔内;多个数据采集仪通过通信网络与上位机相连,用于将采集到的数据无线发送至上位机进行监测。
采用传输电缆将数据采集传感器采集的数据传输至数据采集仪,主要是考虑到隧道距离地面较远,采用无线传输容易出现网络不稳定导致数据传输不及时的情况。
数据分析单元300,包括数据服务器,数据服务器与上位机相连,数据服务器分施工期及运营期对监测数据进行计算和分析,对隧道主体结构的健康状态进行实时监控、评估及预警。具体地,数据服务器可通过采用灰色绝对关联法建立区域内隧道断面与道典型监测断面的相关性,通过推演法则的建立实现对区域内隧道主体结构在运营期间各阶段健康状态的实时监控、评估及预警。
为更清楚地说明本方案,以包含10个竖井的污水深隧为例,对本发明提供的全生命周期健康监测系统进行详细说明。
(1)关于监测断面的布置。参见图3,多个监测断面对应设置隧道内靠近10个竖井的断面处,用于传输数据的传输电缆(传感器电缆)经由竖井内预埋的走线孔传至地面,再汇集于地面处的数据采集仪中,全线共安装10个监测断面,位置靠近10个施工竖井。
(2)监测断面上数据采集传感器的安装步骤及埋设工艺。
其中,数据采集传感器的安装步骤为:
步骤1):参见图3,每块管片外侧设置一个混凝土应变计,一个土压力盒,一个孔隙水压力计,管片内侧设置一个混凝土应变计;同时在二次衬砌的相同位置安装以上类型和数量的传感器,共计40个传感器。进一步地,还可在相应位置设置钢筋计和差阻式温度计,传感器的类型和数量可根据深隧的实际情况进行相应选择和设置,本实施例不作限制。
步骤2):土压力计、孔隙水压计和混凝土应变计在现场浇注管片混凝土前预先固定在钢筋上。采集元件位置固定后,传输电缆全部导入管片预留的专用走线孔,将电缆及孔洞预先进行防水处理,进行盾构隧道管片混凝土浇注。
步骤3):管片加工养护完毕后,根据施工进度在监测断面里程桩号处进行安装,安装完成后,将传输电缆从专用走线孔中取出,在二次衬砌浇筑时,在二次衬砌上安装相应传感器,最后将管片与二次衬砌预留的传感器通过传输电缆一并引出至竖井预留的走线孔传至地面,随后将传输电缆引至地面数据采集仪中进行读数。具体地,每一个监测断面的所有传输电缆安放于防腐套管内再通过在施工竖井断面预留的走线孔引至地面。
数据采集传感器的埋设工艺为:
在将数据采集传感器运往场地前,对每个传感器进行逐个检验和编号,记录自编号与出场编号的对照表,并通过出场编号对应找出标定参数表,后期处理数据是用以查询。土压力计、孔隙水压计和混凝土应变计在现场浇注管片混凝土前预先固定在钢筋上。采集元件位置固定后,导入管片预留的专用走线孔,将电缆及孔洞预先进行防水处理,进行盾构隧道管片混凝土浇注。具体措施如下:
1)土压力计的安装:混凝土外表面的土压力计安装采用绑扎式安装,将感应面与管片迎土面相平,保证感应面暴露并能感受外部压力。安装时,在土压力计周围缠绕一层大约为1mm厚的弹性保护垫层,以减小管片变形对采集元件的影响,并根据管片外弧面混凝土保护层厚度,选择适当直径的钢筋来连接土压力计与受力主筋,通过绑扎方式固定采集元件的位置。
2)孔隙水压力计的安装:在埋设孔隙水压力计前,在孔隙水压力计周围缠绕一层大约1mm厚的弹性保护垫层,以减小管片变形对采集元件的影响,并用毛巾块封住水压力计渗水石,确保其在浇注混凝土和施工壁后注浆时不被水泥砂浆封堵,保证其渗透性以感应水压力。在对其进行固定时,将水压力计两端绑扎于预先与管片受力筋相固定的两条直径10mm的钢筋上,然后将信号传输电缆导入专用走线通道。
3)混凝土应变计的安装:由于混凝土应变计测试的是管片环向应变,因此应变计的绑扎方向应与环向受力主筋方向平行,且每个监测点内外侧钢筋上各布置一个应变计,混凝土应变计和环向主筋高度一致并量测内外应变计之间的距离。将传输电缆导入专用走线孔。
4)差阻式温度计的安装:温度计紧贴管片混凝土外表面安装。安装时,先将一根水平向直径12mm的钢筋点焊在混凝土主筋上,为防止温度计受碰损坏,事先需用黑胶布将其密缠3层。
5)走线孔的布设:走线孔材质、工艺与吊装孔相同(可采用吊装孔制作),仅在高度上降低7cm。走线孔两端设置封堵,内端封堵设通线孔。通线孔需进行充分的防水处理,避免管片在养护时发生渗水侵蚀电缆。
6)管片环浇捣和养护成型后的处理:管片浇捣完成进入蒸汽养护之前,剥开土压力计、水压力计的外包混凝土。蒸养完成后对试验管片环进行标记。
7)数据传输线连接:试验管片环养护成型后,打开走线孔位置的混凝土保护层及走线孔顶端防水胶带,取出预埋数据线,对应编号将之前的信号线与外部信号传输线焊接相连,焊接位置采用704硅胶进行绝缘防水处理,并用热缩管密封。接线完成后用混凝土密封走线孔。
为降低数据采集传感器的安装难度,采用的所有传感器均可采用振弦式传感器,采用振弦式传感器不仅安装方便,还可保证数据传输的稳定性。
(3)数据采集仪、上位机和数据服务器之间通信网络的建立。
管片衬砌传感器参数的监测系统利用光纤或者无线基站实现信号的远距离传输,首先管片衬砌传感器参数由数据采集仪进行数据采集,数据采集仪留有RS232接口,该接口与光交换机交换数据,光交换机将该数据上网进行光纤远程传输或者无线基站传输。具体实现如下:
①各监测断面的振弦式传感器分别接入到对应的数据采集仪中,有几个传感器就用几个采集器的通道;②各个监测断面的采集器通过通信网络接入到监测单元的上位机,在数据采集仪和上位机上各配置一台光交换机,再利用光纤或者无线基站实现长距离通信;③各监测断面的采集仪和上位机之间的通信光纤,采用1芯光纤;④在上机位实现振弦式传感器采集数据的读取;⑤将采集数据传输到信息处理及分析系统(数据服务器),以此对结构安全性进行智能分析、评估等。
针对该工程的10个监测断面,分别采用10个数据采集仪采集数据。每个数据仪内均安装有尾纤盒、尾子排、小型变压器、光交换机、视频交换机,尾纤盒依次通过尾子排、小型变压器、光交换机与视频交换机相连。通过尾纤盒、尾子排及小型变压器收集传感器振弦信号,通过光交换机将此信号上网进行传输,视频交换机处理光交换机信号形成可视图像进行监测。
为提高监测的可靠性,数据采集仪内根据各监测断面传感器的数量还可配备有一个或多个结构监测数据终端。参见图4,该结构监测数据终端包括CPU模块、数据存储模块、频率采集模块、数据处理模块和数据传输接口,频率采集模块通过传输电缆与数据采集传感器相连,频率采集模块依次通过数据处理模块、数据传输接口与上位机进行无线通信,CPU模块分别与数据存储模块、频率采集模块、数据处理模块、数据传输接口相连。
进一步地,结构监测数据终端还可包括DO模块,由于CPU模块最多只能检测16个传感器的数据,扩展DO后可以增加32个检测通道,使得单个结构监测数据终端最多可以对48个传感器进行监测,每个传感器的检测间隔时间可选。结构监测数据终端的数据传输接口包括:LCD,工业RS232/RS485/422,光纤接口和工业以太网。
(4)数据服务器中软件架构的建立
采用灰色绝对关联法,即通过结构的力学模型和材料的变形原理,建立监测数据与结构受力状况之间的关联,通过监测数据演算出结构的相关裂缝、变形及受力状况,建立区域内隧道断面与道典型监控断面的相关性。通过推演法则的建立实现对区域内隧道主体结构在运营期间各阶段健康状态的实时监控、评价及预警。
具体为,通过管片的混凝土应变采集数据,通过混凝土应力应变关系,可反算出管片混凝土的变形数据;通过管片外侧的土压力、水压力可获得结构外围土压力与水压力,通过结构力学模型可计算出结构的变形及受力情况,综合裂缝、变形及受力情况,进而推算出本结构的健康状况。
主体结构健康状态的评价是通过建立基于均质圆环刚度等效内力求解的盾构隧道允许应力和极限状态结构安全评估技术进行综合分析,该技术包括荷载获取方法、内力分析方法、衬砌混凝土和衬砌接头抗拉、抗弯、抗剪相互结合的校核方法,这些方法主要以公式化的形式呈现,方便植入现场监测软件系统,具备实时评估功能,可实现盾构隧道结构现场监测的及时评估,提交结构安全评估报告的时间不超过10分钟。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种污水深隧的全生命周期健康监测系统,其特征在于,所述污水深隧中的隧道采用叠合式设置的一次衬砌和二次衬砌结构,所述一次衬砌采用预制管片结构,所述二次衬砌采用钢筋混凝土现浇结构;所述全生命周期健康监测系统包括:
现场设备采集单元,包括数据采集传感器,用于采集隧道中多个监测断面的变形和受力数据;其中,多个所述监测断面的位置对应靠近深隧中各竖井位置设置;
监测单元,包括上位机和多个数据采集仪,多个数据采集仪对应设置在靠近各竖井顶部的地面处,各数据采集仪通过传输电缆对应与各监测断面内的数据采集传感器相连,传输电缆对应设置在各竖井内预埋的走线孔内;多个数据采集仪通过通信网络与所述上位机相连,用于将采集到的数据无线发送至所述上位机进行监测;
数据分析单元,包括数据服务器,所述数据服务器与所述上位机相连,所述数据服务器分施工期及运营期对监测数据进行计算和分析,对隧道主体结构的健康状态进行实时监控、评估及预警。
2.根据权利要求1所述的污水深隧的全生命周期健康监测系统,其特征在于,所述数据采集传感器包括土压力计、孔隙水压力计和混凝土应变计,所述数据采集传感器在现场浇注管片混凝土前预先固定在钢筋上。
3.根据权利要求2所述的污水深隧的全生命周期健康监测系统,其特征在于,所述管片结构为5或6分块结构,每块管片结构的外侧均设有一土压力计、一孔隙水压力计和一混凝土应变计,每块管片结构的内侧均设有一混凝土应变计;且所述二次衬砌对应所述一次衬砌的相同位置设有相同类型和数量的传感器。
4.根据权利要求3所述的污水深隧的全生命周期健康监测系统,其特征在于,所述土压力计、所述孔隙水压力计和所述混凝土应变计均采用振弦式传感器。
5.根据权利要求4所述的污水深隧的全生命周期健康监测系统,其特征在于,所述数据采集仪内配备有一个或多个结构监测数据终端,所述结构监测数据终端包括CPU模块、数据存储模块、频率采集模块、数据处理模块和数据传输接口,所述频率采集模块通过传输电缆与所述数据采集传感器相连,所述频率采集模块依次通过所述数据处理模块、所述数据传输接口与所述上位机进行无线通信,所述CPU模块分别与所述数据存储模块、所述频率采集模块、所述数据处理模块、所述数据传输接口相连。
6.根据权利要求5所述的污水深隧的全生命周期健康监测系统,其特征在于,所述数据传输接口包括RS232、RS485/422、以太网和光纤接口。
7.根据权利要求6所述的污水深隧的全生命周期健康监测系统,其特征在于,所述数据采集仪和所述上位机上均配置一光交换机,各所述数据采集仪分别通过光纤或无线基站与所述上位机进行无线通信。
8.根据权利要求7所述的污水深隧的全生命周期健康监测系统,其特征在于,所述数据采集仪和所述上位机之间采用1芯光纤通信。
9.根据权利要求8所述的污水深隧的全生命周期健康监测系统,其特征在于,所述数据采集仪内还安装有尾纤盒、尾子排、小型变压器、光交换机和视频交换机,所述尾纤盒依次通过所述尾子排、所述小型变压器、所述光交换机与所述视频交换机相连。
10.根据权利要求1所述的污水深隧的全生命周期健康监测系统,其特征在于,所述数据服务器通过采用灰色绝对关联法建立区域内隧道断面与道典型监测断面的相关性,通过推演法则的建立实现对区域内隧道主体结构在运营期间各阶段健康状态的实时监控、评估及预警。
CN202111023106.XA 2021-09-01 2021-09-01 一种污水深隧的全生命周期健康监测系统 Pending CN113898372A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111023106.XA CN113898372A (zh) 2021-09-01 2021-09-01 一种污水深隧的全生命周期健康监测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111023106.XA CN113898372A (zh) 2021-09-01 2021-09-01 一种污水深隧的全生命周期健康监测系统

Publications (1)

Publication Number Publication Date
CN113898372A true CN113898372A (zh) 2022-01-07

Family

ID=79188426

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111023106.XA Pending CN113898372A (zh) 2021-09-01 2021-09-01 一种污水深隧的全生命周期健康监测系统

Country Status (1)

Country Link
CN (1) CN113898372A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115562127A (zh) * 2022-11-02 2023-01-03 中南大学 一种偏压隧道监测控制系统
IT202100032699A1 (it) * 2021-12-27 2023-06-27 Atp S R L Sistema e metodo di presidio di distacchi corticali in galleria informatizzato
CN116906125A (zh) * 2023-09-06 2023-10-20 四川高速公路建设开发集团有限公司 基于数据同步传输算法的软岩隧道安全监测方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294261A (ja) * 2003-03-27 2004-10-21 Central Giken:Kk 既設トンネルの健全性診断方法
CN103899327A (zh) * 2013-12-25 2014-07-02 中国神华能源股份有限公司 一种深长煤矿斜井的盾构施工系统及其数据采集方法
CN206037986U (zh) * 2016-08-26 2017-03-22 招商局重庆交通科研设计院有限公司 隧道围岩变形监测预警系统
CN106761936A (zh) * 2017-01-23 2017-05-31 上海市地下空间设计研究总院有限公司 一种基于智能化隧道管片的隧道运维健康监测系统
CN110307036A (zh) * 2019-07-01 2019-10-08 施甸县保施高速公路投资开发有限公司 变截面处隧道结构全寿命监测预警方法
US20200018164A1 (en) * 2018-07-12 2020-01-16 China Institute Of Water Resources And Hydropower Research Advanced monitoring device for whole-process deformation curve of surrounding rock of tunnel excavation and implementation method thereof
CN112253234A (zh) * 2020-10-21 2021-01-22 中建三局绿色产业投资有限公司 城市深埋污水隧道健康监测系统
CN112832866A (zh) * 2020-12-30 2021-05-25 西南交通大学 一种隧道全寿命周期的监测及预警系统及组建方法
CN113008157A (zh) * 2021-04-26 2021-06-22 黄河勘测规划设计研究院有限公司 隧道掘进机护盾内表面变形监测方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294261A (ja) * 2003-03-27 2004-10-21 Central Giken:Kk 既設トンネルの健全性診断方法
CN103899327A (zh) * 2013-12-25 2014-07-02 中国神华能源股份有限公司 一种深长煤矿斜井的盾构施工系统及其数据采集方法
CN206037986U (zh) * 2016-08-26 2017-03-22 招商局重庆交通科研设计院有限公司 隧道围岩变形监测预警系统
CN106761936A (zh) * 2017-01-23 2017-05-31 上海市地下空间设计研究总院有限公司 一种基于智能化隧道管片的隧道运维健康监测系统
US20200018164A1 (en) * 2018-07-12 2020-01-16 China Institute Of Water Resources And Hydropower Research Advanced monitoring device for whole-process deformation curve of surrounding rock of tunnel excavation and implementation method thereof
CN110307036A (zh) * 2019-07-01 2019-10-08 施甸县保施高速公路投资开发有限公司 变截面处隧道结构全寿命监测预警方法
CN112253234A (zh) * 2020-10-21 2021-01-22 中建三局绿色产业投资有限公司 城市深埋污水隧道健康监测系统
CN112832866A (zh) * 2020-12-30 2021-05-25 西南交通大学 一种隧道全寿命周期的监测及预警系统及组建方法
CN113008157A (zh) * 2021-04-26 2021-06-22 黄河勘测规划设计研究院有限公司 隧道掘进机护盾内表面变形监测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨怀;闵红平;阮超;张延军;李胡爽;曾利华;: "光纤光栅传感器在深隧工程健康监测中的应用", 山西建筑, no. 20, pages 147 - 148 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100032699A1 (it) * 2021-12-27 2023-06-27 Atp S R L Sistema e metodo di presidio di distacchi corticali in galleria informatizzato
CN115562127A (zh) * 2022-11-02 2023-01-03 中南大学 一种偏压隧道监测控制系统
CN116906125A (zh) * 2023-09-06 2023-10-20 四川高速公路建设开发集团有限公司 基于数据同步传输算法的软岩隧道安全监测方法及系统
CN116906125B (zh) * 2023-09-06 2023-12-29 四川高速公路建设开发集团有限公司 基于数据同步传输算法的软岩隧道安全监测方法及系统

Similar Documents

Publication Publication Date Title
CN113898372A (zh) 一种污水深隧的全生命周期健康监测系统
CN108825304B (zh) 一种盾构隧道地层稳定与隧道结构长期健康监测系统
CN111636898B (zh) 盾构隧道的联络通道施工过程中盾构管片受力测试装置
CN101713691B (zh) 分布式传感光纤隧道健康监测系统
CN103790632B (zh) 一种地铁盾构隧道管片结构应力可视化预警装置及其工作方法
CN108333109B (zh) 一种混凝土结构内部裂缝监测装置及方法
CN103604384A (zh) 船闸结构应变、应力分布式光纤监测方法及系统
CN102431090B (zh) 光纤光栅预制梁预应力智能张拉控制系统和实现方法
Moore et al. Ultimate strength testing of two deteriorated metal culverts repaired with spray-on cementitious liners
CN206258084U (zh) 一种混凝土损伤检测分布式测试系统
JP5369027B2 (ja) 土留構造物の安全性評価方法
CN213148168U (zh) 一种基于穿孔式地连墙的长期应力监测系统
CN110905602A (zh) 一种隧道拆换段受力监测装置与系统
KR20130060824A (ko) 광섬유 브릴루앙 산란 센서를 이용한 철도 콘크리트 도상 변형 감시 시스템 및 방법
CN109855522A (zh) 一种针对隧道空间形变的位移检测系统及方法
CN110455210B (zh) 一种基于埋入式光纤的高铁隧道形位感测方法
CN103591982B (zh) 一种电力隧道结构问题的监测方法
CN209055138U (zh) 电力隧道结构体健康监测系统
CN104264589B (zh) 一种挂篮状态实时监测方法
CN213632152U (zh) 城市深埋污水隧道健康监测系统
CN214472652U (zh) 一种实时评估混凝土保护层中氯离子分布状态的装置
CN105318859A (zh) 直接测量监控地下管线和建筑结构沉降变形方法及其装置
CN104457690A (zh) 用于监测建筑物沉降的传感棒及监测方法
CN108592870B (zh) 一种地表沉降及隆起实时监控系统及其施工方法
CN115219127A (zh) 桥梁实时监控评估系统及其施工方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination