CN113897391B - Recombinant adenovirus vaccine for African swine fever and construction method thereof - Google Patents

Recombinant adenovirus vaccine for African swine fever and construction method thereof Download PDF

Info

Publication number
CN113897391B
CN113897391B CN202110762391.0A CN202110762391A CN113897391B CN 113897391 B CN113897391 B CN 113897391B CN 202110762391 A CN202110762391 A CN 202110762391A CN 113897391 B CN113897391 B CN 113897391B
Authority
CN
China
Prior art keywords
adenovirus
vector
plasmid
ires
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110762391.0A
Other languages
Chinese (zh)
Other versions
CN113897391A (en
Inventor
祝志刚
陈平
张婷婷
钟鑫涛
李娜
张利娟
王书芳
叶宏宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing Anyu Biotechnology Co ltd
Original Assignee
Jiaxing Anyu Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing Anyu Biotechnology Co ltd filed Critical Jiaxing Anyu Biotechnology Co ltd
Publication of CN113897391A publication Critical patent/CN113897391A/en
Application granted granted Critical
Publication of CN113897391B publication Critical patent/CN113897391B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5256Virus expressing foreign proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10322New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10341Use of virus, viral particle or viral elements as a vector
    • C12N2710/10343Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10351Methods of production or purification of viral material
    • C12N2710/10352Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/12011Asfarviridae
    • C12N2710/12022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/12011Asfarviridae
    • C12N2710/12034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/50Vectors for producing vectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses an African swine fever virus vaccine, which is obtained by constructing a recombinant adenovirus vector co-expressed by four antigen genes of African swine fever virus and packaging the recombinant adenovirus vector by 293TD37 cells. Wherein, four antigen genes of African swine fever virus are F317L, A151R, P and pp62 respectively. The construction of recombinant adenovirus vector co-expressed by four antigen genes of African swine fever virus mainly comprises the steps of knocking out E1, E3, E2a and E4 genes of the adenovirus vector through CRISPR/cas9, constructing shuttle plasmids of E1 and E4 regions, and respectively expressing EF317L and A151R, P and pp62 genes, thereby obtaining a brand-new adenovirus vector. Compared with the first generation adenovirus vector, the vector increases the vector capacity by about 3kb, and then the recombinant adenovirus with higher titer is obtained by packaging the 293TD37 cell line, so that the recombinant adenovirus vaccine for African swine fever is prepared. The invention can greatly improve the capacity of the adenovirus vector vaccine, and enhances the specific immune response to the African swine fever virus by using a mode of simultaneously expressing four independent antigens of the African swine fever on one adenovirus vector.

Description

Recombinant adenovirus vaccine for African swine fever and construction method thereof
The application claims priority of China prior application, application number 2020106427542, 7/6 of the application date 2020; all of which are included as part of the present application.
Technical Field
The application relates to the technical field of genetic engineering and the field of immunology, in particular to a recombinant adenovirus vaccine of African swine fever virus and a construction method thereof.
Background
African Swine Fever (ASF) is a highly contagious swine virus disease. High mortality rates of nearly 100% can result in pigs at home. ASF is caused by ASF virus (ASFVirus, ASFV), a large double-stranded DNA virus that replicates predominantly in the cytoplasm of macrophages, has a 20-sided structure, is 175-215 nm in diameter, and has a genome of 170-190 kb in length, contains 151 open reading frames, can encode 150-200 proteins, and has a bursa. Structural proteins constituting ASFV virions are the P30, P72, P49, P54, P220, P62, pB602L, CD v proteins, etc., and vaccines based on one or two subunits have heretofore failed to induce immunity sufficiently strong to have significant protective effects for vaccinators.
ASF epidemic situation is found in 2018 in China, and huge direct and indirect economic losses are brought. Thus, there is an urgent need to develop a vaccine against ASFV. Previous studies of ASFV vaccines have been reported to focus mainly on inactivated and attenuated vaccines. However, inactivated vaccines do not induce an effective protective response; the biosafety of attenuated vaccines is a major limiting factor in their use, and attenuated strains are not allowed to be studied in China. However, in the case where live virus experiments cannot be performed at this stage, it is necessary to provide a vaccine to elicit an immune response against as many antigens as possible.
There is therefore a need to develop new ASFV vaccines. Potential candidate vaccines are live vector vaccines. The advantages of live vector vaccines compared to other vaccines are represented by: (1) The target tissue or the cell can be actively infected, and the efficiency of the exogenous gene entering the cell is improved; (2) The carrier itself has adjuvant effect, and can induce the production of cytokines and chemokines; (3) most induce long-term immune responses. Advantageously, it is desirable to deliver as much pathogen protein as possible with as few live carriers as possible.
Live vector vaccines refer to cloning a gene encoding a protein of a pathogen into a live viral vector, which is then used to immunize an animal, expressing the protein in the animal, thereby inducing an immune response against the protein. Adenovirus type 5 has many advantages as a vector for expressing african swine fever antigen protein: (1) the adenovirus expression vector is replication defective, can only be produced and prepared in a unique complementary cell line, meanwhile, adenovirus does not need to be integrated into a host cell genome, a target gene is expressed in a free state outside the host cell genome, the possibility of mutation carcinogenesis is low, the genotoxicity is low, and the safety of preparing vaccines is good; (2) the recombinant adenovirus vector can obtain higher titer, is beneficial to large-scale production, and has high factory efficiency and low production cost; (3) the structure, the characteristics and the functions of adenovirus type 5 are deeply studied at present, and adenovirus vectors are easy to replicate and simple to operate, so that the research is facilitated; (4) the genome of the common first-generation adenovirus vector knocks out the 6K gene, can be inserted into the exogenous gene 7.5K, and has larger capacity; (5) adenovirus is relatively stable and can be purified, concentrated and stored.
Some live vector vaccines are reported in the prior art. For example, ASFV p32, p54, p72 and pp62 genes are respectively recombined into a human adenovirus Ad5 vector to carry out cocktail immunity, so that good antigen-specific CTL reaction is obtained; they recombined 7 ASFV antigen genes of ASFV A151R, B119L, B602L, EP R delta PRR, B438L and K205R-A104R into replication defective adenovirus vector, and can induce strong humoral immune response and cell immune response after mixed immunization by "cocktail". However, in "cocktail" type immunization, each ASFV antigen gene must be recombined into a replication-defective adenovirus vector, and therefore a very large number of vectors are required, risking an immune response against the adenovirus vector during immunization. CN108504686a and CN108504687a provide recombinant adenovirus vectors expressing the EP153R and EP402R genes of ASFV, respectively. CN109652449a discloses recombinant adenovirus vectors co-expressed by two antigen genes, EP153R and EP402R, and CN109735567a discloses recombinant adenovirus vectors co-expressed by two antigen genes, EP153R and P54.
However, in order to further enhance the specific immune response to ASF, it is necessary to further increase the antigen gene capacity of the adenovirus vector, and to deliver as many pathogen proteins as possible with as few live vectors to elicit an immune response against as many antigens as possible.
CN110269932a discloses that 5-7 antigen genes of ASFV a104R, A151R, B119L, B602L, CD v, K205R, P49, etc. are fused together based on adenovirus vectors for the preparation of live vector vaccines. However, fusion of multiple antigen genes presents a risk of reduced immunogenicity and potential to cause immune failure, and thus, to increase vaccine activity, it is also necessary to express a completely independent antigen gene on each adenovirus vector.
However, there is no recombinant adenovirus vector coexpressed by four antigen genes in the prior art, and there is no recombinant adenovirus vector coexpressed by four antigen genes F317L, A151R, P and pp62 of ASFV and applied to the development of live vector vaccines.
Disclosure of Invention
In order to solve the problems, the invention provides an African swine fever virus vaccine, which is obtained by constructing a recombinant adenovirus vector for coexpression of four antigen genes of African swine fever virus and packaging the recombinant adenovirus vector by 293TD37 cells; the four antigen genes are F317L, A151R, P and pp62 respectively, wherein F317L and A151R are expressed in an E1 region, P34 and pp62 are expressed in an E4 region, and the recombinant adenovirus vector pAd5LCL3-F317L-A151R-P34-pp62 with the four antigen genes coexpressed is formed.
Wherein, the recombinant adenovirus vector pAd5LCL3-F317L-A151R-P34-pp62 can realize the recombinant adenovirus package by the 293TD37 cell constructed by pcDNA3.1+ (hyg) -ORF6-IRES-DBP, and the cell strain preservation number of the 293TD37 cell is: CCTCC NO. C201996, which is preserved in China center for type culture Collection.
Common 293 cells contain adenovirus type 5E 1 genes, adenovirus knocked out E1 and E3 can replicate in the cell line, but adenovirus knocked out E4 and E2a genes cannot replicate in the 293 cells.
The 293TD37 cell strain is invented by the group of the invention and has been applied for the invention patent CN201911033247.2, the preservation number is CCTCC NO: C201996 in 5-8 days of 2019 and the classification naming is human embryo kidney transformed cell AY293-TD-37, the cell strain comprises E2a-DBP gene and E4-ORF6/7 gene of adenovirus, and can be used for packaging E2a-DBP gene and E4-gene deficient second-generation adenovirus to form complete infectious second-generation adenovirus particles, compared with first-generation adenovirus, the probability of RCA occurrence of the second-generation adenovirus is greatly reduced, a foundation is laid for preparing live vector vaccine, and the packaging capacity is increased again compared with E2a mutation or E4 deleted second-generation adenovirus due to simultaneous deletion of E2a-DBP and E4 gene, so that the insertion amount of adenovirus vector exogenous gene is further improved, and the method has important significance for enhancing the application level of adenovirus vector.
Wherein F317L, A151R, P, pp62, pAd5LCL3 have the nucleotide sequences shown as Seq ID No.1, seq ID No.2, seq ID No.3, seq ID No.4, and Seq ID No.5 in the sequence Listing, respectively.
The total number of antigen genes of African swine fever virus is 160 or more, and the inventor selects 20 antigen genes with stronger immune effect through a large number of screening experiments, wherein the antigen genes are respectively: p72, B602L, P, P54, CP129R, MGF5L6L, CP312R, MGF110-4L, L8L, I215L, I73R, E146L, EP402R, EP153R, I177L, K205R, F317L, A151R, P, pp62; the 20 antigen genes are divided into five groups according to the size of gene fragments, and 4 antigen genes in each group can be co-expressed in the recombinant adenovirus vector pAd5LCL3 provided by the invention, namely, four antigen genes can be completely and independently expressed in the same vector. The five groups of antigen gene vaccines (comprising 5 recombinant adenovirus vectors pAd5LCL 3) form a complete African swine fever virus vaccine, and a very good immune effect is achieved. The invention selects four antigen genes of F317L, A151R, P and pp62, and can be well matched and assembled in the same recombinant adenovirus vector, thereby completely and independently expressing the four antigen genes.
The research proves that the expression level of the E3 region of the table on the exogenous protein is not high, and the expression level of the antigen genes is higher when the E1 and E4 regions are expressed, so that four antigens can be respectively expressed in the E1 region and the E4 region.
E3 gene is related to replication, so that the gene needs to be knocked out to cause replication defect; e3 functions in relation to the immune escape of adenovirus; knocking out the E3 region can increase the capacity of the adenovirus vector; and enables normal packaging of the adenovirus vector.
On the other hand, the invention also provides a construction method of the recombinant adenovirus vector for coexpression of four antigen genes of African swine fever virus, which comprises the following steps:
1) E1 genes of adenovirus circular vector plasmids are knocked out by using CRISPR/cas9, swaI enzyme cutting sites are introduced, fused fragments are seamlessly cloned with the vector, E3 genes are knocked out by using CRISPR/cas9, and then the adenovirus circular vector plasmids with E1 and E3 genes deleted are obtained by connecting in a seamless cloning mode.
2) And knocking out the E4 gene of the adenovirus circular vector plasmid by using CRISPR/cas9, amplifying by using PCR, introducing an I-sceI enzyme cutting site, and obtaining the adenovirus vector plasmid with the E1, E3 and E4 genes deleted by using a seamless cloning method.
On the basis of knocking out the E1 and E3 genes, knocking out the E4 gene can improve the capacity of the adenovirus vector and reduce the immunogenicity of the adenovirus vector, and simultaneously, the exogenous gene can be inserted into the E4 region and can be expressed in a large quantity at the E4 position without influencing the packaging of the adenovirus vector. The exogenous genes are expressed at the E1 and E4 genes, so that the mutual interference of the expression of a plurality of exogenous genes in the same region can be avoided, the expression is facilitated, meanwhile, unnecessary E4 related genes are reduced, the immunogenicity of adenovirus is reduced, adenovirus can exist in host cells for a long time, and the exogenous genes are expressed for a longer time.
The E4 region gene plays a key role in immunogenicity, and the expression of a large amount of E4 region genes can lead a host to generate stronger immune response and induce antibody generation, which is unfavorable for the long-term expression of target proteins in the host by adenovirus vectors, so that the immunogenicity of the adenovirus vectors can be reduced by knocking out unnecessary genes in the E4 region, and the vectors can be expressed for a longer time.
In order to make E4 gene knocked out completely and facilitate the connection of large carrier plasmid, the CRISPR/cas9 method is used for knocking out the upstream Fiber gene of E4 region and E4 gene, the PCR method is used for amplifying part of Fiber and introducing I-sceI single enzyme cutting site, the Gibson seamless cloning method is used for connecting redundant resected fragments to carrier, and the carrier plasmid with I-sceI single enzyme cutting site introduced by E4 knockout is obtained again. The vector plasmid was linearized using I-sceI to construct a shuttle plasmid for the E4 region, allowing the exogenous gene to recombine into the E4 region and be expressed in large quantities in the E4 region.
3) The E2a gene of the adenovirus circular vector plasmid is knocked out by using CRISPR/cas9, the ORF6/7 expression frame of the E4 region is placed at the sequence position of the knocked-out E2a region, and then a seamless cloning method is used to obtain the adenovirus vector plasmid pAd5LCL3 with the E1, E3, E4 and E2a genes deleted.
The sequence of ORF1 to ORF5 in the E4 region is knocked out, and the E4 promoter, ORF6, ORF7 and polyA sequences are retained and inserted into the E2a position, so that the E4 position can express the foreign gene. The DBP sequence of the E2a region is also knocked out. The adenovirus E2a gene is DNA binding protein, and is related to adenovirus replication, and knocking out the gene does not affect adenovirus structural protein and adenovirus packaging. DBP deletion can prevent or greatly reduce back mutations. The knockout of the E2a and E4 partial sequences increased the vector capacity by about 3 kb.
The research shows that the genes related to adenovirus replication are E1, E2, E3 and E4, and the deletion of the genes does not influence the expression of adenovirus structural proteins and does not prevent the packaging of adenovirus, but can prevent the adenovirus from replication; thus, the construction of these replication-related cell lines enables replication-defective adenovirus vectors that are knocked out of the replication gene to be replication-packaged in their own cell lines. Meanwhile, it is found that the adenovirus with E4 knocked out can be duplicated and packaged as long as ORF6 or ORF3 in the E4 gene of the adenovirus can replace the whole E4 gene. By further sequence analysis of the E4, E2a genes, the E4 gene can be expressed at E2 a. Therefore, the invention carries out sequence analysis on the E4 gene, finds out several basic elements of the promoter, the ORF6/7 and the polyA of the E4, integrates the basic elements into a complete expression frame, constructs the complete expression frame at the sequence position of the knocked-out E2a gene, ensures that the ORF6 and the ORF7 genes are normally expressed, finally obtains the replication defective adenovirus 5 type vector knocked out E1, E3, E4 and E2a, and places the E4 expression frame at the E2a position, and can carry out replication packaging in 293TD37 cells containing DBP sequences.
It was found that E4 gene contains 7 expression frames of ORF1,2,3,4,5,6 and 7, wherein ORF6/7 cannot be deleted, and once deleted, the packaging of adenovirus and the expression of antigen gene are obviously affected, so that ORF6/7 needs to be complemented, and in order to obtain larger vector space, ORF6/7 needs to be expressed at E2a, so that adenovirus vector with larger capacity and better expression effect is prepared.
4) Constructing an adenovirus E1 region shuttle plasmid pS5E1, and respectively connecting the adenovirus E1 region shuttle plasmid pS5E1-F317L-IRES-A151R with F317L, IRES and A151R gene fragments through DNA ligase to construct an African swine fever adenovirus 5 type vector E1 region shuttle plasmid pS5E1-F317L-IRES-A151R.
The shuttle plasmid pS5E1 is firstly connected with a ribosome entry site IRES fragment to obtain a pS5E1-IRES vector, then connected with an F317L fragment to obtain pS5E1-F317L-IRES, and the pS5E1-F317L-IRES is subjected to enzyme digestion and connection with an A151R fragment to obtain an E1 region shuttle plasmid pS5E1-F317L-IRES-A151R, and colony PCR verification is carried out.
5) Construction of adenovirus E4 region shuttle plasmid pS5E4-EGFP, obtaining P34-2A-pp62 gene fragment by fusion PCR technology from P34, 2A, pp gene, cutting the shuttle plasmid pS5E4-EGFP, knocking out EGFP, connecting with P34-2A-pp62 by DNA ligase, constructing African swine fever adenovirus 5 type vector E4 region plasmid pS5E4-P34-2A-pp62.
The EGFP was replaced with pS5E4-P34-2A-pp62 by cleavage of the E4 shuttle plasmid pS5E 4-EGFP. P34-2A-pp62 is P34, pp62 is linked by a 2A sequence. The addition of the 2A sequence is for protein cleavage, the EF1 alpha promoter is expressed in series, and the 2A sequence is further cleaved to obtain the P34 and pp62 antigens.
6) The shuttle plasmid pS5E1-F317L-IRES-A151R and the adenovirus vector plasmid pAd5LCL3 are subjected to homologous recombination to obtain the adenovirus vector plasmid pAd5LCL3-F317L-IRES-A151R.
7) The shuttle plasmid pS5E4-P34-2A-pp62 and adenovirus vector plasmid pAd5LCL3-F317L-IRES-A151R are subjected to homologous recombination to obtain four recombinant adenovirus vectors pAd5LCL3-F317L-A151R-P34-pp62 with coexpression of antigen genes, and pAd5LCL3-F317L-A151R-P34-pp62 has a nucleotide sequence shown as a sequence table of Seq ID No. 6.
Shuttle plasmids are commonly adopted in the construction of the existing adenovirus vectors, and a single enzyme cutting site needs to be searched. The invention creatively adopts CRISPR/cas9 to construct a recombinant adenovirus vector, selects proper E1, E3, E4 and E2a knockout sites through comparison, selects CRISPR sites according to the number of knocked-out gene bases of the positions of E1, E3, E4 and E2a sequences, and designs the optimal gRNA, thereby completing the construction of the recombinant adenovirus vector.
Further, the adenovirus circular vector plasmid in the step 1) is derived from amplifying wild type human adenovirus type 5 virus in A549 cells, collecting and concentrating virus liquid, extracting adenovirus type 5 genome by adopting a HirtVirual DNA Extract method, and constructing linear adenovirus type 5 genome into circular adenovirus circular vector plasmid by adopting a cosmid method.
Further, the ORF6/7 expression cassette gene in the step 3) has a nucleotide sequence shown as Seq ID No.7 in the sequence table; the IRES in the step 4) has a nucleotide sequence shown as a Seq ID No.8 in a sequence table; the 2A in the step 5) has a nucleotide sequence shown as a Seq ID No.9 in a sequence table.
Further, the shuttle plasmid pS5E1 skeleton in the step 4) adopts basic elements such as pucorigin, amp and the like, the partial sequence of ITR of the left arm of Ad5, the partial sequences of PIX and PIVa2 of the right arm, and CMV-MCS SV40 early polyA; the skeleton of the E4 region shuttle plasmid pS5E4-EGFP adopts basic elements such as puc origin, amp and the like, the Ad5E4 region left arm ITR sequence, the right arm partial fiber gene sequence and the EF1 alpha-EGFP-HBV polyA gene; wherein, the basic elements such as pucorigin, amp and the like have nucleotide sequences shown as SEQ ID NO.10 in the sequence table, and the EF1 alpha-EGFP-HBV polyA gene has nucleotide sequences shown as SEQ ID NO.11 in the sequence table.
The backbone of the shuttle plasmid pS5E1 is synthesized by Beijing Bomaide gene technology Co., ltd, and the synthesis adopts the basic elements (2796 bp) of puc origin, amp and the like, the partial sequence of the ITR of the left arm of Ad5 (400 bp), the partial sequences of the PIX and PIVa2 of the right arm (2100 bp), and the SV40 early polyA (160 bp) of CMV-MCS (944 bp). After PCR amplification and gene fragment purification, carrying out seamless cloning connection, converting a connection product into competent cells, coating an ampicillin resistance plate, and selecting positive clones for enzyme digestion verification after culture to obtain the adenovirus E1 region shuttle plasmid pS5E1.
The skeleton of the shuttle plasmid pS5E4 adopts basic elements such as puc origin, amp and the like, the left arm ITR sequence (370 bp) of the Ad5E4 region, the right arm fiber gene sequence (1746 bp) and the EF1 alpha-EGFP-HBV polyA gene. And (3) carrying out PCR amplification and gene fragment purification, carrying out seamless cloning connection, converting a connection product into competent cells, coating an ampicillin resistance plate, and selecting positive clones for enzyme digestion verification after culturing to obtain adenovirus E4 region shuttle plasmid pS5E4-EGFP.
Further, step 6) homologous recombination of the shuttle plasmid pS5E1-F317L-IRES-A151R and the adenovirus vector plasmid pAd5LCL3 is carried out by enzyme digestion of the shuttle plasmid pS5E1-F317L-IRES-A151R and the adenovirus vector plasmid pAd5LCL3 by PacI and SwaI, dephosphorylation of enzyme digestion products, gel recovery of vectors and fragments by OMEGA Ultra-Sep Gel Extraction Kit, plating of transformed products, picking of colonies, and XhoI enzyme digestion verification.
Further, step 7) homologous recombination of the shuttle plasmid pS5E4-P34-2A-pp62 with the adenovirus vector plasmid pAd5LCL3-F317L-IRES-A151R was performed by enzyme digestion of the shuttle plasmid pS5E4-P34-2A-pp62 with the adenovirus vector plasmid pAd5LCL3-F317L-IRES-A151R by PacI and I-sceI, dephosphorylation of the enzyme digestion products, gel recovery of the vector and fragment by OMEGA Ultra-Sep Gel Extraction Kit, plating of the transformed products, picking colonies, and XhoI enzyme digestion verification.
In another aspect, the present invention provides a method for packaging a recombinant adenovirus vector, characterized in that the recombinant adenovirus vector pAd5LCL3-F317L-A151R-P34-pp62 of claim 1 or 2 is digested with PacI, and the linearized plasmid is used for transfection; 293TD37 cells constructed from pcDNA3.1+ (hyg) -ORF6-IRES-DBP were transfected and cell suspensions were collected to achieve recombinant adenovirus packaging. The 293TD37 cell strain is preserved in China center for type culture collection (China center for type culture collection) on 5 and 8 days, and has the preservation number of CCTCC NO: C201996, and is classified and named as human embryo kidney transformed cells AY293-TD37, and the cell strain comprises adenovirus type 5E 2a genes and E4-ORF6/7 genes, is obtained by genetically engineering HEK293 cells, and can be used for packaging second-generation recombinant adenovirus with deleted E2a genes and E4 genes to form complete second-generation adenovirus particles with infectivity.
Further, the packaging method of the recombinant adenovirus vector is prepared by the following steps:
1) The pAd5LCL3-F317L-A151R-P34-pp62 co-expressed recombinant adenovirus vector is digested with PacI, and the linearized plasmid is used for transfection; transfecting 293TD37 cells with PEI transfection reagent;
2) Transfected 293TD37 cells were incubated at 37℃with 5% CO 2 Culturing in an incubator for 72-96 hours, and collecting cell suspension, namely TP0 adenovirus;
3) TP0 adenovirus infection 293TD37 cells at 37 ℃,5% CO 2 Culturing in incubator for 72 hr, collecting fine powderCell suspension, namely TP1 adenovirus;
4) Repeating the step 3), and collecting cell suspension, namely TP2 generation adenovirus;
5) The inoculation is continued until the cells are diseased.
On the other hand, the invention also provides the application of 293TD37 cells in packaging recombinant adenovirus vectors co-expressed by four antigen genes of African swine fever virus, which is characterized in that the four antigen genes are F317L, A151R, P and pp62 respectively, wherein F317L and A151R are expressed in an E1 region, P34 and pp62 are expressed in an E4 region, and the recombinant adenovirus vectors pAd5LCL3-F317L-A151R-P34-pp62 co-expressed by the four antigen genes are formed; wherein, 293TD37 cells are constructed by E2a genes, and the cell strain preservation number is: CCTCC NO. C201996, which is preserved in China center for type culture Collection.
The invention provides an African swine fever virus vaccine, which is obtained by constructing a recombinant adenovirus vector co-expressed by four antigen genes of African swine fever virus and packaging the recombinant adenovirus vector by 293TD37 cells. Wherein, four antigen genes of African swine fever virus are F317L, A151R, P and pp62 respectively. The construction of recombinant adenovirus vector co-expressed by four antigen genes of African swine fever virus mainly comprises the steps of knocking out E1, E3, E2a and E4 genes of the adenovirus vector through CRISPR/cas9, constructing shuttle plasmids of E1 and E4 regions, and respectively expressing F317L and A151R, P and pp62 genes, thereby obtaining a brand-new adenovirus vector. The beneficial effects of the invention are mainly as follows:
1) Provides a brand-new construction method of adenovirus type 5 vector CRISPR/cas9, selects the optimal knockout site, designs the optimal gRNA, and avoids the need of finding a single enzyme cleavage site by knocking out shuttle plasmid for constructing the vector in the past.
2) Because the E4 region gene plays a key role in immunogenicity, the expression of a large amount of E4 region genes can lead a host to generate stronger immune response, induce antibody generation and be unfavorable for the long-term expression of target proteins in the host by the adenovirus vector, the invention can reduce the immunogenicity of the adenovirus vector by knocking out unnecessary genes in the E4 region, so that the vector can be expressed in a longer time.
3) The invention knocks out the sequence of ORF 1-ORF 5 of the E4 region, retains the E4promoter, ORF6, ORF7 and polyA sequences, and inserts the sequences into the E2a position, so that the E4 position can express exogenous genes.
4) The invention further knocks out DBP (E2 a) sequences, and DBP deletion can prevent or greatly reduce back mutation. (4) The knockout of E2a and E4 partial sequences increased the vector capacity by about 3kb relative to a generation of vectors.
5) E2a and E4 of adenovirus vector are knocked out, E4promoter-ORF6/7-polyA is placed in E2a region, so that E2a complementary cell line can be used for packaging, simultaneously, exogenous genes can be expressed in E1 and E4 regions simultaneously without mutual interference, and the adenovirus vaccine can be saved in a complementary cell line-293 TD37 cell line constructed by our company, and the cell line can express DBP protein permanently.
6) The invention constructs shuttle plasmids of E1 and E4 regions, which are used for expressing exogenous genes of the E1 and E4 regions.
7) The recombinant adenovirus prepared by the 293TD37 cell line packaging has higher titer.
Based on the principle, the invention can greatly improve the capacity of the vaccine of the adenovirus vector, and the mode of simultaneously expressing four independent antigens of African swine fever on one adenovirus vector is used for enhancing the specific immune response to the African swine fever virus, so that the domestic pig can obtain better immune protection.
Drawings
FIG. 1 is a schematic representation of the cleavage site and PAM site of Ad5-E4-up-gRNA of example 2
FIG. 2 is a schematic representation of the cleavage site and PAM site of Ad5-E4-down-gRNA of example 2
FIG. 3 shows the results of the "double digestion" vector plasmid electrophoresis of the Ad5-E4-up-gRNA, ad5-E4-down-gRNA and cas9 of example 2, wherein lane 1 is Ad5-E4-up-gRNA, ad5-E4-down-gRNA and cas9, and M is Marker
FIG. 4 shows the result of electrophoresis detection of amplification of a fiber and ITR fragment containing partial knockdown in example 2, wherein lane 1 shows the result of amplification of a fiber partial fragment, lane 2 shows the result of amplification of an ITR partial fragment, and M shows the Marker
FIG. 5 shows the result of electrophoresis detection of the Fiber-ITR fusion fragment of example 2, wherein lane 1 is the Fiber-ITR fusion fragment and M is Marker
FIG. 6 shows the result of colony PCR-based electrophoresis verification in example 2, wherein lanes 1-24 are colonies and M is Marker
FIG. 7 shows the result of an electrophoresis test of the BamHI and XhoI cleavage test of the positive clone colony plasmid of FIG. 6 in example 2, wherein 1-5 is BamHI cleavage, 6-10 is XhoI cleavage, 1, 10 is pAd5 control (true E4 gene), and M is Marker
FIG. 8 is a schematic representation of 100k-gRNA cleavage sites and PAM sites of example 3
FIG. 9 is a schematic representation of the cleavage site and PAM site of the protease-gRNA of example 3
FIG. 10 shows the results of electrophoresis of 100k-gRNA, protease-gRNA and cas9 "double digested" vector plasmid of example 3, lane 1 is 100k-gRNA, protease-gRNA and cas9 "double digested" vector plasmid, and M is Marker
FIG. 11 shows the results of PCR amplification and electrophoresis of 100k, E4ORF6/7 expression cassettes and protease of example 3, wherein lane 1 is the E4ORF6/7 expression cassette, lane 2 is 100k and M is Marker
FIG. 12 shows the results of fusion PCR detection of 100k, E4ORF6/7 expression cassettes, and Protease fragments of example 3, wherein lane 1 is the fragment 100k, E4ORF6/7 expression cassette, and Protease fusion PCR product, and M is Marker
FIG. 13 shows the result of colony PCR-based electrophoresis verification in example 3, wherein lanes 1-24 are colonies and M is Marker
FIG. 14 shows the result of an electrophoresis test performed by XhoI digestion of colonies of positive clones 9, 18, 21 and 24 of FIG. 13 in example 3, wherein lane 1 is the XhoI digestion of positive clone 9, lane 2 is the XhoI digestion of positive clone 18, lane 3 is the XhoI digestion of positive clone 21, lane 4 is the XhoI digestion of positive clone 24, lane 5 is the XhoI digestion of control plasmid pAd5LCL3, and M is Marker
FIG. 15 shows the results of an electrophoresis test for the amplification of CMV-MCS and SV40 earlypolyA fragment of example 4, wherein lane 1 is CMV-MCS fragment, lane 2 is SV40 earlypolyA fragment and M is 2000Marker
FIG. 16 shows the results of an electrophoresis detection of CMV-MCS-SV40 earlypolyA, PUC, ad right arm and Ad5 left arm amplification of example 4, wherein lane 1 is CMV-MCS-SV40 earlypolyA fusion fragment, lane 2 is PUC, lane 3 is Ad5 right arm, lane 4 is Ad5 left arm, and M is 2000Marker
FIG. 17 shows the results of PCR-validated electrophoresis assays of four fragment-ligation product-transformed competent cell colonies of pS5E1 backbone, ad5 left arm, ad5 right arm, CMV-MCS-SV40 earlypolyA of example 4, wherein lanes 1-6 are colonies and M is Marker
FIG. 18 shows the result of electrophoresis test performed by selecting the colonies 1-6 of FIG. 17 in example 4, wherein the left 1-6 is plasmid pS5E1NcoI single cut, the right 1-6 is plasmid pS5E1 PacI single cut, and M is 15000bp Marker
FIG. 19 shows the result of electrophoresis of PCR amplification of IRES fragment of example 4, wherein lanes 1 and 2 are the products of PCR amplification of IRES fragment, M is 15000bp Marker
FIG. 20 shows the results of the cleavage electrophoresis of the fragment IRES and pS5E1 vector of example 4, in which lane 1 is the cleavage of the fragments IRES EcoRV and NotI, lane 2 is the cleavage of the fragments pS5E1 EcoRV and NotI, and M is 15000bp Marker
FIG. 21 shows the result of PCR-validated electrophoresis of competent cell colonies transformed with the ligation product of pS5E1 vector and IRES fragment of example 4, wherein numbers 1-9 are colonies, and M is Marker
FIG. 22 shows the result of the digestion and electrophoresis of the pS5E1-IRES plasmids NotI and EcoRV of example 4, the plasmids 2 and 6 of FIG. 21 were selected for plasmid extraction, and digestion and verification, wherein the plasmids NotI and EcoRV of lane No. 2 were identified by digestion and verification, and the plasmids NotI and EcoRV of lane No. 6 were identified by digestion and verification
FIG. 23 shows the result of the electrophoresis of the cleavage of the F317L and pS5E1-IRES vector of example 4, wherein lane 1 is pS5E1-IRES, bamHI and EcorV double-digested, lane 2 is fragment F317L, bamHI and EcoRV double-digested, and M is 15000bp Marker
FIG. 24 is a PCR-validated electrophoresis of competent cell colonies transformed with the ligation product of F317L and pS5E1-IRES of example 4, wherein numbers 1-14 are colonies, and M is a 2000bp Marker
FIG. 25 shows the result of the plasmid restriction enzyme electrophoresis of pS5E1-F317L-IRES in example 4, the colonies 9 and 10 in FIG. 24 were selected for plasmid extraction, the plasmid restriction enzyme assay of lane 1, the plasmid restriction enzyme assay of lane 9, and the Marker M
FIG. 26 shows the result of electrophoresis detection of the cleavage products of the fragment A151R and pS5E1-F317L-IRES vector of example 4, wherein lane 1 is the cleavage of pS5E1-F317L-IRES, notI and XhoI; lanes 2 and 3 are A151R fragment, notI and XhoI cut, M is 15000bp Marker
FIG. 27 shows the result of PCR-validated electrophoresis of competent cell colonies transformed with the pS5E1-F317L-IRES vector and the A151R ligation product of example 4, wherein numbers 1-24 are colonies, and M is 2000bp Marker
FIG. 28 shows the result of the plasmid pS5E1-F317L-IRES-A151R digestion assay of example 4, wherein lanes 1, 2, 3 and 4 are identified by digestion with BamHI and EcoRV, and lanes 4, 15, 23 and 24 of FIG. 27, and M is a 2000bp Marker
FIG. 29 shows the results of electrophoresis of the amplification of the pS5E4-EGFP shuttle plasmid left arm, pS5E4-EGFP shuttle plasmid right arm, EF 1. Alpha. -EGFP-HBV, pS5E4-EGFP shuttle plasmid backbone of example 5, wherein lane 1 is the pS5E4-EGFP shuttle plasmid left arm, lane 2 is the pS5E4-EGFP shuttle plasmid right arm, lane 3 is EF 1. Alpha. -EGFP-HBV, lane 4 is the pS5E4-EGFP shuttle plasmid backbone, M is 2000Marker
FIG. 30 shows the results of PCR-validated electrophoresis assays of four fragment ligation products transformed competent cell colonies of the pS5E4-EGFP shuttle plasmid left arm, pS5E4-EGFP shuttle plasmid right arm, EF 1. Alpha. -EGFP-HBV, pS5E4-EGFP shuttle plasmid backbone of example 5, wherein lanes 1-20 are colonies and M is Marker
FIG. 31 shows the result of the electrophoresis test of colony Nos. 3, 4, 5 and 6 of FIG. 30 of example 5, in which 1-4 are 3, 4, 5 and 6 positive clones PacI single cut, 5-8 are 3, 4, 5 and 6 positive clones HindIII single cut, M1 and M3 are 15000bp Marker,M2 and 2000bp Marker
FIG. 32 shows the result of the electrophoresis detection of the PCR products of the target fragments P34, 2A, pp62 of example 4, wherein lane 1 is fragment P34;2 is fragment 2A;3 is fragment pp62, M is 15000bp Marker
FIG. 33 shows the result of electrophoresis of the fusion PCR amplified P34-2A fragment of example 5, wherein lane 1 is the P34-2A fragment and M is the 2000bp Marker
FIG. 34 shows the result of the digestion electrophoresis of the fragment pS5E4-EGFP vector of example 5, in which lane 1 is the recovery of the double digestion with BamHI and XhoI fragments pS5E4-EGFP, M15000 bp Marker
FIG. 35 shows the result of PCR-validated electrophoresis of competent cell colonies obtained by seamless cloning of the pS5E4-EGFP gel recovery vector and the P34-2A fragment, pp62, of example 5, wherein the numbers 1-12 are colonies and M is a 15000bp Marker
FIG. 36 is the result of an electrophoresis test for BamHI and XhoI double digestion test of the extracted plasmid of positive clone No. 1, 2, 9 and 11 of FIG. 34 in example 5, wherein lanes 1, 2, 3 and 4 are respectively identified as BamHI and XhoI double digestion test of positive clone No. 1, 2, 9 and 11, and M is 15000bp Marker
FIG. 37 shows the result of agarose gel verification electrophoresis of pAd5LCL3 and pS5E1-F317L-IRES-A151R of example 6, wherein lane 1 is pAd5LCL3, lane 2 is pS5E1-F317L-IRES-A151R, and M is 15000bp Marker
FIG. 38 shows the result of the electrophoresis test of the plasmid pAd5LCL3-F317L-IRES-A151R obtained by homologous recombination of the shuttle plasmid pS5E1-F317L-IRES-A151R of example 6 and the adenovirus vector plasmid pAd5LCL3, wherein lanes 1-7 are pAd5LCL3-F317L-IRES-A151R and M is 15000bp Marker
FIG. 39 is a schematic diagram showing the result of performing restriction enzyme digestion on plasmid XhoI obtained by picking the positive plasmid No. 3 of FIG. 38 to competent cells, extracting the plasmid, wherein lanes 1 and 2 are pAd5LCL3-P72-IRES-B602L, and M is 15000bp Marker
FIG. 40 shows the result of agarose gel-verification electrophoresis of shuttle plasmid pS5E4-P34-2A-pp62 and adenovirus vector plasmid pAd5LCL3-F317L-IRES-A151R, wherein lane 1 is pS5E4-P34-2A-pp62, lane 2 is pAd5LCL3-F317L-IRES-A151R, M is 15000bp Marker
FIG. 41 shows the result of the electrophoresis test of the recombinant adenovirus vector pAd5LCL3-F317L-A151R-P34-pp62 plasmid obtained by homologous recombination of the shuttle plasmid pS5E4-P34-2A-pp62 and the adenovirus vector plasmid pAd5LCL3-F317L-IRES-A151R of example 6, wherein lanes 1-4 are plasmids and M is a 15000bp Marker
FIG. 42 is a schematic diagram showing the result of performing restriction enzyme test on plasmid XhoI in lane 2, pAd5LCL3-F317L-A151R-P34-pp62 plasmid XhoI, M15000 bp Marker, obtained by picking the positive plasmid No. 2 of FIG. 41 of example 6 and transforming it into competent cells
FIG. 43 is a photograph of 293TD37 cells taken by TP0 of example 7
FIG. 44 is a photograph of 293TD37 cells taken by TP1 of example 7
FIG. 45 is a photograph of a 293TD37 cell derived from TP2 of example 7
FIG. 46 is a photograph of 293TD37 cells taken by TP3 of example 7
FIG. 47 is a photograph of a TP 4-induced 293TD37 cytopathic effect of example 7
FIG. 48 is a schematic diagram showing the results of Western Blot to detect pp62 protein in African swine fever multi-antigen recombinant adenovirus vaccine pAd5LCL3-F317L-A151R-P34-pp62 of example 11
FIG. 49 is a vector map of pAd5LCL3
FIG. 50 is a vector map of pS5E1
FIG. 51 is a vector map of pS5E1-F317L-IRES-A151R
FIG. 52 is a vector map of pS5E4-EGFP
FIG. 53 is a vector map of pS5E4-P34-2A-pp62
FIG. 54 is a vector map of pAd5LCL3-F317L-A151R-P34-pp62
FIG. 55 is a schematic diagram showing the results of ELISA method of example 12 for detecting IgG antibody titer against African swine fever target protein pp62 in serum
FIG. 56 is a schematic representation of the results of a CD8+ T cell reaction induced by pAd5LCL3-F317L-A151R-P34-pp62 of example 12
FIG. 57 is a schematic diagram showing the results of a CD4+ T cell reaction induced by pAd5LCL3-F317L-A151R-P34-pp62 of example 12
FIG. 58 is a representation of the cellular immune response of example 12 after intramuscular injection of pAd5LCL3-F317L-A151R-P34-pp62
FIG. 59 is a schematic representation of the immune response of a blank in example 12
Detailed Description
The following description of the preferred embodiments of the present invention is further detailed in conjunction with the accompanying drawings, and it should be noted that the embodiments described below are intended to facilitate an understanding of the present invention, and are not intended to limit the invention in any way.
EXAMPLE 1 construction of adenovirus vector plasmids deleted for E1 and E3 genes
In A549 cellsWild type adenovirus type 5 (/ -for medium amplification)>VR-1516, gene sequence AC_ 000008.1), collecting and concentrating the virus solution, extracting the adenovirus genome by HirtVirual DNA Extract method, constructing the linear hAD5 gene into circular supercos-Ad5 vector plasmid by cosmid method, excision of hAD5 adenovirus E1 region by CRISPR/cas9, designing gRNA as follows:
hAD5-E1 upstream gRNA:
GGCGGGAAAACUGAAUAAGGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
hAd5-E1 downstream gRNA:
GAGAUGAUCCAGUCGUAGCGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
designing gRNA sites on the upstream and downstream of the hAD 5E 1 region, cutting, recovering a large fragment vector, designing primers, respectively inserting ITR and PIX sequences on the upstream and downstream by fusion PCR, introducing SwaI enzyme cutting sites, then performing seamless cloning on the fused fragments and the vector to obtain an E1 knocked-out supercos-Ad5 delta E1 adenovirus vector, then performing E3 region excision on the supercos-Ad5 delta E1 plasmid, and designing gRNA as follows:
hAD5-E3 upstream gRNA:
GCGGGACAUUUCAGAUCGGGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
hAd5-E3 downstream gRNA:
GUAAGGGUACUGCUAUCGGGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
gRNA sites are designed at the upstream and downstream of the hAD 5E 3 region, large fragment vectors are recovered after cutting, primers are designed, fusion PCR is carried out on Fiber with excessive excision of the upstream and downstream of E3 and pVIII sequences, a seamless cloning mode is used for connection, E1 and E3 genes are deleted, and adenovirus vector plasmid pAd5 with SwaI enzyme cutting sites is introduced.
EXAMPLE 2 construction of adenovirus vector plasmid pAd5ΔE4 with deletion of E1, E3 and E4 genes
The vector plasmid pAd5 obtained in example 1, from which the E1 and E3 genes have been knocked out, was used to further knock out the E4 gene, to increase the capacity of the adenovirus vector, to reduce the immunogenicity thereof, to amplify a portion of the fiber and introduce NdeI single cleavage sites by PCR, to join the superfluous excised fragments to the vector by the Gibson seamless cloning method, to obtain the vector plasmid pAd5ΔE4 from which the E1, E3 and E4 genes have been deleted and to which SwaI and I-sceI cleavage sites have been introduced.
1. Selection of target sequence of target gene E4 CRISPR
1) Selection of E4 Gene upstream fiber Gene CRISPR target sequence
Using the Semer flying GeneArt TM CRISPR Search and Design tool (thermosusher. Com/crisprdesign) software, the first 400 bases of the fiber gene were entered and the software automatically analyzed the 400 base sequence, providing 6 potential CRISPR target sequences. Considering the length of the E4 gene knockout sequence and the requirement of constructing a live vector, GCTACTAAACAATTCCTTCC was selected as a targeting sequence, and the finally obtained gRNA was named Ad5-E4-up-gRNA, and the cleavage site and PAM site are shown in FIG. 1.
2) E4 downstream non-coding sequence CRISPR target sequence selection
Using the Semer flying GeneArt TM CRISPR Search and Design tool (thermosusher. Com/crisprdesign) software, 300 bases downstream of E4 were entered and the software was automatically analyzed to provide 6 potential CRISPR target sequences, AGGTTCGCGTGCGGTTTTCT was selected as the targeting sequence, and the resulting gRNA was designated Ad5-E4-down-gRNA, cleavage site and PAM site as shown in FIG. 2.
2. DNA amplification of Ad5-E4-up-gRNA and Ad5-E4-down-gRNA
1) DNA template design of Ad5-E4-up-gRNA
5’-TAATACGACTCACTATAGTACTAAACAATTCCTTCCGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCC GTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTT-3’
2) DNA template design of Ad5-E4-Down-gRNA
5’-TAATACGACTCACTATAGGTTCGCGTGCGGTTTTCTGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCC GTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTT-3’
3. Designing upstream and downstream primers of DNA templates for amplifying Ad5-E4-up-gRNA and Ad5-E4-down-gRNA
The upstream and downstream primers were designed to amplify the DNA template of Ad5-E4-up-gRNA and the DNA template of Ad5-E4-down-gRNA by PCR, respectively, using GeneArt TM Precision gRNA Synthesis Kit kit for amplification.
Primer design:
Ad5-E4-up-gRNA-Forward:TAATACGACTCACTATAGTACTAAACAATTCCT
Ad5-E4-up-gRNA-Reverse:TTCTAGCTCTAAAACGGAAGGAATTGTTTAGTA
Ad5-E4-down-gRNA-Forward:TAATACGACTCACTATAGGTTCGCGTGCGGTTT
Ad5-E4-down-gRNA-Reverse:TTCTAGCTCTAAAACAGAAAACCGCACGCGAAC
4. DNA templates for amplifying Ad5-E4-up-gRNA and Ad5-E4-down-gRNA
1) Preparation of 0.3. Mu.M Ad5-E4-up-gRNA-Forward/Reverse primer mix working solution
mu.M of Ad5-E4-up-gRNA-Forward primer 3. Mu.l, 10. Mu.M of Ad5-E4-up-gRNA-Reverse primer 3. Mu.l, make up water to 100. Mu.l.
2) Preparation of 0.3. Mu.M Ad5-E4-Down-gRNA-Forward/Reverse primer mix working solution
mu.M of Ad5-E4-down-gRNA-Forward primer 3. Mu.l, 10. Mu.M of Ad5-E4-down-gRNA-Reverse primer 3. Mu.l, make up water to 100. Mu.l.
3) PCR reaction system
PCR reaction for DNA template amplification of Ad5-E4-up-gRNAThe method comprises the following steps: phusion TM High-Fidelity PCR Master Mix (2X) 12.5. Mu.l, tracr fragment+T7 Primer Mix 1. Mu.l, 0.3. Mu.M Ad5-E4-up-gRNA-Forward/Reverse Primer Mix working solution 1. Mu.l, and make up water to 25. Mu.l.
The PCR reaction system for amplifying the DNA template of the Ad5-E4-down-gRNA is as follows: phusion TM High-Fidelity PCR Master Mix (2X) 12.5. Mu.l, tracr fragment+T7 Primer Mix 1. Mu.l, 0.3. Mu.M Ad5-E4-down-gRNA-Forward/Reverse Primer Mix 1. Mu.l, and make up to 25. Mu.l.
4) PCR program
Initial denaturation 98 ℃,10sec,1 cycle; denaturation at 98 ℃,5sec; annealing at 55 ℃,15sec,32 cycles; extending at 72 ℃,1min,1 cycle; the temperature was kept at 4 ℃.
5. In vitro transcription to obtain Ad5-E4-up-gRNA and Ad5-E4-down-gRNA
Using Transcriptaid TM The Enzyme Mix carries out in vitro transcription on the template DNA to obtain Ad5-E4-up-gRNA and Ad5-E4-down-gRNA.
The reaction system for obtaining Ad5-E4-up-gRNA through in vitro transcription is as follows: NTP mix 8. Mu.l, E1A-gRNA DNA template 6. Mu.l, 5 XTranscriptaid TM Reaction Buffer 4μl,TranscriptAid TM Enzyme Mix 2 μl. After 4 hours incubation at 37℃1. Mu.l DNase I was added and incubated for 15 minutes at 37 ℃.
The reaction system for obtaining Ad5-E4-down-gRNA through in vitro transcription is as follows: NTP mix 8. Mu.l, E1B-gRNA DNA template 6. Mu.l, 5 XTranscriptaid TM Reaction Buffer 4μl,TranscriptAid TM Enzyme Mix 2 μl. After 4 hours incubation at 37℃1. Mu.l DNase I was added and incubated for 15 minutes at 37 ℃.
In vitro transcription to obtain Ad5-E4-up-gRNA, ad5-E4-down-gRNA
6. Purification of in vitro transcription products
1) Supplementing the transcribed reaction system to 200 μl with nuclease-free water;
2) Adding 100 μl of Binding buffer, and mixing thoroughly;
3) Adding 300 μl ethanol (> 96%) and mixing thoroughly;
4) Transferring the mixture to the Gene JET TM RNA Purification Micro Column, centrifuging at 14000 Xg for 30-60 s, and discarding the lower solution;
5) 700. Mu.l of Wash Buffer1 (13 mL of ethanol) was added, and the mixture was centrifuged at 14000 Xg for 30-60 seconds, and the lower solution was discarded;
6) 700. Mu.l of Wash Buffer2 (30 mL of ethanol) was added, and the mixture was centrifuged at 14000 Xg for 30-60 seconds, and the lower solution was discarded, and the above steps were repeated once;
7) 14000 Xg air was taken for 60 seconds, all eluent was completely removed, and the empty tube was placed in a 1.5mL collection tube;
8) 10. Mu.l of nuclease-free water was added to the center of the column and the gRNA was collected by centrifugation at 14000 Xg for 60 seconds.
Wherein, wash Buffer1 and Wash Buffer2 are Transcriptaid TM The RNA sequences of the Ad5-E4-up-gRNA and Ad5-E4-down-gRNA obtained by transcription of the reagents in the Enzyme Mix kit are shown below:
Ad5-E4-up-gRNA:GUACUAAACAAUUCCUUCCGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCC GUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
Ad5-E4-down-gRNA:GGUUCGCGUGCGGUUUUCUGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCC GUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
7. CRISPR/Cas9 "restriction enzyme" method "
The vector plasmid was obtained using the two digestion examples of Ad5-E4-up-gRNA, ad5-E4-down-gRNA and Cas9, with a reaction system of 3. Mu.g of Cas9 protein, 6. Mu.g of Ad5-E4-up-gRNA, 6. Mu.g of Ad5-E4-down-gRNA, 3. Mu.g of pAd5-REBP vector plasmid, 3.1. Mu.l of NEB buffer, and additional water to 50. Mu.l.
The cleavage reaction was incubated overnight at 37 ℃. The agarose gel verification is carried out by taking 3 μl of sample, and the electrophoresis chart of the experimental result is shown in FIG. 3. Lane 1 shows the results of the Ad5-E4-up-gRNA, ad5-E4-down-gRNA and cas9 "double digestion" pAd5 vector plasmids, with fragments of the target size of 2500bp-5000bp, and the correct digestion results were seen. The vector was purified using the Axygen gel recovery kit.
8. Obtaining a fiber containing partial knockdown, ITR fragments and introducing an I-SceI cleavage site, knocking down, amplifying the fiber fragments and introducing the I-SceI cleavage site using a primer containing the knockdown partial fiber
1) Amplification of fragment fiber
Amplification primers:
Fiber-RH-F:GAGTGCTACTAAACAATTCCTTCCTGGACCCAGAATATTGG
Fiber-ISceI-ITR-R:TGGTGTTATTACCCTGTTATCCCTAGCAATTGAAAAATAAACACGTTG
the amplification sequence is as follows:
TGGTGTTATTACCCTGTTATCCCTAGCAATTGAAAAATAAACACGTTGAAACATAACACAAACGATTCTTTATTCTTGGGCAATGTATGAAAAAGTGTAAGAGGATGTGGCAAATATTTCATTAATGTAGTTGTGGCCAGACCAGTCCCATGAAAATGACATAGAGTATGCACTTGGAGTTGTGTCTCCTGTTTCCTGTGTACCGTTTAGTGTAATGGTTAGTGTTACAGGTTTAGTTTTGTCTCCGTTTAAGTAAACTTGACTGACAATGTTACTTTTGGCAGTTTTACCGTGAGATTTTGGATAAGCTGATAGGTTAGGCATAAATCCAACAGCGTTTGTATAGGCTGTGCCTTCAGTAAGATCTCCATTTCTAAAGTTCCAATATTCTGGGTCCAGGAAGGAATTGTTTAGTAGCACTC
the amplification system is as follows: 10. Mu.M Fiber-RH-F primer 1. Mu.l; 10. Mu.M Fiber-ISceI-ITR-R primer 1. Mu.l; template pAd5 (100 ng/. Mu.l) 0.5. Mu.l; 25 μl of Q5 high-fidelity enzyme; the water was made up to 50. Mu.l.
The PCR procedure was: initial denaturation 98 ℃,10sec,1 cycle; denaturation at 98 ℃,5sec; annealing at 60 ℃ for 30sec; extending the temperature to 72 ℃,10sec,35 cycles; extending at 72 ℃, for 5min, and circulating for 1; the temperature was kept at 4 ℃. As shown in FIG. 4, lane 1 shows the result of amplification of a portion of the fiber fragment, M is 2000Marker, and the result of amplification is correct, and the fragment was purified using the Axygen gel recovery kit.
2) Amplification of ITR fragments
Amplification primers:
ISceI-ITR-F:TAGGGATAACAGGGTAATAACACCACTCGACACGGCAC
ITR-RH-R:GGCGTAGGTTCGCGTGCGGTTTTCTGGGTGTTTTTTGTGGACTT
the amplification sequence is as follows:
GGCGTAGGTTCGCGTGCGGTTTTCTGGGTGTTTTTTGTGGACTTTAACCGTTACGTCATTTTTTAGTCCTATATATACTCGCTCTGCACTTGGCCCTTTTTTACACTGTGACTGATTGAGCTGGTGCCGTGTCGAGTGGTGTTATTACCCTGTTATCCCTA
the amplification system is as follows: 1 μl of 10 μM ISceI-ITR-F primer; 1 μl of 10 μM ITR-RH-R primer; template pAd5 (100 ng/. Mu.l) 0.5. Mu.l; 25 μl of Q5 high-fidelity enzyme; the water was made up to 50. Mu.l.
The PCR procedure was: initial denaturation 98 ℃,10sec,1 cycle; denaturation at 98 ℃,5sec; annealing at 60 ℃ for 30sec; extending the temperature to 72 ℃,10sec,35 cycles; extending at 72 ℃, for 5min, and circulating for 1; the temperature was kept at 4 ℃. As shown in FIG. 4, lane 2 shows the amplification result of the ITR partial fragment, M is 2000Marker, and the amplification result is correct, and the fragment was purified using the Axygen gel recovery kit.
3) Fusion PCR to obtain Fiber-ITR fusion fragment
The amplification system is as follows: 10. Mu.M Fiber-RH-F primer 1. Mu.l, 10. Mu.M Fiber-ISceI-ITR-R primer 1. Mu.l, template pAd5 (100 ng/. Mu.l) 0.5. Mu.l, Q5 Hi-Fi enzyme 25. Mu.l, and water to 50. Mu.l.
The PCR procedure was: initial denaturation 98 ℃,10sec,1 cycle; denaturation at 98 ℃,5sec; annealing at 60 ℃ for 30sec; extending for 72 ℃,20sec,35 cycles; extending at 72 ℃, for 5min, and circulating for 1; the temperature was kept at 4 ℃. As shown in FIG. 5, lane 1 shows the fusion fragment of Fiber-ITR, M is 2000Marker, and the fusion result is correct. Fragments were purified using the Axygen gel recovery kit.
9. Carrier connection
The Fiber-ITR fragment was ligated to the E4 knock-out vector plasmid using Gibson of NEB, the ligation system was as follows: gel recovery product vector plasmid fragment 100ng, gel recovery product fiber-ITR fragment 50ng, gibson premix 10. Mu.l, and water make up to 20. Mu.l. Incubate at 50℃for 40 min.
10. Transformation
Taking out the plate of the kana resistance culture medium, putting the prepared NEB 10 beta competent cells on ice to melt, adding 10 mu l of a connecting product, gently sucking and beating uniformly by a liquid-transfering device, and standing on ice for 30 minutes; the tube was placed in a 42℃water bath, heat-shocked for 90 seconds, and transformants were selected by means of kanagacillin resistance.
11. Colony PCR for transformant screening
Colony PCR verification was performed on the transformants using PCR amplification.
Downstream primers for colony PCR were designed
E4-cexu-F:AGTGACGATTTGAGGAAGTTG
E4-cexu-R:TCAATTGCAGAAAATTTCAAGTC
The reaction system is as follows: mu. M E4-cexu-F primer 1. Mu.l, 10. Mu. M E4-cexu-R primer 1. Mu.l, Q5 high-fidelity enzyme 10. Mu.l, and water to 20. Mu.l were added, and monoclonal colonies were picked up in the reaction system. The PCR procedure was: initial denaturation 98 ℃,10sec,1 cycle; denaturation at 98 ℃,5sec; annealing at 60 ℃ for 30sec; extending for 72 ℃,20sec,35 cycles; extending at 72 ℃, for 5min, and circulating for 1; the temperature was kept at 4 ℃. Agarose gel electrophoresis was performed to verify that most colonies appeared positive bands except for numbers 2, 8, 11, and 17, as shown in fig. 6.
12. Plasmid enzyme digestion verification
4 positive clone colonies are selected, plasmids are extracted, bamHI and XhoI digestion verification is carried out, the digestion results are shown in FIG. 7, and the digestion results of the No. 2-5 plasmids BamHI and XhoI are correct as shown in FIG. 7, and meanwhile, the sequencing results are correct, so that the adenovirus vector plasmid pAd5DeltaE 4 with the E1, E3 and E4 genes deleted is obtained.
EXAMPLE 3 construction of adenovirus vector plasmid pAd5LCL3 deleted of E1, E3, E4 and E2a genes
1. Selection of target sequence of target gene E2a CRISPR
1) Selection of a CRISPR target sequence for the 100k gene upstream of the E2a gene
Using the Semer flying GeneArt TM CRISPR Search and Design tool (thermosusher. Com/crisprdesign) software, the first 400 bases of the 100k gene were entered and the software automatically analyzed the sequence of the 400 bases, providing 6 potential CRISPR target sequences. Considering the length of the E2a knockout sequence and the requirement for constructing a live vector, ATAGGTGGCGTTCGTAGGCA was selected as a targeting sequence, and the finally obtained gRNA was designated as 100k-gRNA, and the cleavage site and PAM site are shown in FIG. 8.
2) Selection of E2a downstream non-coding sequence CRISPR target sequence
Using the Semer flying GeneArt TM CRISPR Search and Design tool (thermosusher. Com/crisprdesign) software, 300 bases downstream of E4 were entered, software automated analysis provided 6 potential CRISPR target sequences, TACCCCGGTAATAAGGTTCA was selected as the targeting sequence, The final obtained gRNA was designated as protease-gRNA, and cleavage site and PAM site are shown in FIG. 9.
2. DNA amplification of 100k-gRNA and protease-gRNA
1) DNA template design of 100k-gRNA
5’-TAATACGACTCACTATAGAGGTGGCGTTCGTAGGCAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCC GTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTT-3’
2) DNA template design of protease-gRNA
5’-TAATACGACTCACTATAGCCCCGGTAATAAGGTTCAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCC GTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTT-3’
3. Designing upstream and downstream primers of DNA templates for amplifying 100k-gRNA and protease-gRNA
The upstream and downstream primers were designed to amplify the DNA template of 100k-gRNA and the DNA template of protease-gRNA by PCR, respectively, using GeneArt TM Precision gRNA Synthesis Kit kit for amplification.
1) Primer design
100k-gRNA-Foward:TAATACGACTCACTATAG AGGTGGCGTTCGTAG
100k-gRNA-Reverse:TTCTAGCTCTAAAAC TGCCTACGAACGCCACCT
protease-gRNA-Foward:TAATACGACTCACTATAG CCCCGGTAATAAGGT
protease-gRNA-Reverse:TTCTAGCTCTAAAAC TGAACCTTATTACCGGGG
2) DNA template for amplifying 100k-gRNA and protease-gRNA
(1) A0.3. Mu.M 100k-gRNA-Forward/Reverse primer mix was prepared, including 10. Mu.M 100k-gRNA-Forward primer 3. Mu.l, 10. Mu.M 100k-gRNA-Reverse primer 3. Mu.l, and water was supplemented to 100. Mu.l.
(2) A0.3. Mu.M Apase-gRNA-Forward/Reverse primer mix working solution was prepared, including 10. Mu.M protease-gRNA-Forward primer 3. Mu.l, 10. Mu.M protease-gRNA-Reverse primer 3. Mu.l, and water was made up to 100. Mu.l.
(3) PCR reaction system
The PCR reaction system for amplifying the DNA template of the 100k-gRNA comprises: phusion TM High-Fidelity PCR Master Mix (2X) 12.5. Mu.l, tracr fragment+T7 Primer Mix 1. Mu.l, 0.3. Mu.M 100k-gRNA-Forward/Reverse Primer Mix 1. Mu.l, and water to 25. Mu.l.
The PCR reaction system for amplifying the DNA template of the protease-gRNA comprises the following steps: phusion TM High-Fidelity PCR Master Mix (2X) 12.5. Mu.l, tracr fragment+T7 Primer Mix 1. Mu.l, 0.3. Mu.M protease-gRNA-Forward/Reverse Primer Mix 1. Mu.l, and make up to 25. Mu.l.
(4) PCR program
Initial denaturation 98 ℃,10sec,1 cycle; denaturation at 98 ℃,5sec; annealing at 55 ℃,15sec,32 cycles; extending at 72 ℃,1min,1 cycle; the temperature was kept at 4 ℃.
3. In vitro transcription to obtain 100k-gRNA and protease-gRNA
Using Transcriptaid TM The Enzyme Mix carries out in vitro transcription on the template DNA to obtain 100k-gRNA and protease-gRNA.
1) In vitro transcription to obtain 100k-gRNA, protease-gRNA
The reaction system for obtaining 100k-gRNA through in vitro transcription is as follows: NTP mix 8. Mu.l, 100k-gRNA DNA template 6. Mu.l, 5 XTranscriptaid TM Reaction Buffer 4μl,TranscriptAid TM Enzyme Mix 2 μl. After 4 hours incubation at 37℃1. Mu.l DNase I was added and incubated for 15 minutes at 37 ℃.
The reaction system for obtaining the protease-gRNA through in vitro transcription is as follows: NTP mix 8. Mu.l, protease-gRNA DNA template 6. Mu.l, 5 XTranscriptaid TM Reaction Buffer 4μl,TranscriptAid TM Enzyme Mix 2 μl. After 4 hours incubation at 37℃1. Mu.l DNase I was added and incubated for 15 minutes at 37 ℃.
2) Purification of in vitro transcription products
Supplementing the transcribed reaction system to 200 mu l with nuclease-free water, adding 100 mu l of Binding buffer, fully and uniformly mixing, and adding 300 mu l of ethanol >96%) was thoroughly mixed and the mixture was transferred to the Gene JET TM RNA Purification Micro Column, centrifuging at 14000 Xg for 30-60 s, and discarding the lower solution; 700. Mu.l of Wash Buffer1 (13 mL of ethanol) was added, and the mixture was centrifuged at 14000 Xg for 30-60 seconds, and the lower solution was discarded; 700. Mu.l Wash Buffer2 (30 mL ethanol) was added, 1400Centrifuging at 0 Xg for 30-60 s, discarding the lower solution, and repeating the above steps once. 14000 Xg of air was left for 60 seconds, all the eluate was completely removed, the empty tube was placed in a 1.5mL collection tube, 10. Mu.l of nuclease-free water was added to the center of the column, and the gRNA was collected by centrifugation at 14000 Xg for 60 seconds.
Wherein, wash Buffer1 and Wash Buffer2 are Transcriptaid TM The RNA sequences of the 100k-gRNA and the protease-gRNA obtained by transcription of the reagents in the Enzyme Mix kit are shown below:
100k-gRNA:GAGGUGGCGUUCGUAGGCAGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU p rotease-gRNA:GCCCCGGUAAUAAGGUUCAGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCUUUU
4. CRISPR/Cas9 "restriction enzyme" method "
The adenovirus vector plasmid obtained in practical example 2, which is 100k-gRNA, protease-gRNA and Cas9 double enzyme, lacks the E1, E3 and E4 genes, and the reaction system is 3 mug of Cas9 protein; 100k-gRNA 6. Mu.g; 6 μg of protease-gRNA; 3. Mu.g of the vector plasmid obtained in example 2; NEB buffer 3.1 μl; make up water to 50 μl.
The cleavage reactions described above were incubated overnight at 37 ℃. The agarose gel verification was performed on 3. Mu.l of the sample, and the experimental results are shown in FIG. 10. Lane 1 shows the result of the double cleavage of 100k-gRNA, protease-gRNA and cas9 "double cleavage" vector plasmid, a fragment of the target size of 1000-2500bp was present, and the correct cleavage result was seen. The vector was purified using the Axygen gel recovery kit.
5. Obtaining a 100k, E4 ORF6/7 expression cassette containing a partial knockout, a Protease fragment
1) Amplification of the partially knocked out 100k, E4 ORF6/7 expression cassette, protease fragment
(1) Partial knockdown 100k amplification primer:
100k-F:TGAGAATAGGTGGCGTTCGTAGGCAAGGCTGACATCCGCTATGG
100k-ORF6/7-R:TACAATTCCCAACACATACAAGTTTCCTTCTCCTATAGGCAGAA
the amplification system is as follows: 1 μl of 10 μM 100k-F primer; 1 μl of 10 μM 100k-ORF6/7-R primer; template pAd5ΔE4 (100 ng/. Mu.l) 0.5. Mu.l; 25 μl of Q5 high-fidelity enzyme; the water was made up to 50. Mu.l.
The PCR procedure was: initial denaturation 98 ℃,10sec,1 cycle; denaturation at 98 ℃,5sec; annealing at 60 ℃ for 30sec; extending for 72 ℃,20sec,35 cycles; extending at 72 ℃, for 5min, and circulating for 1; the temperature was kept at 4 ℃.
(2) E4 ORF6/7 expression cassette amplification primers:
ORF6/7-F:ACTTGTATGTGTTGGGAATTGTA
ORF6/7-R:ATCGTTTGTGTTATGTTTCAACG
the amplification system is as follows: 1 μl of ORF6/7-F primer; 10. Mu.M ORF6/7-R primer 1. Mu.l; template ORF6/7 expression cassette gene (100 ng/. Mu.l) 0.5. Mu.l; 25 μl of Q5 high-fidelity enzyme; the water was made up to 50. Mu.l.
The PCR procedure was: initial denaturation 98 ℃,10sec,1 cycle; denaturation at 98 ℃,5sec; annealing at 60 ℃ for 30sec; extending the temperature to 72 ℃,10sec,35 cycles; extending at 72 ℃, for 5min, and circulating for 1; the temperature was kept at 4 ℃.
(3) Amplification of partially knocked out Protease fragments
ORF6/7-Protease-F:CCCACCCTTGCCGTCTGCGCCGTATCGTTTGTGTTATGTTTCAACG
Protease-R:ATGGATCACAACCCCACCATGAACCTTATTACCGGGGTACCCA
The amplification system is as follows: 10. Mu.M ORF6/7-Protease-F primer 1. Mu.l; 10. Mu.M Protease-R primer 1. Mu.l; template pAd5ΔE4 (100 ng/. Mu.l) 0.5. Mu.l; 25 μl of Q5 high-fidelity enzyme; the water was made up to 50. Mu.l.
The PCR procedure was: initial denaturation 98 ℃,10sec,1 cycle; denaturation at 98 ℃,5sec; annealing at 60 ℃ for 30sec; extending the temperature to 72 ℃,10sec,35 cycles; extending at 72 ℃, for 5min, and circulating for 1; the temperature was kept at 4 ℃.
(4) The results of the 100k, E4 ORF6/7 expression cassettes and protease PCR amplification are shown in FIG. 11, in which lane 1 is the E4 ORF6/7 expression cassette, lane 2 is 100k and M is 15000bpMark
The amplification result is correct, and fragments are respectively subjected to gel recovery and purification by using an Axygen gel recovery kit.
6. Fusion PCR to obtain fusion fragment of 100k, E4 ORF6/7 expression cassette and Protease fragment
The amplification system is as follows: 1 μl of 10 μM 100k-F primer; 10. Mu.M Protease-R primer 1. Mu.l; template 100k gel recovery product (50 ng/. Mu.l) 1. Mu.l template E4 ORF6/7 expression cassette recovery product (50 ng/. Mu.l) 1. Mu.l; 25 μl of Q5 high-fidelity enzyme; the water was made up to 50. Mu.l.
The PCR procedure was: initial denaturation 98 ℃,10sec,1 cycle; denaturation at 98 ℃,5sec; annealing at 60 ℃ for 30sec; extending for 72 ℃,50sec,35 cycles; extending at 72 ℃, for 5min, and circulating for 1; the temperature was kept at 4 ℃. The amplification results are shown in FIG. 12, wherein lane 1 shows fragment 100k, E4 ORF6/7 expression cassette, and protease fusion PCR product, and the amplification results are correct. Fragments were purified using the Axygen gel recovery kit.
7. Carrier connection
The 100k, E4 ORF6/7 expression cassettes, protease fusion PCR glue recovery products were ligated to the E2a knockdown vector of step 4 using Gibson of NEB, the ligation system was as follows: 100ng of vector fragment after knocking out E2a of the gel recovery product, 100k of gel recovery product, 50ng of protease fusion PCR fragment, 10 μl of Gibson premix, and 20 μl of water were added. Incubate at 50℃for 40 min.
8. Transformation
Taking out the plate of the kana resistance culture medium, putting the prepared NEB 10 beta competent cells on ice to melt, adding 10 mu l of a connecting product, gently sucking and beating uniformly by a liquid-transfering device, and standing on ice for 30 minutes; the tube was placed in a 42℃water bath, heat-shocked for 90 seconds, and transformants were selected by means of kanagacillin resistance.
9. Colony PCR for transformant screening
Colony PCR verification was performed on the transformants using PCR amplification.
Downstream primers for colony PCR were designed
DBP-upsteam-F:GTTGGGCTCGCATGTGCCG
DBP-downsteam-R:ACTCCCATGGATCACAACCC
The reaction system is as follows: mu.M of DBP-up-stream-F primer 1. Mu.l, 10. Mu.M of DBP-down-stream-R primer 1. Mu.l, and 10. Mu.l of Q5 high-fidelity enzyme were added with water to 20. Mu.l, and monoclonal colonies were picked up in the reaction system. The PCR procedure was: initial denaturation 98 ℃,10sec,1 cycle; denaturation at 98 ℃,5sec; annealing at 60 ℃ for 30sec; extending for 72 ℃,20sec,35 cycles; extending at 72 ℃, for 5min, and circulating for 1; the temperature was kept at 4 ℃. Agarose gel electrophoresis was performed to verify that positive bands appeared at 9, 18, 21, 24 as shown in fig. 13.
10. Plasmid enzyme digestion verification
The 4 positive clone colonies of 9, 18, 21 and 24 are picked, plasmids are extracted, xhoI digestion verification is carried out, and digestion results are shown in FIG. 14, wherein lane 1 is the XhoI digestion of the 9 positive clone, lane 2 is the XhoI digestion of the 18 positive clone, lane 3 is the XhoI digestion of the 21 positive clone, lane 4 is the XhoI digestion of the 24 positive clone, and lane 5 is the XhoI digestion of the control plasmid pAd5LCL 3. As can be seen from FIG. 14, the results of the XhoI digestion of the plasmid were all correct, while the sequencing results were correct, i.e., the plasmid pAd5LCL3 was obtained with deletion of E1, E3, E4 and E2a genes, and the ORF6/7 expression cassette of the E4 region was placed in the position of the sequence from which the E2a region was knocked out, and the vector map thereof was as shown in FIG. 49.
EXAMPLE 4 construction of African swine fever adenovirus type 5 vector E1 region shuttle plasmid pS5E1-F317L-IRES-A151R
1. Construction of E1 region shuttle plasmid of human adenovirus type 5 vector
The backbone of the shuttle plasmid pS5E1 was composed of the basic elements (2796 bp) of pucorigin, amp, etc. (pS 5E1 backbone was synthesized by Beijing Bomaide Gene technologies Co., ltd.), the partial sequence of the ITR of the left arm of Ad5 (355 bp), the partial sequence of the PIX and PIVa2 of the right arm (2100 bp), and the SV40 earlypolyA of CMV-MCS (Seq ID No. 12) (944 bp) (160 bp).
1) Primer design
puc-Ad5-right arm-F:TAATGCAGCTGGCTTATCGAAACGTGGAATGCGAGACCGTCT
Ad5-right arm-CMV-R:ACACACAAGCAGGGAGCAGATACAAGGGTGGGAAAGAATATATAAG
CMV-F:GTATCTGCTCCCTGCTTGTG
CMV-SV40-R:TAAACAAGTTGGGGTGGGCGAAGTGATCAGCGGGTTTAAACGGG
SV40-F:CTTCGCCCACCCCAACTTGT
SV40-R:AGAGGTCGACGGTATACAGAC
SV40-Ad5-left arm-F:TGTCTGTATACCGTCGACCTCTCCGAAAAACACCTGGGCGAGTCTCC
Ad5-left arm-puc-R:ACACTATAGAATACACGGAATTCTTAATTAAATCATCAATAATATACCTTATTTTG
puc-F:GAATTCCGTGTATTCTATAGTGT
puc-R:TTTCGATAAGCCAGCTGCATTA
2) Amplification of fragments of interest
(1) The CMV promoter MCS fragment of the pS5E1 shuttle plasmid was amplified using pCDNA3.1 (+) as template (this plasmid was purchased from Sieimer), CMV-F and CMV-SV40-R as primers; amplification system: 50ng of pCDNA3.1 (+) plasmid, 1ul of 10uM CMV-F primer, 1ul of 10uM CMV-SV40-R primer and 20ul of Q5 high-fidelity enzyme; supplementing water to 40ul; the PCR procedure was: 98 ℃ for 10s;98 ℃, 5s,60 ℃, 30s,72 ℃, 1min,35 cycles; 72℃for 5min.
(2) The SV40-earlypolyA fragment of the pS5E1 shuttle plasmid was amplified using pCDNA3.1 (+) as template (this plasmid was purchased from Sieimer femto) and SV40-F and SV40-R as primers; amplification system: 50ng of pCDNA3.1 (+) plasmid, 1ul of 10uM SV40-F primer, 1ul of 10uM SV40-R primer and 20ul of Q5 high-fidelity enzyme; supplementing water to 40ul; the PCR procedure was: 98 ℃ for 10s;98 ℃, 5s,60 ℃, 30s,72 ℃,10 sec,35 cycles; 72℃for 5min.
The agarose gel of the amplified product is shown in FIG. 15, in which lane 1 is CMV-MCS fragment, lane 2 is SV40 earlypolyA fragment and M is 2000Marker. As can be seen from FIG. 15, the amplification results were correct.
(3) Purification was performed using the Axygen gel recovery kit.
(4) PCR amplification of pS5E1 shuttle plasmid skeleton with template pS5E1 skeleton plasmid synthesized by Bomeid company and primers puc-F and puc-R, amplification system: 50ng of pS5E1 backbone plasmid, 1ul of 10uM puc-F primer, 1ul of 10uM puc-R primer and 20ul of Q5 high-fidelity enzyme; supplementing water to 40ul; the PCR procedure was: 98 ℃ for 10s;98 ℃, 5s,60 ℃, 30s,72 ℃, 1min20sec,35 cycles; 72℃for 5min.
(5) The left arm of pS5E1 shuttle plasmid was amplified using pAd5LCL3 plasmid as template and SV40-Ad5-left arm-F and Ad5-left arm-puc-R as primers, amplification system: 50ng of pAd5LCL3 plasmid, 1ul of 10uM SV40-Ad5-left arm-F primer, 1ul of 10uM Ad5-left arm-puc-R primer, 20ul of Q5 high-fidelity enzyme, and 40ul of water are added. The PCR procedure was: 98 ℃ for 10s;98 ℃, 5s,60 ℃, 30s,72 ℃, 20s,35 cycles; 72℃for 5min.
(6) The right arm of the pS5E1 shuttle plasmid was amplified using pAd5LCL3 plasmid as template and puc-Ad5-right arm-F and Ad5-right arm-CMV-R as primers, amplification system: 50ng of pAd5LCL3 plasmid, 1ul of 10uM puc-Ad5-right arm-F primer, 1ul of 10uM Ad5-right arm-CMV-R primer, 20ul of Q5 high fidelity enzyme, and 40ul of water. The PCR procedure was: 98 ℃ for 10s;98 ℃, 5s,60 ℃, 30s,72 ℃, 15s,35 cycles; 72℃for 5min.
(7) The CMV-MCS-SV40 earlypolyA fragment of the pS5E1 shuttle plasmid was amplified using the gel recovery product CMV-MCS as template and CMV-F and SV40-R as primers, amplification system: 50ng of pAd5LCL3 plasmid, 1ul of 10uM CMV-F primer, 1ul of 10uM SV40-R primer, 20ul of Q5 high-fidelity enzyme, and 40ul of water are added. The PCR procedure was: 98 ℃ for 10s;98 ℃, 5s,60 ℃, 30s,72 ℃, 40s,35 cycles; 72℃for 5min.
The agarose gel of the amplified product is shown in FIG. 16, in which lane 1 is CMV-MCS-SV40 earlypolyA fusion fragment, lane 2 is PUC, lane 3 is Ad5 right arm, and lane 4 is Ad5 left arm.
3) Ligation transformation of fragments
The fragments were purified using Axygen gel recovery kit, and then the four fragments of pS5E1 backbone, ad5 left arm, ad5 right arm, CMV-MCS-SV40 earlypolyA were ligated using Bomad corporation seamless cloning kit in a ligation system of 2X Smealess Cloning Mix. Mu.l, pS5E1 backbone fragment 50ng, ad5 left arm 50ng, ad5 right arm 50ng, CMV-MCS-SV40 polyA 50ng, water make up to 20. Mu.l, and incubated at 50℃for 40 minutes to obtain ligation product plasmid pS5E1. The ligation products were transformed into DH 5. Alpha. Competent cells, plated on ampicillin-resistant plates and incubated at 37℃for 12-16 hours.
4) Verification of plasmids
(1) Colony PCR verification
Colonies were picked for agarose gel verification and positive bands were seen as shown in FIG. 17.
(2) Enzyme digestion verification
The positive clone is selected and placed in 5mL LB liquid medium containing ampicillin resistance for culturing for 12-15 hours, the plasmid is extracted for enzyme digestion verification, the electrophoresis result is shown in FIG. 18, wherein the left 1-6 is plasmid pS5E1 NcoI single enzyme digestion, the right 1-6 is plasmid pS5E1 PacI single enzyme digestion, M is 15000bp Marker, the enzyme digestion result is correct, and the shuttle plasmid pS5E1 in E1 region of human adenovirus type 5 vector is successfully constructed, and the vector map is shown in FIG. 50.
2. Construction of African swine fever adenovirus 5-type vector shuttle plasmid pS5E1-F317L-IRES-A151R
1) Ligation of pS5E1 with IRES fragment
(1) Primer synthesis
IRES-EcoRV-F:ccg GATATC TGTCGTCATCATCCTTATAGTCC
IRES-NotI-R:aaatat GCGGCCGC GGTTGTGGCCATTATCATCGTG
(2) Amplification of IRES fragments
Amplification system: 25ul of Q5 enzyme, 10uM primer IRES-EcoRV-F1 ul,10uM primer IRES-NotI-R1 ul, 2ul of template IRES template, and water supplementing to 50ul; the PCR procedure was: 98 ℃ for 10s;98 ℃, 5s,60 ℃,30 s,72 ℃,20 s,35 cycles; 72℃for 5min. The result of the amplification is shown in FIG. 19, wherein lanes 1 and 2 are IRES fragment PCR amplification products, M is 15000bp Marker, and the amplification result is correct.
(3) IRES fragments were purified using the Axygen PCR purification kit.
(4) Cleavage of the desired fragment IRES from the pS5E1 vector
Enzyme digestion reaction system: vector pS5E1, IRES fragment-2 ug, ecoRV and NotI each 1ul;10 Xcutmark buffer 5ul; moisturizing to 50ul; reaction conditions: 37 ℃ for 30min; inactivating at 65deg.C for 20 min; and (5) recycling and purifying the glue. The electrophoresis detection of the digested products is shown in FIG. 20, wherein lane 1 is the fragment IRES EcoRV and NotI digested, lane 2 is pS5E1 EcoRV and NotI digested, and M is 15000bp Marker.
(5) Ligation of pS5E1 vector with IRES fragment
The connection system is as follows: pS5E1 (100 ng); IRES fragments (vector: fragment=1:5, molar ratio); 1ul of T4 DNA ligase; 10 Xligase buffer1ul; water was added to 10ul. Reaction conditions: room temperature for 30min. The ligation products were transformed into DH 5. Alpha. Competent cells, plated on ampicillin-resistant plates and incubated at 37℃for 12-16 hours.
(6) Colony PCR verification
Amplification system: q5 enzyme 10ul,10uM primer IRES-EcoRV-F1 ul,10uM primer IRES-NotI-R1 ul, and water to 20ul; the PCR procedure was: 98 ℃ for 10s;98 ℃, 5s,60 ℃,30 s,72 ℃,20 s,35 cycles; 72℃for 5min. Electrophoresis was performed, as shown in FIG. 21, wherein the numbers 1 to 9 are colonies, M is Marker, and positive bands appear on the numbers 2 and 6 as seen in FIG. 21.
(7) And (3) carrying out restriction enzyme digestion verification on plasmids NotI and EcoRV, selecting 2 and 6 for plasmid extraction, and carrying out restriction enzyme digestion verification, wherein the results are shown in figure 22, the restriction enzyme digestion verification on plasmids NotI and EcoRV No. 2 is carried out, the restriction enzyme digestion verification on plasmids NotI and EcoRV No. 6 is carried out, and the correct restriction enzyme digestion result is seen.
2) Ligation of pS5E1-IRES with F317L fragment
(1) Primer synthesis
F317L-BamHI-F:cgc GGATCC gccaccATGGTGGAGACCCAGATGGACA
F317L-EcoRV-R:ccg GATATC TCAGTGGTGGTGGTGGTGGTG
(2) PCR amplification of F317L fragment
Amplification system: q5 enzyme 25ul,10uM primer F317L-BamHI-F1 ul,10uM primer F317L-EcoRV-R1 ul, template F317L1ul, and water to 50ul; the PCR procedure was: 98 ℃ for 10s;98 ℃, 5s,60 ℃,30 s,72 ℃,20 s,35 cycles; 72℃for 5min.
(3) The F317L fragment was purified using the Axygen PCR purification kit.
(4) Cleavage of the desired fragment F317L with the pS5E1-IRES vector
Enzyme digestion reaction system: vector pS5E1-IRES, F317L fragment-2 ug, bamHI and EcoRV each 1ul;10 Xcutmark buffer 5ul; water was added to 50ul. Reaction conditions: 37 ℃ for 30min; inactivating at 65deg.C for 20 min. And (5) recycling and purifying the glue. The electrophoresis detection of the digested products is shown in FIG. 23, wherein lane 1 shows pS5E1-IRES, bamHI and EcorV double digestion, lane 2 shows fragment F317L, bamHI and EcoRV double digestion, and M shows 15000bp Marker.
(5) Ligation of the fragment of interest F317L with pS5E1-IRES
The connection system is as follows: pS5E1-IRES (100 ng); F317L fragment (vector: fragment=1:3 molar ratio); 1ul of T4 DNA ligase; 10 Xligase buffer 1ul; water was added to 10ul. Reaction conditions: room temperature for 30min. The ligation products were transformed into DH 5. Alpha. Competent cells, plated on ampicillin-resistant plates and incubated at 37℃for 12-16 hours.
(6) Colony PCR verification
Amplification system: q5 enzyme 10ul,10uM primer F317L-BamHI-F1 ul,10uM primer IRES-NotI-R1 ul, and water to 20ul; the PCR procedure was: 98 ℃ for 10s;98 ℃, 5s,60 ℃,30 s,72 ℃, 20s,35 cycles; 72℃for 5min. Electrophoresis was performed, as shown in FIG. 24, wherein the numbers 1-24 were colonies, and M was a 2000bp Marker. As can be seen from FIG. 24, the numbers 9 and 10 are positive colonies.
(7) Plasmid restriction enzyme (BamHI and EcoRV) was verified, and 9 and 10 colonies were selected for plasmid extraction and restriction enzyme verification. The results are shown in FIG. 25, which shows positive plasmids.
3) Ligation of pS5E1-F317L-IRES with fragment A151R
(1) Primer synthesis
A151R-NotI-F:aaatat GCGGCCGC ATGAACAAGAAGATCATCGTGATG
A151R-6His-XhoI-R:
cggCTCGAGTCAGTGGTGGTGGTGATGGTGCTGGAAGATGTTGGGGGACATGA
(2) PCR amplification of A151R fragment
Amplification system: q5 enzyme 25ul, primer A151R-NotI-F1 ul, primer A151R-6 His-XhoI-R1 ul, template A151R, and water to 50ul; reaction conditions: 30S at 98 ℃;98℃10s,68℃30s,72℃30s,35 cycles; and at 72℃for 5min.
(3) The a151R fragment was purified using the Axygen PCR purification kit.
(4) Cleavage of the target fragment A151R with the pS5E1-F317L-IRES vector
Enzyme digestion reaction system: the vector pS5E1-F317L-IRES, fragment A151R-2 ug, notI and XhoI each 1ul;10 Xcutmark buffer 5ul; water was added to 50ul. Reaction conditions: 37 ℃ for 30min; inactivating at 65deg.C for 20 min. And (5) recycling and purifying the glue. The electrophoresis detection of the digested products is shown in FIG. 26, wherein lane 1 is pS5E1-F317L-IRES, notI and XhoI digested; lanes 2 and 3 are the A151R fragment, notI and XhoI cut, M15000 bp Marker.
(5) Ligation of pS5E1-F317L-IRES vector with A151R fragment
The connection system is as follows: pS5E1-F317L-IRES 100ng; 50ng of A151R fragment; 1ul of T4 DNA ligase; 10 Xligase buffer 1ul; water was added to 10ul. Reaction conditions: room temperature for 30min. The ligation products were transformed into DH 5. Alpha. Competent cells, plated on ampicillin-resistant plates and incubated at 37℃for 12-16 hours.
(6) Colony PCR verification
Amplification system: q5 enzyme 10ul,10uM primer IRES-ECoRV-F1 ul,10uM primer A151R-6 His-XhoI-R1 ul, moisturizing to 20ul; the PCR procedure was: 98 ℃ for 10s;98 ℃, 5s,60 ℃,30 s,72 ℃,20 s,35 cycles; 72 ℃ for 5min; electrophoresis was performed as shown in FIG. 27, wherein numbers 1-24 are colonies, and M is 2000bp Marker.
(7) Plasmid BamHI and XhoI are subjected to digestion verification, 4, 15, 23 and 24 colonies are selected for plasmid extraction, the digestion verification results are shown in FIG. 28, the digestion verification results are shown in the drawings, and the digestion verification results are shown in the drawings, wherein M is 2000bp Marker. As can be seen from FIG. 28, the result of the digestion is correct, the successful construction of the African swine fever adenovirus type 5 vector E1 region shuttle plasmid pS5E1-F317L-IRES-A151R, the sequencing is correct, and the vector map is shown in FIG. 51.
EXAMPLE 5 construction of African swine fever adenovirus type 5 vector E4 region shuttle plasmid pS5E4-P34-2A-pp62
1. Construction of E4 region shuttle plasmid of human adenovirus type 5 vector
The skeleton of the shuttle plasmid pS5E4 adopts basic elements such as puc origin, amp and the like, the left arm ITR sequence (370 bp) of the Ad5E4 region, the right arm fiber gene sequence (1746 bp) and the EF1 alpha-EGFP-HBV polyA gene.
1) Gene synthesis
The EF1 alpha-EGFP-HBV polyA gene was synthesized by Bomaide company.
2) Primer design
puc-Ad5E4-left arm-F:AGGTGACACTATAGAATACACGTTAATTAAATCATCAATAATATACCTTATTTTG
Ad5E4-left arm-EF1α-R:caatccccccttttcttttaaaaAACACCACTCGACACGGCAC
EF1α-F:ttttaaaagaaaaggggggattg
EF1α-R:TAGAGCCCCAGCTGGTTCTTT
EF1α-Ad5E4-right arm-F:GGAAAGAACCAGCTGGGGCTCTAGCAATTGAAAAATAAACACGTTGA
Ad5E4-right arm-puc-R:TAATACGACTCACTATAGGGAGACCCAAAATGTAACCACTGTGAG
puc-F:TCTCCCTATAGTGAGTCGTATT
puc-R:CGTGTATTCTATAGTGTCACCT
ORF6/7-Protease-F:CGTTGAAACATAACACAAACGATACGGCGCAGACGGCAAGGGTGGG
3) Amplification of fragments of interest
(1) The EF1 alpha-EGFP-HBV polyA fragment of the pS5E4-EGFP shuttle plasmid is amplified by taking the EF1 alpha-EGFP-HBV gene synthesis fragment as a template and EF1 alpha-F and EF1 alpha-R as primers; amplification system: 50ng of EF1 alpha-EGFP-HBV gene synthesis fragment, 1ul of 10uM EF1 alpha-F primer, 1ul of 10uM EF1 alpha-R primer and 20ul of Q5 high-fidelity enzyme; water was added to 40ul. The PCR procedure was: 98℃for 10sec;98 ℃, 5sec,60 ℃, 30sec,72 ℃, 40sec,35 cycles; 72℃for 5min.
(2) The left arm fragment of the pS5E1 shuttle plasmid was amplified using pAd5LCL3 as template and puc-Ad5E4-left arm-F and Ad5E4-left arm-EF 1. Alpha. -R as primers. Amplification system: 50ng of pAd5LCL3 plasmid, 1ul of 10uM puc-Ad5E4-left arm-F primer, 1ul of 10uM Ad5E4-left arm-EF1 alpha-R primer and 20ul of Q5 high-fidelity enzyme; water was added to 40ul. The PCR procedure was: 98 ℃ for 10s;98 ℃, 5s,60 ℃, 30s,72 ℃,10 sec,35 cycles; 72℃for 5min.
(3) Amplifying the right arm fragment of the pS5E4-EGFP shuttle plasmid with pAd5LCL3 as a template and EF1 alpha-Ad 5E4-right arm-F and Ad5E4-right arm-puc-R as primers; amplification system: 50ng of pAd5LCL3 plasmid, 1ul of 10uM EF1α -Ad5E4-right arm-F primer, 1ul of 10uM Ad5E4-right arm-puc-R primer, and 20ul of Q5 high fidelity enzyme; water was added to 40ul.
The PCR procedure was: 98 ℃ for 10s;98 ℃, 5s,60 ℃, 30s,72 ℃, 40sec,35 cycles; 72℃for 5min.
(4) PCR (polymerase chain reaction) amplification of pS5E4-EGFP shuttle plasmid skeleton by taking pS5E1 plasmid as a template and puc-F and puc-R as primers; amplification system: 50ng of pS5E1 backbone plasmid, 1ul of 10uM puc-F primer, 1ul of 10uM puc-R primer and 20ul of Q5 high-fidelity enzyme; water was added to 40ul. The PCR procedure was: 98 ℃ for 10s;98 ℃, 5s,60 ℃, 30s,72 ℃, 1min20sec,35 cycles; 72℃for 5min. Agarose verification of the amplified product is shown in FIG. 29, wherein lane 1 is the left arm of the pS5E4-EGFP shuttle plasmid, lane 2 is the right arm of the pS5E4-EGFP shuttle plasmid, lane 3 is EF 1. Alpha. -EGFP-HBV, lane 4 is the pS5E4-EGFP shuttle plasmid backbone, and M is 2000Marker. As can be seen from FIG. 29, the amplification results were correct.
4) The fragment of interest was purified using an Axygen gel recovery kit.
5) Ligation transformation of fragments
The four fragments, namely the left arm of the pS5E4-EGFP shuttle plasmid, the right arm of the pS5E4-EGFP shuttle plasmid, EF1 alpha-EGFP-HBV and the pS5E4-EGFP shuttle plasmid skeleton, were ligated by using a Bomader seamless cloning kit, the ligation system was 2X Smealess Cloning Mix. Mu.l, the left arm fragment of the pS5E4-EGFP shuttle plasmid 50ng, the right arm fragment of the pS5E4-EGFP shuttle plasmid 50ng, the EF1 alpha-EGFP-HBV fragment 50ng, the backbone fragment of the pS5E4-EGFP shuttle plasmid 50ng, and the backbone fragment of the pS5E4-EGFP shuttle plasmid was made up to 20. Mu.l, and incubated at 50℃for 40 minutes; the ligation products were transformed into DH 5. Alpha. Competent cells, plated on ampicillin-resistant plates and incubated at 37℃for 12-16 hours.
6) Verification of plasmids
(1) Colony PCR verification
The target fragment was amplified by PCR using the primer puc-Ad5E4-left arm-F/ER1a-R as the primer colony, and the result was confirmed by agarose gel, as shown in FIG. 30, positive bands were present.
(2) Enzyme digestion verification
The 3, 4, 5 and 6 positive clones are selected and placed in 5mL LB liquid medium containing ampicillin resistance for culturing for 12-15 hours, plasmids are extracted for enzyme digestion verification, the electrophoresis result is shown in FIG. 31, wherein 1-4 is 3, 4, 5 and 6 positive clone PacI single enzyme digestion, 5-8 is 3, 4, 5 and 6 positive clone HindIII single enzyme digestion, M1 and M3:15000bp Marker; m2:2000bp Marker; the enzyme cutting result is correct, and the sequencing is correct; the human adenovirus type 5 vector E4 region shuttle plasmid pS5E4-EGFP was successfully constructed, and the vector map thereof is shown in FIG. 52.
2. Construction of African swine fever adenovirus 5 type vector E4 region shuttle plasmid pS5E4-P34-2A-pp62
1) Primer design
EF1α-BamHI-P34-F:tccaagctgtgaccggcgcctacGGATCCGCCACCATGGGGAATCGCGGGTCTTCT
P34-2A-R:GCCCTTTTTGGCGCAGCTGTT
P34-2A-F:AGAACAGCTGCGCCAAAAAGGGCGGAAGCGGAGCTACTAACTTC
2A-pp62-R:AACTGCTTCATGTTGCTGGGCATAGGTCCAGGGTTCTCCTCCA
pp62-F:ATGCCCAGCAACATGAAGCAG
pp62-XhoI-pS5E4-R:GGGTTTAAACGGGCCCTCTAGACTCGAGttaCAGCAGCTTCA
GGATCTCGTT
2) Amplification of the fragment of interest P34, 2A, pp62
(1) Amplifying the P34 fragment by taking the P34 gene synthesis fragment as a template and EF1 alpha-BamHI-P34-F and P34-2A-R as primers; amplification system: 50ng of P34 gene synthesis fragment, 1ul of 10uM EF1α -BamHI-P34-F primer, 1ul of 10uM P34-2A-R primer and 20ul of Q5 high-fidelity enzyme; supplementing water to 40ul; the PCR procedure was: 98℃for 10sec;98 ℃, 5sec,60 ℃, 30sec,72 ℃, 40sec,35 cycles; 72℃for 5min.
(2) Amplifying the 2A fragment by taking the 2A gene synthesis fragment as a template and P34-2A-F and 2A-pp62-R as primers; amplification system: 2A Gene synthesis 50ng,10uM P34-2A-F primer 1ul,10uM 2A-pp62-R primer 1ul, Q5 high fidelity enzyme 20ul; supplementing water to 40ul; the PCR procedure was: 98℃for 10sec;98 ℃, 5sec,60 ℃, 30sec,72 ℃, 20sec,35 cycles; 72℃for 5min.
(3) Amplifying the 2A fragment by using the pp62 gene synthesis fragment as a template and pp62-F and pp62-XhoI-pS5E4-R as primers; amplification system: 50ng of pp62 gene synthesis fragment, 1ul of 10uM pp62-F primer, 1ul of 10uM pp62-XhoI-pS5E4-R primer, and 20ul of Q5 high-fidelity enzyme; supplementing water to 40ul; the PCR procedure was: 98℃for 10sec;98 ℃, 5sec,60 ℃, 30sec,72 ℃, 40sec,35 cycles; 72℃for 5min.
The electrophoretic detection of PCR products is shown in FIG. 32, where lane 1 is fragment p34;2 is fragment 2A;3 is fragment pp62, M is 15000bp Marker.
3) The fragment of interest was purified using an Axygen gel recovery kit.
4) Fusion PCR amplification of P34-2A fragment
Amplification system: 50ng of P34 gel recovery fragment, 50ng of 2A gel recovery fragment, 1ul of 10uM EF1α -BamHI-P34-F primer, 1ul of 10uM2A-pp62-R primer, and 25ul of Q5 high-fidelity enzyme; moisturizing to 50ul; the PCR procedure was: 98℃for 10sec;98 ℃, 5sec,60 ℃,30 sec,72 ℃,40 sec,35 cycles; 72℃for 5min. The fusion result is shown in FIG. 33, in which lane 1 is the P34-2A fragment and M is the 2000bp Marker
5) pS5E4-EGFP vector cleavage
Enzyme digestion reaction system: the vector pS5E4-EGFP 2ug, bamHI and XhoI each 1ul;10 Xcutmark buffer 5ul; water was added to 50ul. Reaction conditions: 37 ℃ for 30min; inactivating at 65deg.C for 20 min. Axygen kit gel is recovered and purified.
6) Purifying the vector fragment using an Axygen gel recovery kit;
the results of the gel recovery are shown in FIG. 34, wherein lane 1 is the fragment pS5E4-EGFP, bamHI, xhoI double cut gel recovery, M15000 bp Marker.
7) Seamless cloning connection and transformation of pS5E4-EGFP gel recovery vector and P34-2A fragment, pp62
The connection system is as follows: pS5E4-EGFP gel recovery product (100 ng), P34-2A fragment (50 ng), pp62 fragment (50 ng), 2X Smealess Cloning Mix ul, moisturizing to 10ul. Reaction conditions: 50℃for 40min. The ligation products were transformed into DH 5. Alpha. Competent cells, plated on ampicillin-resistant plates and incubated at 37℃for 12-16 hours.
8) Verification of plasmids
(1) Colony PCR verification
The target fragment was amplified by colony PCR using the primer EF 1. Alpha.2 (jd) -F, HBV (jd) -R as primer, and the result was verified by agarose gel, wherein the numbers 1-12 were colonies, and M was 15000bp Marker.
(2) Enzyme digestion verification
Selecting positive clones 1, 2, 9 and 11, placing the positive clones in 5mL LB liquid medium containing ampicillin resistance for culturing for 12-15 hours, extracting plasmids, and carrying out BmHI and XhoI double enzyme digestion verification; the cleavage results are shown in FIG. 36, wherein lanes 1, 2, 9 and 11 are identified by double cleavage of the positive clone BamHI and XhoI, and M is 15000bp Marker. The result of the enzyme digestion is correct, the sequencing is correct, and the shuttle plasmid pS5E4-P34-2A-pp62 in E4 region of the African swine fever adenovirus type 5 vector is successfully constructed, and the vector map is shown in figure 53.
EXAMPLE 6 recombinant construction of the shuttle plasmid pS5E1-F317L-IRES-A151R, pS E4-P34-2A-pp62 with pAd5LCL3-F317L-A151R-P34-pp62 plasmid
1. Homologous recombination of shuttle plasmid pS5E1-F317L-IRES-A151R and adenovirus vector plasmid pAd5LCL3
1) PacI and SwaI digested shuttle plasmid pS5E1-F317L-IRES-A151R and adenovirus vector plasmid pAd5LCL3, the digestion reaction was as follows:
A. shuttle plasmid pS5E1-F317L-IRES-A151R 3 μg; pacI 2 μl; buffer setmart 4 μl; the water was made up to 40. Mu.l.
B. Adenovirus vector plasmid pAd5LCL3 3ug; swaI 2 μl; buffer 3.1. Mu.l; the water was made up to 40. Mu.l.
The reaction condition is 37 ℃ for 1h; inactivating at 65deg.C for 20 min.
2ul agarose gel was taken and validated, and the validation result is shown in FIG. 37, wherein lane 1 is pAd5LCL3, and lane 2 is pS5E1-F317L-IRES-A151R.
2) Dephosphorylation of cleavage products
The reaction system: 37.5 mu.l of enzyme digestion reaction liquid; 1 μl of dephosphorylase; dephosphorylated buffer 5. Mu.l; the water was made up to 50. Mu.l. The reaction condition is 37 ℃ for 1h; inactivating at 65deg.C for 5 min.
3) The vectors and fragments were recovered using OMEGA Ultra-Sep Gel Extraction Kit.
4) And (3) co-transforming BJ5183 competent cells by using 100ng of the purified shuttle plasmid and 100ng of the purified adenovirus vector, coating an LB plate containing Kan on the transformed products, and culturing at 37 ℃ for 12-16 h.
5) Picking a colony in 5mL LB liquid medium containing Kan, carrying out shaking culture at 37 ℃ for 12-16 h, and extracting plasmids for XhoI digestion verification; the results are shown in FIG. 38, where lanes 1-7 are pAd5LCL3-F317L-IRES-A151R clone, M: as can be seen from FIG. 38, the cleavage of clone No. 3 was correct for 15000bp markers.
6) The positive plasmid No. 3 is transformed into DH5 alpha to be competent, a colony is picked up in 5mL LB liquid medium containing Kan, shaking culture is carried out for 12-16 h at 37 ℃, the plasmid is extracted and subjected to XhoI digestion verification again, the digestion result is shown in FIG. 39, and the accurate digestion result is shown in FIG. 39, so that adenovirus vector plasmid pAd5LCL3-F317L-IRES-A151R is successfully constructed.
2. Homologous recombination of the shuttle plasmid pS5E4-P34-2A-pp62 and the adenovirus vector plasmid pAd5LCL3-F317L-IRES-A151R to obtain pAd5LCL3-F317L-A151R-P34-pp62
1) PacI and I-sceI the shuttle plasmid pS5E4-P34-2A-pp62 and the adenovirus vector plasmid pAd5LCL3-F317L-IRES-A151R were digested with the following cleavage reaction system:
A. shuttle plasmid pS5E4-P34-2A-pp 62. Mu.g; pacI 2 μl;10 Xcutmart buffer 4. Mu.l; the water was made up to 40. Mu.l.
B. Adenovirus vector plasmid pAd5LCL3-F317L-IRES-A151R 3ug; I-sceI 2 μl; buffer setmart 4 μl; the water was made up to 40. Mu.l.
The reaction condition is 37 ℃ for 1h; inactivating at 65deg.C for 20 min.
2ul agarose gel was taken and validated and the validation result is shown in FIG. 40, wherein lane 1 is pS5E4-P34-2A-pp62 and lane 2 is pAd5LCL3-F317L-IRES-A151R.
2) Dephosphorylation of cleavage products
The reaction system: 37.5 mu.l of enzyme digestion reaction liquid; 1 μl of dephosphorylase; dephosphorylated buffer 5. Mu.l; the water was made up to 50. Mu.l. The reaction condition is 37 ℃ for 1h; inactivating at 65deg.C for 5 min.
3) The vectors and fragments were recovered using OMEGA Ultra-Sep Gel Extraction Kit.
4) And (3) co-transforming BJ5183 competent cells by using 100ng of the purified shuttle plasmid and 100ng of the purified adenovirus vector, coating an LB plate containing Kan on the transformed products, and culturing at 37 ℃ for 12-16 h.
5) 6 colonies were picked up in 5mL LB liquid medium containing Kan, cultured with shaking at 37℃for 12-16 h, and the plasmid was extracted for XhoI cleavage, and the results were shown in FIG. 41, wherein lanes 1-4 were plasmids, M was 15000Marker, and it can be seen that plasmid No. 2 was correct.
6) Transforming the positive plasmid No. 2 to DH5 alpha competence; 1 colony is picked up in 5mL LB liquid medium containing Kan, shake-cultured for 12-16 h at 37 ℃, and plasmid is extracted for XhoI digestion verification again; the result of the digestion is shown in FIG. 42, wherein lane 1 is pAd5LCL3-F317L-A151R-P34-2A-pp62 plasmid XhoI, M is 15000Marker, and the result of the digestion is correct, and the adenovirus vector plasmid pAd5LCL3-F317L-A151R-P34-pp62 is successfully constructed, and the vector map is shown in FIG. 54.
EXAMPLE 7 packaging of recombinant adenoviruses
The pAd5LCL3-F317L-A151R-P34-pp62 plasmid was packaged using 293TD37 cells and the procedure was as follows:
293TD37 cells were prepared: cells were prepared the day before transfection, 293TD37 cells to be transfected were seeded into 6-well plates, 0.5X10 6 Well at 37℃in 5% CO 2 The cells were allowed to stand for 24 hours with 40-50% confluency on the day of transfection.
Plasmid pAd5LCL3-F317L-A151R-P34-pp62 linearization: the plasmid to be transfected was digested with PacI, incubated at 37℃for 40min and then inactivated at 65℃for 20min.
Transfection: linearized 2. Mu.g plasmid and PEI were diluted separately with 100. Mu.l serum-free medium; plasmid dilutions were added to PEI dilutions and the mixture was repeatedly aspirated 5 times or vortexed for 10 seconds and mixed well, and incubated at room temperature for 10 minutes to form transfection complexes. During incubation, the cell culture broth was gently aspirated from the plate, 2ml of fresh growth medium was added, and after 10 minutes the transfection complex was added to the fresh medium-changed cells.
Cell culture: the transfected 293TD37 cells are subjected to static culture in a 5% CO2 incubator at 37 ℃ for 72-96 hours; the 6-well plate cell suspension was collected 72-96 hours after virus plasmid transfection in a 1.5ml centrifuge tube, i.e., TP0.
Continuous inoculation: repeatedly freezing and thawing the collected cell suspension at-80deg.C for 3 times, centrifuging at 4deg.C for 10 min at 2000g, and collecting 500 μl of supernatant to infect 293TD37 cells (293 TD37 cells need to be prepared one day in advance), 37 deg.C, 5% CO 2 Incubation was carried out for 60 min, supplemented with 2mL of FBS medium, 37℃and 5%CO 2 Culturing for 72 hours, and collecting cell suspension, namely TP1; the previous step was repeated and the cell suspension, TP2, was collected. The inoculation is continued until the cells are diseased.
Cytopathy: after culturing 293TD37 cells from TP0 to TP4, the cells gradually lesion until 293TD37 cells were completely diseased at TP 4. Cytopathic effects caused by TP0 to TP4 are shown in FIGS. 43-47, respectively, TP4 has been completely diseased.
Example 8 detection of titers of African swine fever Multi-antigen recombinant adenovirus vaccine
293TD37 cells were prepared, well-grown cells in T75 flasks were removed, the supernatant was discarded, washed with PBS, digested with 0.25% trypsin, stopped with 10mL fresh DMEM medium containing 10% fetal bovine serum, and then blow-mixed and inoculated in 6-well plates (5X 10) 5 Per mL, 2mL per well), at 37℃5% CO 2 And (5) standing and culturing in a carbon dioxide incubator. After 24 hours, after cells had grown as monolayer cells by adherence, the medium was discarded and the recombinant adenovirus was subjected to 10 with serum-free DMEM maintenance solution -3 ~10 -6 Serial dilutions were performed in duplicate, each dilution was inoculated in 2 wells, 250uL per well, after 1 hour of infection, the supernatant was discarded, complete medium was supplemented, and then the culture was allowed to stand in a 5% carbon dioxide incubator at 37 ℃. After 24h, the supernatant was discarded, the cells were washed with PBS, 1mL of cold formaldehyde was added to each well after discarding PBS, the wells were fixed with 1mL of cold formaldehyde at room temperature for 10min, formaldehyde was discarded, the cells were washed with PBS, 1mL of adenovirus antibody-FITC was added to each well, after 1h at room temperature, the cells were washed with PBS again, 1mL of PBS was added to each well after two passes, and the cells were counted under a fluorescence microscope (200-fold, 10 consecutive fields). And (3) calculating: viral titer (FFU/mL) =average×1013×4×10 (-n) . FFU of pAd5LCL3-F317L-A151R-P34-pp62 virus is 2.4X10 8 FFU/mL, the titer is higher.
Example 9 detection of stability of African swine fever Multi-antigen recombinant adenovirus vaccine pAd5LCL3-F317L-A151R-P34-pp62
Preparing 293TD37 cells, taking well-grown cells in a T75 culture flask, discarding the supernatant, washing the cells with PBS, digesting with 0.25% trypsin, adding 10mL of fresh DMEM medium containing 10% fetal bovine serum to terminate digestion, and thenBlowing and mixing well, seeding 293TD37 cells into 6-well plates (5×10) 5 cells/mL,2 mL/well), allowed to adhere to the surface of the substrate at room temperature for 1 hour, and examined the extent of adhesion by microscopic examination after incubation. Infection with pAd5LCL3-F317L-A151R-P34-pp62 virus particles was performed at a titer of 5 MOI/well. After the 293TD37 cells are diseased after 48 hours, the cells are collected, repeatedly frozen and thawed for 3 times, centrifuged at 2000g, the supernatant is collected, the collected supernatant is detected for FFU, and then the new 293TD37 cells are re-infected until 30 generations. The collected 5 th, 10 th, 15 th, 20 th, 25 th and 30 th generation virus solutions were examined, and the genome of the virus was found to be still intact, indicating that the replication defective pAd5LCL3-F317L-A151R-P34-pp62 virus could be stably packaged in 293TD37 cells.
Example 10 detection of the African swine fever Multi-antigen recombinant adenovirus vaccine pAd5LCL3-F317L-A151R-P34-pp62 recovery mutation (RCA)
pAd5LCL3-F317L-A151R-P34-pp62 virus RCA detection method is as follows:
1. pAd5LCL3-F317L-A151R-P34-pp62 virus solution was prepared, measured for virus titer, and the concentration of virus particles was measured, and the DNA of host cells was digested with the virus solution and 1%Universal nuclease (Universal nuclease 7.5.5-15 units/mL virus solution) in a water bath at 37℃for 40min. Virus particles were collected by centrifugation at 1000g for 30min using a 300Kd ultrafiltration centrifuge tube, eluting with 1 x PBS, and measuring a260, particle concentration = a260 x 1.1 x 10 x 12vp/mL.
2. Virus infection, 6-well plates of A549 cells were prepared, 2.5X10 cells per well 5 Well, medium was discarded, PBS was washed once, and adenovirus was washed 1X 10 9 vp/well inoculated virus, infected A549 cells, wild type adenovirus type 5 as control, 37 ℃,5% CO 2 After 1h, the virus solution was discarded, 5% complete medium was supplemented, 37℃and 5% CO 2 Culturing for 48h.
3. Immunostaining, discarding cell supernatant, washing cells with PBS, fixing with ice methanol, standing at-20deg.C for 20min, washing with 1 XPBS three times for 5min each time, adding 2ml 1% BSA-PBS solution into each well, standing, and incubating for 1 hr. The supernatant was discarded, adenovirus type 5 fluorescent antibody (1:500 dilution) was added, incubated for 1h, and washed three times with 1 XPBS for 5min each.
Observation with a 10-fold fluorescence microscope, calculation of RCA using the formula
RCA=(average positive cell field)×(374field/well)×(dilution factor))/Total VPs in 0.5ml viral sample
The judgment standard is that the RCA level is less than 1RCA/3×10 10 vp. RCA levels of less than 1 RCA/3X 10 were obtained by counting pAd5LCL3-F317L-A151R-P34-pp62 10 vp shows that the replication defective pAd5LCL3-F317L-A151R-P34-pp62 virus prepared by the invention can be stably packaged in 293TD37 cells, and can not be converted into a wild type or has a lower probability of being converted into the wild type.
Example 11 African swine fever Multi-antigen recombinant adenovirus vaccine pAd5LCL3-F317L-A151R-P34-pp62 protein expression detection
293TD37 cells are prepared one day in advance, placed in a 12-well cell culture plate, the 293TD37 cells are infected by using an African swine fever multi-antigen recombinant adenovirus vaccine pAd5LCL3-F317L-A151R-P34-pp62 virus, lesions are generated on the cells after 48 hours, all 1ml of cells are collected, washed by PBS, and prepared into a sample for Western Blot detection; the target protein was detected using the pp62 murine polyclonal antiserum prepared by this company, and the pp62 murine polyclonal antiserum was obtained from immunized mice with the pp62 protein expressed by the insect SF9 system. The pp62 protein has a size of 60kda;
as shown in FIG. 48, lane 4 is a sample of 293TD37 cells infected with pAd5LCL3-F317L-A151R-P34-pp 62; it is clear that the pp62 protein is normally expressed, and thus it is seen that the protein of the pAd5LCL3-F317L-A151R-P34-pp62 vaccine is normally expressed in 293 cells.
EXAMPLE 12 immunological evaluation of African swine fever Multi-antigen recombinant adenovirus vaccine pAd5LCL3-F317L-A151R-P34-pp62 on a mouse model
12.1 vaccine humoral immune response detection
20 SPF-class mice (6-8 weeks old) were randomly divided into 4 groups of 5 mice each. Mice were immunized with pAd5LCL3-F317L-A151R-P34-pp62 according to the groupings shown in Table 1. The injection mode is as follows: intramuscular injection of the inner thigh; injection dose: 100ul.
Table 1: vaccine immunodetection of grouping condition of mice
Mice were collected at 14 days post immunization, serum was isolated, and the serum was assayed for pp62 antibody titer against african swine fever target protein (pp 62 protein was prepared by the present company and expressed in insect cells) using an indirect ELISA method. The detection results are shown in fig. 55: after intramuscular injection of pAd5LCL3-F317L-A151R-P34-pp62, mice were able to produce higher concentrations of IgG antibodies against the pp62 protein. High dose group antibody titer averages up to 10 5 The average value of the titer of the medium-dose group reaches 70000, and the medium-dose group has obvious difference from the control group.
12.2 cell immunoreaction detection
10 SPF-class mice (6-8 weeks old) were randomly divided into 2 groups of 5 mice each. Mice were immunized with pAd5LCL3-F317L-A151R-P34-pp62 according to the groupings shown in Table 2. The injection mode is as follows: intramuscular injection of the inner thigh; injection dose: 100ul.
Table 2: vaccine immunodetection of grouping condition of mice
Mice were sacrificed 14 days after immunization, spleen lymphocytes were isolated, and PK15 cells transfected with the shuttle plasmids pS5E1-F317L-IRES-A151R and pS5E4-P34-2A-pp62 were stimulated for 6 hours while cytokine secretion was blocked by the addition of a protein secretion blocking agent. After 6 hours, fc receptors were blocked, dead cells and cell surface molecular markers were stained, and intracellular cytokines were stained after cells were fixed and perforated. Cell surface markers include CD4, CD8, intracellular cytokines include ifnγ, IL2. The levels of ifnγ and IL2 expressed by cd4+ T cells and cd8+ T cells after stimulation with the protein of interest were analyzed using a flow cytometer (cyexper).
The pAd5LCL3-F317L-A151R-P34-pp62 induced CD8+ T cell and CD4+ T cell immunoreactions are shown in FIGS. 56 and 57, and representative results are shown in FIGS. 58-59, wherein FIG. 58 is a representative graph of the cell immunoreactions after intramuscular injection of pAd5LCL3-F317L-A151R-P34-pp62, and FIG. 59 is a representative graph of the blank immunoreactions. The results show that: 14 days after mice were immunized, splenocytes were stimulated with the protein of interest, and cd8+ T cells expressed ifnγ, tnfα, and IL2 levels significantly higher than Ad5 vector Control (Control) (P < 0.05). After stimulation, cd4+ T cells expressed ifnγ, tnfα and IL2 levels were significantly higher than Ad5 vector Control (Control) (P < 0.05).
12.3 mouse model immunogenicity evaluation node
pAd5LCL3-F317L-A151R-P34-pp62 recombinant adenovirus has good immunogenicity, and can induce mice to produce high-level serum IgG antibodies. Wherein the immune-induced titers of both high doses of 1 x 10 x 8FFU and medium doses of 1 x 10 x 7FFU are high. The cell immune response detection result shows that the adenovirus vector vaccine of 1 x 10 x 7FFU is injected into muscle and can induce the immunized mice to generate specific cell immune response.
Although the present invention is disclosed above, the present invention is not limited thereto. Various changes and modifications may be made by one skilled in the art without departing from the spirit and scope of the invention, and the scope of the invention should be assessed accordingly to that of the appended claims.
Sequence listing
<110> Jiaxing An Yu Biotech Co.Ltd
<120> a recombinant adenovirus vaccine for African swine fever and construction method thereof
<150> 2020106427542
<151> 2020-07-06
<160> 13
<170> SIPOSequenceListing 1.0
<210> 1
<211> 972
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 1
atggtggaga cccagatgga caagctgggg ttcctgctga accacatcgg caagcaggtg 60
accaccaagg tgctgagcaa cgcccacatc acccagacca tgaaggaaat catcctggag 120
aatcacagcg tggacggcgg cgccgccaag aacgtgagca agggcaagag cagccccaaa 180
gaaaaaaagc actggaccga gttcgagagc tgggagcagc tgagcaagag caagcgcagc 240
ttcaaggagt actgggccga gcgcaacgag atcgtgaaca ccctgctgct gaactgggac 300
aacgtgcgcg gcgccatcaa gaagttcctg gacgacgacc gcgagtggtg cggccggatc 360
aacatgatca acggcgtgcc cgagatcgtg gagatcatcc ccagccccta ccgcgccggc 420
gagaacatct acttcggcag cgaggccatg atgcccgccg acatctacag ccgcgtggcc 480
aacaagcccg ccatgttcgt gttccacacc caccccaacc tgggcagctg ctgcggcggc 540
atgcccagca tctgcgacat cagcaccacc ctgcgctacc tgctgatggg ctggaccgcc 600
ggccacctga tcatcagcag caaccaggtg ggcatgctga ccgtggacaa gcgcatcatc 660
gtggacctgt gggccaacga gaacccccgc tggctgatgg cccagaagat cctggacatc 720
ttcatgatgc tgaccagccg ccgcagcctg gtgaacccct ggaccctgcg cgacctgaag 780
aagatcctgc aggactacgg catcgagtac atcatcttcc ccagcaacga cttcttcatc 840
tacgaggacg agcgcctgct gatgttcagc aagaagtgga ccaacttctt caccctgcac 900
gagctgctgg acgacctgga gaccatcgag accaaggcca gcagcaccac ccaccaccac 960
caccaccact ga 972
<210> 2
<211> 495
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 2
atgaacaaga agatcatcgt gatgatggcc ctgctgcaca aggagaagct gatcgagtgc 60
atctaccacg agctggaaaa cggcggaacc atcctgctgc tgaccaagaa catcgtggtc 120
tccgagatca gctacattgg caacacctac aaatacttca ccttcaacga caaccacgac 180
ctcatcagca aagaagacct gaagggcgcc acctccaaaa acatcgccaa aatgatctac 240
aactggatca tcaaaaaccc ccagaacaac aagatctggt ccggcgaacc ccgcacccag 300
atctacttcg agaacgacct gtaccacacc aactacaacc acaaatgcat caaggacttc 360
tggaacgtga gcacctccgt gggcccccac atctttaacg accgctccat ctggtgcacc 420
aagtgcacca gcttttaccc cttcaccaac atcatgtccc ccaacatctt ccagcaccat 480
caccaccacc actga 495
<210> 3
<211> 1101
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 3
atggggaatc gcgggtcttc tacctcctct cgccccctgc cctcctccga agccaatatc 60
tatgccaagc tgcaggacca tatccagcgc cagacccgcc ccttctccgg aggaggatac 120
tttaacggag gcggcgacaa aaaccccgtg cagcacatca aggactacca catcgacagc 180
gtgagctcca aagccaagct cagaatcatc gaaggaatta tccgcgccat cgccaagatc 240
ggctttaagg tggacacaaa acagcccatc gaagacatcc tcaaggacat caagaaacag 300
ctgcccgacc cccgcgccgg ctctaccttt gtgaagaacg ccgaaaaaca ggaaaccgtc 360
tgcaagatga ttgccgacgc catcaaccag gaattcatcg acctgggcca ggacaagctg 420
atcgacacca ccgaaggggc cgcctccatc tgccgccaga tcgtcctcta tatcaatagc 480
ctgacccacg gactgcgggc cgaatacctg gacgtgcacg gcagcatcga gaacaccctg 540
gaaaacatca aactgctgaa cgacgccatc aaacagctgc acgaacggat ggtgaccgaa 600
gtgaccaagg ccgcccccaa cgaggaagtg attaacgctg tgacaatgat cgaagccgtg 660
taccgccgcc tgctcaacga gcagaacctc cagatcaaca tcctcaccaa cttcatcgac 720
aacatcctga cccccaccca gaaagaactg gacaagctcc agaccgacga agtcgacatc 780
atcaaactcc tcaacgacac caacagcgtc ctcggcacca aaaacttcgg caaagtgctg 840
agctacaccc tctgcaacct gggcatcgcc gccagcgtcg ccaacaagat caacaaggcc 900
ctccagaaag tgggactgaa ggtggagcag tatctccaga gcaagaactg ggccgaattc 960
gacaaagaac tcgacctgaa acgcttctcc ggcctggtga gcgccgagaa catcgccgaa 1020
ttcgagaagg ctgtgaacct gctgaggcag accttcaacg aaaggcacaa gatcctggag 1080
aacagctgcg ccaaaaaggg c 1101
<210> 4
<211> 1587
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 4
atgcccagca acatgaagca gttctgcaag atcagcgtgt ggctgcagca gcacgacccc 60
gacctcctgg agatcatcaa caacctctgc atgctgggga acctgagcgc cgccaagtac 120
aagcacggcg tgacattcat ctacccaaag caggccaaga tccgcgacga aattaaaaag 180
cacgcctaca gcaacgaccc cagccaggcc atcaagaccc tcgaatccct catcctccca 240
ttctacatcc ccacccccgc cgaattcacc ggagagatcg gcagctacac cggggtgaag 300
ctggaggtgg aaaaaaccga ggccaacaag gtgatcctga agaacggcga ggccgtgctg 360
gtgcccgccg ccgacttcaa gcccttcccc gaccgccgcc tggccgtgtg gatcatggag 420
agcggcagca tgcccctgga gggccccccc tacaagcgca agaaggaggg cggcggcaac 480
gacccccccg tgcccaagca catcagcccc tacacccccc gcacccgcat cgccatcgag 540
gtggagaagg ccttcgacga ctgcatgcgc cagaactggt gcagcgtgaa caacccctac 600
ctggccaaga gcgtgagcct gctgagcttc ctgagcctga accaccccac cgagttcatc 660
aaggtgctgc ccctgatcga cttcgacccc ctggtgacct tctacctgct gctggagccc 720
tacaagaccc acggcgacga cttcctgatc cccgagacca tcctgttcgg ccccaccggc 780
tggaacggca ccgacctgta ccagagcgcc atgctggagt tcaagaagtt cttcacccag 840
atcacccgcc agaccttcat ggacatcgcc gacagcgcca ccaaggaggt ggacgtgccc 900
atctgctaca gcgaccccga gaccgtgcac agctacgcca accacgtgcg caccgagatc 960
ctgcaccaca acgccgtgaa caaggtgacc acccccaacc tggtggtgca ggcctacaac 1020
gagctggagc agaccaacac catccgccac tacggcccca tcttccccga gagcaccatc 1080
aacgccctgc gcttctggaa gaagctgtgg caggacgagc agcgcttcgt gatccacggc 1140
ctgcaccgca ccctgatgga ccagcccacc tacgagacca gcgagttcgc cgagatcgtg 1200
cgcaacctgc gcttcagccg ccccggcaac aactacatca acgagctgaa catcaccagc 1260
cccgccatgt acggcgacaa gcacaccacc ggcgacatcg cccccaacga ccgcttcgcc 1320
atgctggtgg ccttcatcaa cagcaccgac ttcctgtaca ccgccatccc cgaggagaag 1380
gtgggcggca acgagaccca gaccagcagc ctgaccgacc tggtgcccac ccgcctgcac 1440
agcttcctga accacaacct gagcaagctg aagatcctga accgcgccca gcagaccgtg 1500
cgcaacatcc tgagcaacga ctgcctgaac cagctgaagc actacgtgaa gcacaccggc 1560
aagaacgaga tcctgaagct gctgtaa 1587
<210> 5
<211> 32619
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 5
agcttttgcc attctcaccg gattcagtcg tcactcatgg tgatttctca cttgataacc 60
ttatttttga cgaggggaaa ttaataggtt gtattgatgt tggacgagtc ggaatcgcag 120
accgatacca ggatcttgcc atcctatgga actgcctcgg tgagttttct ccttcattac 180
agaaacggct ttttcaaaaa tatggtattg ataatcctga tatgaataaa ttgcagtttc 240
atttgatgct cgatgagttt ttctaatcag aattggttaa ttggttgtaa cactggcaga 300
gcattacgct gacttgacgg gacggcggct ttgttgaata aatcgaactt ttgctgagtt 360
gaaggatcag atcacgcatc ttcccgacaa cgcagaccgt tccgtggcaa agcaaaagtt 420
caaaatcacc aactggtcca cctacaacaa agctctcatc aaccgtggct ccctcacttt 480
ctggctggat gatggggcga ttcaggcctg gtatgagtca gcaacacctt cttcacgagg 540
cagacctcag cgctcaaaga tgcaggggta aaagctaacc gcatctttac cgacaaggca 600
tccggcagtt caacagatcg ggaagggctg gatttgctga ggatgaaggt ggaggaaggt 660
gatgtcattc tggtgaagaa gctcgaccgt cttggccgcg acacgccgac atgatccaac 720
tgataaaaga gtttgatgct cagggtgtag cggttcggtt tattgacgac gggatcagta 780
ccgacggtga tatggggcaa atggtggtca ccatcctgtc ggctgtggca caggctgaac 840
gccggaggat cctagagcgc acgaatgagg gccgacagga agcaaagctg aaaggaatca 900
aatttggccg caggcgtacc gtggacagga gcgtcgattt ttgtgatgct cgtcaggggg 960
gcggagccta tggaaaaacg ccagcaacgc ggccttttta cggttcctgg ccttttgctg 1020
gccttttgct cacatgttct ttcctgcgtt atcccctgat tctgtggata accgtattac 1080
cgcctttgag tgagctgata ccgctcgccg cagccgaacg accgagcgca gcgagtcagt 1140
gagcgaggaa gcggaagagc gcccaatacg caaaccgcct ctccccgcgc gttggccgat 1200
tcattaatgc agctggcacg acaggtttcc cgactggaaa gcgggcagtg agcgcaacgc 1260
aattaatgtg agttagctca ctcattaggc accccaggct ttacacttta tgcttccggc 1320
tcgtatgttg tgtggaattg tgagcggata acaatttcac acaggaaaca gctatgacca 1380
tgattacgcc aagcttgcat gcctgcaggt cgatcgatta attaacgacc catcatcaat 1440
aatatacctt attttggatt gaagccaata tgataatgag ggggtggagt ttgtgacgtg 1500
gcgcggggcg tgggaacggg gcgggtgacg taggttttag ggcggagtaa cttgtatgtg 1560
ttgggaattg tagttttctt aaaatgggaa gttacgtaac gtgggaaaac ggaagtgacg 1620
atttgaggaa gttgtgggtt ttttggcttt cgtttctggg cgtaggttcg cgtgcggttt 1680
tctgggtgtt ttttgtggac tttaaccgtt acgtcatttt ttagtcctat atatactcgc 1740
tctgcacttg gccctttttt acactgtgac tgattgagct ggtgccgtgt cgagtggtgt 1800
tattaccctg ttatccctag caattgaaaa ataaacacgt tgaaacataa cacaaacgat 1860
tctttattct tgggcaatgt atgaaaaagt gtaagaggat gtggcaaata tttcattaat 1920
gtagttgtgg ccagaccagt cccatgaaaa tgacatagag tatgcacttg gagttgtgtc 1980
tcctgtttcc tgtgtaccgt ttagtgtaat ggttagtgtt acaggtttag ttttgtctcc 2040
gtttaagtaa acttgactga caatgttact tttggcagtt ttaccgtgag attttggata 2100
agctgatagg ttaggcataa atccaacagc gtttgtatag gctgtgcctt cagtaagatc 2160
tccatttcta aagttccaat attctgggtc caggaaggaa ttgtttagta gcactccatt 2220
ttcgtcaaat cttataataa gatgagcact ttgaactgtt ccagatattg gagccaaact 2280
gcctttaaca gccaaaactg aaactgtagc aagtatttga ctgccacatt ttgttaagac 2340
caaagtgagt ttagcatctt tctctgcatt tagtctacag ttaggagatg gagctggtgt 2400
ggtccacaaa gttagcttat cattattttt gtttcctact gtaatggcac ctgtgctgtc 2460
aaaactaagg ccagttccta gtttaggaac catagccttg tttgaatcaa attctaggcc 2520
atggccaatt tttgttttga ggggatttgt gtttggtgca ttaggtgaac caaattcaag 2580
cccatctcct gcattaatgg ctatggctgt agcgtcaaac atcaacccct tggcagtgct 2640
taggttaacc tcaagctttt tggaattgtt tgaagctgta aacaagtaaa ggcctttgtt 2700
gtagttaata tccaagttgt gggctgagtt tataaaaaga gggccctgtc ctagtcttag 2760
atttagttgg ttttgagcat caaacggata actaacatca agtataaggc gtctgttttg 2820
agaatcaatc cttagtcctc ctgctacatt aagttgcata ttgccttgtg aatcaaaacc 2880
caaggctcca gtaactttag tttgcaagga agtattatta atagtcacac ctggaccagt 2940
tgctacggtc aaagtgttta ggtcgtctgt tacatgcaaa ggagccccgt actttagtcc 3000
tagttttcca ttttgtgtat aaatgggctc tttcaagtca atgcccaagc taccagtggc 3060
agtagttaga gggggtgagg cagtgatagt aagggtactg ctatcggtgg tggtgagggg 3120
gcctgatgtt tgcagggcta gctttccttc tgacactgtg aggggtcctt gggtggcaat 3180
gctaagtttg gagtcgtgca cggttagcgg ggcctgtgat tgcatggtga gtgtgttgcc 3240
cgcgaccatt agaggtgcgg cggcagccac agttagggct tctgaggtaa ctgtgagggg 3300
tgcagatatt tccaggttta tgtttgactt ggtttttttg agaggtgggc tcacagtggt 3360
tacattttgg gaggtaaggt tgccggcctc gtccagagag aggccgttgc ccattttgag 3420
cgcaagcatg ccattggagg taactagagg ttcggatagg cgcaaagaga gtaccccagg 3480
gggactctct tgaaacccat tgggggatac aaagggagga gtaagaaaag gcacagttgg 3540
aggaccggtt tccgtgtcat atggatacac ggggttgaag gtatcttcag acggtcttgc 3600
gcgcttcatc tgcaacaaca tgaagatagt gggtgcggat ggacaggaac aggaggaaac 3660
tgacattcca tttagattgt ggagaaagtt tgcagccagg aggaagctgc aataccagag 3720
ctgggaggag ggcaaggagg tgctgctgaa taaactggac agaaatttgc taactgattt 3780
taagtaagtg atgctttatt attttttttt attagttaaa gggaataaga tctttgagac 3840
cgcacagggt cttaataagg gtgcagagat cctcaggtcc ttgacaaggt gagtgaatgc 3900
agccttcggt ttctaccgag tgctgagtta tggtaatggg cttttctccc accatgacca 3960
ccaatttctg acgcttggtt ggcaacttgt agctaaggcg gtgtccggtg gtattactgt 4020
cgtaggtgac tttggcctgc tttaccagac aaaagatacc ccttttgcac tggtgcaagt 4080
taaccatgtc ttggagctct tgattcatgc gctgttgctc ggccgctgcc ctgcgtcttt 4140
ctagcaggcg ctgctctgta ataattccgt ccatttctag ctagagaaac ctgaattaga 4200
atagcccgta gagttgcttg aattgttcat aaaccccaca gtagctgcgc ctttggccta 4260
ataccctaag ggttttctaa gctcacctcc tgttctggta aacagagtta ttgaggtctg 4320
tccggaaaaa gtctggttta cggtcaggcg gtaggtgtgg tgcagcggcc ggtgacgcac 4380
tcgtacgttc ccggcaggta aggagggtgg tgttttttct gatggagtag ctgagctcgg 4440
agaggttctc tcgtagactc actccgtctg ggttgaaact gttgtaaatc acagagggag 4500
agatgttaaa agtaccaggt aaggttcgcc ttggtttgct tgggcgggtg aagacggtgg 4560
cgtttacagg atggcgatag gagccccagt atattttaat ttctgtattt attatactca 4620
gcacagagat ggcaacaaag atcttgatgt aatccagggt taggacagtt gcaaatcaca 4680
gtgagaacac agggtcccct gtcccgctca actagcaggg ggcgctgggt aaactcccga 4740
atcaggctac gggcaagctc tccctgggcg gtaagccgga cgccgtgcgc cgggccctcg 4800
atatgatcct cgggcaattc aaagtagcaa aactcaccgg agtcgcgggc aaagcacttg 4860
tggcggcgac agtggaccag gtgtttcagg cgcagttgct ctgcctctcc acttaacatt 4920
cagtcgtagc cgtccgccga gtcctttacc gcgtcaaagt taggaataaa ttgatccgga 4980
tagtggccgg gaggtcccga gaaggggtta aagtagaccg atggcacaaa ctcctcaata 5040
aattgcagag ttccaatgcc tccagagcgc ggctcagagg acgaggtctg cagagttagg 5100
attgcctgac gaggcgtgaa tgaagagcgg ccggcgccgc cgatctgaaa tgtcccgtcc 5160
ggacggagac caagcgagga gctcaccgac tcgtcgttga gctgaatacc tcgccctctg 5220
attgtcaggt gagttatacc ctgcccgggc gaccgcaccc tgtgacgaaa gccgcccgca 5280
agctgcgccc ctgagttagt catctgaact tcggcctggg cgtctctggg aagtaccaca 5340
gtggtgggag cgggactttc ctggtacacc agggcagcgg gccaactacg gggattaagg 5400
ttattacgag gtgtggtggt aatagccgcc tgttccagga gaattcggtt tcggtgggcg 5460
cgtattccgt tgacccggga tatcatgtgg ggtcccgcgc tcatgtagtt tattcgggtt 5520
gagtagtctt gggcagctcc agccgcaagt cccatttgtg gctggtaact ccacatgtag 5580
ggcgtgggaa tttccttgct cataatggcg ctgacaacag gtgctggcgc cgggtgtggc 5640
cgctggagat gacgtagttt tcgcgcttaa atttgagaaa gggcgcgaaa ctagtcctta 5700
agagtcagcg cgcagtattt actgaagaga gcctccgcgt cttccagcgt gcgccgaagc 5760
tgatcttcgc ttttgtgata caggcagctg cgggtgaggg atcgcagaga cctgtttttt 5820
attttcagct cttgttcttg gcccctgctc tgttgaaata tagcatacag agtgggaaaa 5880
atcctgtttc taagctcgcg ggtcgatacg ggttcgttgg gcgccagacg cagcgctcct 5940
cctcctgctg ctgccgccgc tgtggatttc ttgggctttg tcagagtctt gctatccggt 6000
cgcctttgct tctgtgtggc cgctgctgtt gctgccgctg ccgccggtgc agtatgggct 6060
gtagagatga cggtagtaat gcaggatgtt acgggggaag gccacgccgt gatggtagag 6120
aagaaagcgg cgggcgaagg agatgttgcc cccacagtct tgcaagcaag caactatggc 6180
gttcttgtgc ccgcgccatg agcggtagcc ttggcgctgt tgttgctctt gggctaacgg 6240
cggcggctgc ttggacttac cggccctggt tccagtggtg tcccatctac ggttgggtcg 6300
gcgaacgggc agtgccggcg gcgcctgagg agcggaggtt gtagccatgc tggaaccggt 6360
tgccgatttc tggggcgccg gcgaggggaa tgcgaccgag ggtgacggtg tttcgtctga 6420
cacctcttcg acctcggaag cttcctcgtc taggctctcc cagtcttcca tcatgtcctc 6480
ctcctcctcg tccaaaacct cctctgcctg actgtcccag tattcctcct cgtccgtggg 6540
tggcggcggc agctgcagct tctttttggg tgccatcctg ggaagcaagg gcccgcggct 6600
gctgctgata gggctgcggc ggcgggggga ttgggttgag ctcctcgccg gactgggggt 6660
ccaagtaaac cccccgtccc tttcgtagca gaaactcttg gcgggctttg ttgatggctt 6720
gcaattggcc aagaatgtgg ccctgggtaa tgacgcaggc ggtaagctcc gcattaggcg 6780
ggcgggattg gtcttcgtag aacctaatct cgtgggcgtg gtagtcctca ggtacaaatt 6840
tgcgaaggta agccgacgtc cacagccccg gagtgagttt caaccccgga gccgcggact 6900
tttcgtcagg cgagggaccc tgcagctcaa aggtaccgat aatttgactt tcgttaagca 6960
gctgcgaatt gcaaaccagg gagcggtgcg gggtgcatag gttgcagcga cagtgacact 7020
ccagtagacc gtcaccgctc acgtcttcca ttatgtcaga gtggtaggca aggtagttgg 7080
ctagctgcag aaggtagcag tggccccaaa gcggcggagg gcattcgcgg tacttaatgg 7140
gcacaaagtc gctaggaagt gcacagcagg tggcgggcaa gattcctgag cgctctagga 7200
taaagttcct aaagttctgc aacatgcttt gactggtgaa gtctggcaga ccctgttgca 7260
gggttttaag caggcgttcg gggaaaatga tgtccgccag gtgcgcggcc acggagcgct 7320
cgttgaaggc cgtccatagg tccttcaagt tttgctttag cagtttctgc agctccttga 7380
ggttgcactc ctccaagcac tgctgccaaa cgcccatggc cgtctgccag gtgtagcata 7440
gaaataagta aacgcagtcg cggacgtagt cgcggcgcgc ctcgcccttg agcgtggaat 7500
gaagcacgtt ttgcccaagg cggttttcgt gcaaaattcc aaggtaggag accaggttgc 7560
agagctccac gttggagatc ttgcaggcct ggcgtacgta gccctgtcga aaggtgtagt 7620
gcaatgtttc ctctagcttg cgctgcatct ccgggtcagc aaagaaccgc tgcatgcact 7680
caagctccac ggtaacgagc actgcggcca tcattagttt gcgtcgctcc tccaagtcgg 7740
caggctcgcg cgtttgaagc cagcgcgcta gctgctcgtc gccaactgcg ggtaggccct 7800
cctctgtttg ttcttgcaaa tttgcatccc tctccagggg ctgcgcacgg cgcacgatca 7860
gctcactcat gactgtgctc atgaccttgg ggggtaggtt aagtgccggg taggcaaagt 7920
gggtgacctc gatgctgcgt tttagtacgg ctaggcgcgc gttgtcaccc tcgagttcca 7980
ccaacactcc agagtgactt tcattttcgc tgttttcctg ttgcagagcg tttgccgcgc 8040
gcttctcgtc gcgtccaaga ccctcaaaga tttttggcac ttcgttgagc gaggcgatat 8100
caggtatgac agcgccctgc cgcaaggcca gctgcttgtc cgctcggctg cggttggcac 8160
ggcaggatag gggtatcttg cagttttgga aaaagatgtg ataggtggca agcacctctg 8220
gcacggcaaa tacggggtag aagttgaggc gcgggttggg ctcgcatgtg ccgttttctt 8280
ggcgtttggg gggtacgcgc ggtgagaata ggtggcgttc gtaggcaagg ctgacatccg 8340
ctatggcgag gggcacatcg ctgcgctctt gcaacgcgtc gcagataatg gcgcactggc 8400
gctgcagatg cttcaacagc acgtcgtctc ccacatctag gtagtcgcca tgcctttcgt 8460
ccccccgccc gacttgttcc tcgtttgcct ctgcgttgtc ctggtcttgc tttttatcct 8520
ctgttggtac tgagcggtcc tcgtcgtctt cgcttacaaa acctgggtcc tgctcgataa 8580
tcacttcctc ctcctcaagc gggggtgcct cgacggggaa ggtggtaggc gcgttggcgg 8640
catcggtgga ggcggtggtg gcgaactcag agggggcggt taggctgtcc ttcttctcga 8700
ctgactccat gatctttttc tgcctatagg agaaggaaac ttgtatgtgt tgggaattgt 8760
agttttctta aaatgggaag ttacgtaacg tgggaaaacg gaagtgacga tttgaggaag 8820
ttgtgggttt tttggctttc gtttctgggc gtaggttcgc gtgcggtttt ctgggtgttt 8880
tttgtggact ttaaccgtta cgtcattttt tagtcctata tatactcgct ctgcacttgg 8940
ccctttttta cactgtgact gattgagctg gtgccgtgtc gagtggtgtt tttttaatag 9000
gttttctttt ttactggtaa ggctgactgt tatgactacg tccggcgttc catttggcat 9060
gacactacga ccaacacgat ctcggttgtc tcggcgcact ccgtacagta gggatcgtct 9120
acctcctttt gagacagaaa cccgcgctac catactggag gatcatccgc tgctgcccga 9180
atgtaacact ttgacaatgc acaacgtgag ttacgtgcga ggtcttccct gcagtgtggg 9240
atttacgctg attcaggaat gggttgttcc ctgggatatg gttctaacgc gggaggagct 9300
tgtaatcctg aggaagtgta tgcacgtgtg cctgtgttgt gccaacattg atatcatgac 9360
gagcatgatg atccatggtt acgagtcctg ggctctccac tgtcattgtt ccagtcccgg 9420
ttccctgcag tgtatagccg gcgggcaggt tttggccagc tggtttagga tggtggtgga 9480
tggcgccatg tttaatcaga ggtttatatg gtaccgggag gtggtgaatt acaacatgcc 9540
aaaagaggta atgtttatgt ccagcgtgtt tatgaggggt cgccacttaa tctacctgcg 9600
cttgtggtat gatggccacg tgggttctgt ggtccccgcc atgagctttg gatacagcgc 9660
cttgcactgt gggattttga acaatattgt ggtgctgtgc tgcagttact gtgctgattt 9720
aagtgagatc agggtgcgct gctgtgcccg gaggacaagg cgccttatgc tgcgggcggt 9780
gcgaatcatc gctgaggaga ccactgccat gttgtattcc tgcaggacgg agcggcggcg 9840
gcagcagttt attcgcgcgc tgctgcagca ccaccgccct atcctgatgc acgattatga 9900
ctctaccccc atgtagacta gggttctgtg agtttgatta aggtacggtg atctgtataa 9960
gctatgtggt ggtggggcta tactactgaa tgaaaaatga cttgaaattt tctgcaattg 10020
aaaaataaac acgttgaaac ataacacaaa cgatacggcg cagacggcaa gggtgggggt 10080
aaataatcac ccgagagtgt acaaataaaa gcatttgcct ttattgaaag tgtctctagt 10140
acattatttt tacatgtttt tcaagtgaca aaaagaagtg gcgctcctaa tctgcgcact 10200
gtggctgcgg aagtagggcg agtggcgctc caggaagctg tagagctgtt cctggttgcg 10260
acgcagggtg ggctgtacct ggggactgtt gagcatggag ttgggtaccc cggtaataag 10320
gttcatggtg gggttgtgat ccatgggagt ttggggccag ttggcaaagg cgtggagaaa 10380
catgcagcag aatagtccac aggcggccga gttgggcccc tgtacgcttt gggtggactt 10440
ttccagcgtt atacagcggt cgggggaaga agcaatggcg ctacggcgca ggagtgactc 10500
gtactcaaac tggtaaacct gcttgagtcg ctggtcagaa aagccaaagg gctcaaagag 10560
gtagcatgtt tttgagtgcg ggttccaggc aaaggccatc cagtgtacgc ccccagtctc 10620
gcgaccggcc gtattgacta tggcgcaggc gagcttgtgt ggagaaacaa agcctggaaa 10680
gcgcttgtca taggtgccca aaaaatatgg cccacaacca agatctttga caatggcttt 10740
cagttcctgc tcactggagc ccatggcggc agctgttgtt gatgttgctt gcttctttat 10800
gttgtggcgt tgccggccga gaagggcgtg cgcaggtaca cggtttcgat gacgccgcgg 10860
tgcggctggt gcacacggac cacgtcaaag acttcaaaca aaacataaag aagggtgggc 10920
tcgtccatgg gatccacctc aaaagtcatg tctagcgcgt gggcggagtt ggcgtagaga 10980
aggttttggc ccaggtctgt gagtgcgccc atggacataa agttactgga gaatgggatg 11040
cgccaaaggg tgcgatcgca aagaaacttt ttctgggtaa tgctgtcaac tgcggtcttg 11100
cctataagcg gataggggaa gttagcaggg taggcctgtc cttcgcgcat ggtgggggca 11160
aggtagccaa caaatccaga gttgttgtgt tggtgtagga tgcccacctg ttggtagtcc 11220
ttgtatttag tatcatccac cacctgacgg ctcatgggct ggaagtttct aaagaaggag 11280
tacatgcggt ccttgtagct ctctgggata tagaagccct ggtagccaat gttatagtta 11340
gctagcattt gtaccaggaa ccagtctttg gtcatgttac actgggcaac gttgtaaccc 11400
tccccgtcaa ctgagcgctt aatttcaaac tcgttggggg taagcaggcg gtcattgcca 11460
ggccagctga cagaagagtc aaaggtaatg gccaccttct taaaggtgtg gttgaggtaa 11520
aaggttccat ctaggtaggg tatagagcca gagtaggtgt aataagggtc gtagcccgag 11580
cccagtgatg gggtttcctt agtcttaagg cgcgtgaagg cccagccgcg gaaagccgcc 11640
cagttgcggg aggggatgga tatgggcacg ttggtagcgt tggcgggtat agggtagagc 11700
atgttggcgg cggagagata gtcgttaaag gactggtcgt tggtgtcgtt tctaagcatg 11760
gcctcaagcg tggaggcggt gttgtgggcc atggggaaga aggtggcgta aaggcaaatg 11820
ctatcaaact taatgctggc tccgtcaacc cttaggtcat ttcctaggga gctctgcaga 11880
accatgttaa catccttcct gaagttccac tcgtaggtgt atgagcccgg caggagaagg 11940
aggtttttaa tggcaaagaa cttctgaggc acctggatgt ggaagggcac atagcgacca 12000
ttgcccagca acattgagcg gtagcgcagg ccagcattgc ggtggtggtt aaatgggttg 12060
acgttgtcca tatagtcaag ggaccagcgt gctccaaggt taatgtagca gtccactagc 12120
ccgggagcca ccactcgctt gttcatgtag tcgtaggtgt ttgggttatc agaaattttt 12180
acgttggaag gactgtactt tagcttgtcg ggcaaataca gcgctatgtt ggagtacagg 12240
aaatttctcc acaggttggc atttagattg atttccatgg caaaattatt tccaactctt 12300
atttcatttt tatctgaaaa ttctgtagca tctttttccc atccattttc ctgacctgtt 12360
ttaggtttta ccttggtaag agtctctgta ttaatcacac ctcccagtgg aaagcagtaa 12420
tttggaagtt catcttcagt tccatgattt tcaataattc taacatctgg atcatagctg 12480
tcaacagcct gattccacat agaaaagtac ctggttctat caccaatgga atcaagcaaa 12540
agctggtatg aaagctctgt gtttctgtct tgcaaatcta caacagcatt caactgcgat 12600
gcttggcccg ccagaacacc catattaccc gtgctgttgt aatacattag accaataaaa 12660
ttgtccctaa aagcaatgta attaggcctg ttgggcatag attgttggcc cattagttct 12720
cgtgagttac cttccttaat agtgggcatg taagaaatat gagtgtctgg ggtttctata 12780
tctacatctt cactgtacaa taccacttta ggagtcaagt tatcaccatt gcctgcggct 12840
gcctcagtag ttgagaaaaa ttgcatttcc acttgacttt ctagctttcc attttgttgc 12900
tttacaagaa tgccttgccc tccattttca tttgtgggtt ttgcatatga accgtaacat 12960
ggtttcattg gggtagtctt ttttaggact ctcccagctg catgattaat ttctgtttcg 13020
taccactgag attctcctat ttgaggttca ggttgaaatg ttttatcggc atatttaggt 13080
gtttgacctt cgacacctat ttgaataccc tcctttgtaa tatttatacc agaataaggc 13140
gcctgcccaa atacgtgagt tttttgctgc tcagcttgct cgtctacttc gtcttcgttg 13200
tcatcgtcct cttcttctag gtttatttca agagcagtag cagcttcatc ccattcgcaa 13260
ggatttgggg cacccttggg agccagggcg ttgtaggcag tgccagagta gggcttaaaa 13320
gtagggcccc tgtccagcac gccgcggatg tcaaagtacg tggaagccat gtccagcaca 13380
cggttatcac ccacagctag ggtgaaccgc gccttgtacg agtacgcagt atcctcacgg 13440
tccacaggga tgaaccgcag cgtcaaacgc tgggaccggt ctgtggtcac gtcgtgcgta 13500
ggcgccaccg tggggtttct aaacttgtta ttcaggctga agtacgtctc ggtggcgcgg 13560
gcaaactgca ccagcccggg gctcaggtac tccgaggcgt cctggcccga gatgtgcatg 13620
taagaccact gcggcatcat cgaaggggta gccatcttgg aaagcgggcg cgcggcggct 13680
cagcagctcc tctggcggcg acatggacgc atacatgaca cacatacgac acgttagcta 13740
tcagaagcat cgtcggcgct tcagggattg cacccccaga cccacgatgc tgttcagtgt 13800
gctttgccag ttgccactgg ctacgggccg caacgatcgc ggaccgctgg cggcgcggcg 13860
cagggacgcg cggctaggac gggttacaac aacggcggtc gggcctggca gcacaggttt 13920
ctgctgggtg tcggcggggg gaggcaggtc cagcgttacg ggtgtgtgct ggcccagcac 13980
tccggtagcc atgggcgcga tgggacgggt ggtgggcagg ccttgcttta gtgcctcctc 14040
gtacgaggga ggctcgtcta tttgcgtcac cagagtttct tccctgtcgg ggcgcggacg 14100
cttttcgcca cgcccctctg gagacactgt ctccacggcc ggtggaggct cctctacggg 14160
agggcgggga tcaagcttac tgttaatctt attttgcact gcctggttgg ccaggtccac 14220
caccccgcta atgccagagg ccaggccatc taccaccttt tgttggaaat tttgctcttt 14280
caacttatcc ctcagcatct ggcctgtgct gctgttccag gccttgctgc catagttctt 14340
aacggtggaa ccgaaatttt taatgccgct ccacagcgag ccccagctga aggcgccacc 14400
gctcatattg ctggtgccga tatcttgcca gtttcccatg aacgggcgcg agccgtgtcg 14460
cggggccaga gacgcaaagt tgatgtcttc cattctacaa aatagttaca ggaccaagcg 14520
agcgtgagag tccagacttt ttattttgat ttttccacat gcaacttgtt tttaatcagt 14580
gtctctgcgc ctgcaaggcc acggatgcaa ttccgggcac ggcgccaatc gccgcggcga 14640
tcagtggaat aaggaggggc aggataccgc cgcgcatgcg acggtgcgac gcgcgccgcc 14700
gccggtggtg cgcacgacgc atgccgcccg tcaggccgtg gccggccatg cccctcctac 14760
ggtgcattct tcctcggaat cccggcaccg ggaaacggag gcggcaggtg agggccatat 14820
ctgcaagaac cacaaagacc ggcttttaaa cgatgctggg gtggtagcgc gctgttggca 14880
gcaccagggt cctgcctcct tcgcgagcca ccctgcgcac ggaaatcggg gccagcacgg 14940
gctggcgacg gcgacggcgg cggcgggttc cagtggtggt tcggcgtcgg gtagttgctc 15000
gtcttctggg gcggtaggtg tagccacgat agccgggggt aggcgcaatg gaaggatgta 15060
gggcatattc gggcagtagc gcgctggcgg cgccgtactt cctcgaacgg cgcgggcgcc 15120
ggggggctga aacgcgaaac atccacgggt ccgtttgcac ctccgtagag gtcttggacg 15180
cggccgcagc gaccgcctgc accgcggcat ccgccaccgc tgaggcaacc ggggacgttt 15240
gtgtctccat gccctctgtg gcggtggcaa tactggtgct actggtagtg ggtatctgaa 15300
cgtccacggt ctgcacgccc agtcccggcg ccacctgctt gattggccgc acgcggacct 15360
cgggctccag cccaggttcc acggtcattt tttccaagac atcttccagt cgctggcgct 15420
tgggtaccat cagctgcacg gtgggtgcca agtcaccaga ctcgcgcttt aggccgcgct 15480
tttcttcgga cggtgcaagc gcgggcagca cctgctgcag tgttacgggc tttaggctag 15540
gtgttgggtt gccctcgtcc agcggcaacg ccagcatgtc cttatgccgc tttccgtagg 15600
caaactcccc gaggcgctcg ttggcctgct caagcaggtc ctcgtcgccg tacacctcat 15660
catacacgcg cttgtaggtg cgggtggagc gctcaccggg cgtaaagact acggtggtgc 15720
cgggtcgcaa aacacgtttt acgcgtcgac ctttccactg tacccgtcgc ctgggcgcgg 15780
tagcgtgcag cagttccacc tcgtcgtcaa gttcatcatc atcatctttc tttttctttt 15840
tgacccgctt tagctttcgg ggcttgtaat cctgctcttc cttcttcggg gggccataga 15900
tctccggcgc gatgacctgg agcatctctt ctttgatttt gcgcttggac atagcttcgt 15960
tgcgcgccgc cgccgctgga tacatacaac agtacgagtc taagtagttt tttcttgcaa 16020
tctagttgcg cggggggcgg gtgcgcacgg gcacgcgcag gccgctaacc gagtcgcgca 16080
cccaatacac gttgcccctg cgaccctgag tcatagcact aatggccgcg gctgctgcgg 16140
cggccgctcg tcgcctggac ctggggggca cagtgacaat acccgcggcc agccttcgag 16200
cggcccgcat ggccgcccgt cggccggtgc gacgtgcgcg gttaagcagg gccgccgccg 16260
cgcgttgggc ggcagtgccg ggtcggcggc ggtggcgacg tgctacgcgc ctccgccgtc 16320
tcttcatttt agcatagcgc cgggctccgc gcaccacggt ctgaatggcc gcgtccactg 16380
tggacactgg tggcggcgtg ggcgtgtagt tgcgcgcctc ctccaccacc gcgtcgatgg 16440
cgtcatcgac ggtggtgcgc ccagtgcggc cgcgtttgtg cgcgccccag ggcgcgcggt 16500
agtgcccgcg cacgcgcact gggtgttggt cggagcgctt cttggccccg ccaaacatct 16560
tgcttgggaa gcgcaggccc cagcctgtgt tattgctggg cgatataagg atggacatgc 16620
ttgctcaaaa agtgcggctc gataggacgc gcggcgagac tatgcccagg gccttgtaaa 16680
cgtaggggca ggtgcggcgt ctggcgtcag taatggtcac tcgctggact cctccgatgc 16740
tgttgcgcag cggtagcgtc ccgtgatctg tgagagcagg aacgttttca ctgacggtgg 16800
tgatggtggg ggctggcggg cgcgccaaaa tctggttctc gggaaagcga ttgaacacgt 16860
gggtcagaga ggtaaactgg cggatgagtt gggagtagac ggcctggtcg ttgtagaagc 16920
tcttggagtg cacgggcaac agctcggcgc ccaccaccgg aaagttgctg atctggcgcg 16980
tggagcggaa ggtcacgggg tcttgcatca tgtctggcaa cgaccagtag acctgctccg 17040
agccgcaggt tacgtcagga gtgcaaagca gggtccatga gcggattccg gtctgagggt 17100
cgccgtagtt gtatgcaagg taccagctgc ggtactgggt gaaggtgctg tcattgctta 17160
ttaggttgta actgcgtttc ttgctgtcct ctgtcagggg tttgatcacc ggtttcttct 17220
gaggcttctc gacctcgggt tgcgcagcgg gggcggcagc ttcggccgct gcttcggcct 17280
cagcgcgctt ctcctcagcc cgtgtggcaa aggtgtcgcc gcgaatggca tgatcgttca 17340
tgtcctccac cggctgcatt gccgcggctg ccgcgttgga gttctcttcc gcgccgctgc 17400
cactgctgtt gctgccgcct gcgccacccc cgccctgttc ggtgtcatct ttcaagctcg 17460
cctggtaggc gtccacatcc aacagtgcgg gaatgttacc accctccaga tcatcgtagg 17520
tgatcctaaa gccctcctgg aagggttgcc gcttgcggat gcccaacaag ttgctcaggc 17580
ggctgtgggt gaagtccacc ccgcatcctg gcagcaaaat gatgtctgga tggaaggctt 17640
cgtttgtata taccccaggc atgacaagac cagtgacggg gtcaaacccc agtctgaagt 17700
tgcgggtgtc aaactttacc ccgatgtcgc tttccagaac cccgttctgt ctgcccactt 17760
tcaagtagtg ctccacgatc gcgttgttca taaggtctat ggtcatggtc tcggagtagt 17820
tgccctcggg cagcgtgaac tccacccact cgtatttcag ctccacctga ttgtccttag 17880
taggcaagcg cgacaccatc acccgcgcct taaacttatt ggtaaacatg aactcgttca 17940
catttggcat gttggtatgc aggatggttt tcaggtcgcc gccccagtgc gaccggtcgt 18000
caagattgat ggtctgtgtg cttgcctccc ccgggctgta gtcattgttt tgaatgaccg 18060
tggtcagaaa gttgctgtgg tcgttctggt agttcaggga tgccacatcc gttgacttgt 18120
tgtccaccag gtacacacgg gtggtgtcga ataggggtgc caactcagag taacggatgc 18180
tgtttctccc cccggtaggc cgcaggtacc gcggaggcac aaacggcggg tccaggggag 18240
catcgaaggg agaacccagc gccgccgcca ctggcgccgc gctcaccaca ctctcgtagg 18300
agggaggagg accttcctca tacatcgccg cgcgccgcat actaagggga atacaagaaa 18360
accaacgctc ggtgccatgg ccttggtgag ttttttattt tgcatcatgc tttttttttt 18420
tttaaaacat tctccccagc ctggggcgaa ggtgcgcaaa cgggttgcca ctccctccca 18480
aatccaggac gctgctgtcg tctgccgagt catcgtcctc ccacaccaga ccccgctgac 18540
ggtcgtgcct ttgacgacgg gtgggcgggc gcgggcctgg cacgtccctg tgctcctgcg 18600
cgtacgtctt ccatctactc atcttgtcca ctaggctctc tatcccgttg ttgggaaatg 18660
ccggaggcag gtttttttcg cgctgcggct gcagcagcga gttgtttagg tactcctcct 18720
cgcccagcag gcgcgggcgg gtggtgcgag tgctggtaag agaccctatc aagcttggaa 18780
atgggctact agcatctgac cgcggggccg cagcgcctag atcggacaag ctgcttggcc 18840
tgcggaagct ttcctttcgc agcgccgcct ctgcctgctc gcgctgttgc aactctagca 18900
gggtctgcgg ttgcggggaa aacacgctgt cgtctatgtc gtcccagagg aatccatcgt 18960
taccctcggg cacctcgaat cccccggtgt agaaaccagg gggcggtagc cagtgcgggt 19020
tcaagatggc attggtgaaa tactcggggt tcacggcggc cgcgcgatgc aagtagtcca 19080
ttaggcggtt gataaacggc cggtttgagg catacatgcc cggttccatg ttgcgcgcgg 19140
tcatgtccag cgccacgctg ggcgttaccc cgtcgcgcat caggttaagg ctcacgctct 19200
gctgcacgta gcgcaaaatg cgctcctcct cgctgtttaa actgtgcaac gaggggatct 19260
tctgccgccg gttggtcagc aggtagttta gggttgcctc caggctgccc gtgtcctcct 19320
gccccagcgc gcggctgaca cttgtaatct cctggaaagt atgctcgtcc acatgcgcct 19380
gacctatggc ctcgcggtac agtgtcagca agtgacctag gtatgtgtcc cgggacacgc 19440
tgccactgtc cgtgaagggc gctattagca gcagcaacag gcgcgagttg ggcgtcagca 19500
agctagacac ggtcgcgcgg tcgcctgtgg gagcccgcac cccccacagc ccctgcaagt 19560
ttttgaaagc ctggctcagg tttacggtct gcaggccttg tctactggtc tggaaaaaat 19620
agtctggccc agactggtac acctcacttt gcggtgtctc agtcaccatt agccgcagtg 19680
cgctcacaaa gttggtgtag tcctcctgtc cccgcggcac gttggcgggc tgtgtactca 19740
ggaaggcgtt tagtgcaacc atggagccca ggttgccctg ctgctgcgcg cgctcacgct 19800
gcgccacggc ctcgcgcaca tcccccacca gccggtccag gttggtctgc acgttgccgc 19860
tgttgtaacg agccacgcgc tgaagcagcg cgtcgtagac caggccggcc tcgtcgggcc 19920
ggatggccct gttttcggcc agcgcgttta cgatcgccag caccttctcg tgcgtggggt 19980
ttgcgcgcgc cgggaccacc gcttccagaa ttgcggagag ccggttggcc tgcggctgct 20040
gccggaacgc gtcaggattg cgcgcagtca gcgacatgat gcggtccatg acctggcgcc 20100
agtcgtccgt ggagttaagg ccggacggct ggctctgcag cgccgcccgc accgccgggt 20160
ccgttgcgtc ttgcatcatc tgatcagaaa catcaccgct tagtactcgc cgtcctctgg 20220
ctcgtactca tcgtcctcgt catattcctc cacgccgccg acgttgccag cgcgcgcggg 20280
tgccaccgcc agcccaggtc cggccccagc tgcctccagg gcgcgtcggc ttggggccca 20340
gcgcaggtca gcgcccgcgt caaagtagga ctcggcctct ctatcgccgc tgcccgtgcc 20400
agccagggcc ctttgcaggc tgtgcatcag ctcgcggtcg ctgagctcgc gccgccggct 20460
cacgctcacg gccttgtgga tgcgctcgtt gcgataaacg cccaggtcgt cgctcaaggt 20520
aagcaccttc agcgccatgc gcatgtagaa cccctcgatc tttacctcct tgtctatggg 20580
aacgtaaggg gtatggtata tcttgcgggc gtaaaacttg cccaggctaa gcatggaata 20640
gttgatggcg gccaccttgt cagccaggct caagctgcgc tcctgcacca ctatgctctg 20700
caggatgttt atcaaatcga gcagccagcg gccctcgggc tctactatgt ttagcagcgc 20760
atccctgaat gcctcgttgt ccctgctgtg ctgcactata aggaacagct gcgccatgag 20820
cggcttgcta tttgggtttt gctccagcgc gcttacaaag tcccacagat gcatcagtcc 20880
tatagccacc tcctcgcgcg ccacaagcgt acgcacgtgg ttgttaaagc ttttttgaaa 20940
gttaatctcc tggttcaccg tctgctcgta tgcggttacc aggtcggcgg ccgccacgtg 21000
tgcgcgcgcg ggactaatcc cggttcgcgc gtcgggctca aagtcctcct cgcgcagcaa 21060
ccgctcgcga ttcaggccat gccgcagctc gcgccctgcg tggaactttc gatcccgcat 21120
ctcctcgggc tcctctccct cgcggtcgcg aaacaggttc tgccgcggca cgtacgcctc 21180
acgcgtatca cgcttcagct gcacccttgg gtgccgctca ggagagggcg ctcctagccg 21240
cgccaggccc tcgccctcct ccaagtccag gtagtgccgg gcccggcgcc gcgggggttc 21300
gtaatcacca tctgctgccg cgtcaaccgc ggatgtcgcc cctcctgacg cggtaggagg 21360
aggggagggt gccctgcatg tctgccgctg ctcttgctct tgccgctgct gaggaggggg 21420
gcgcatctgc cgcagcaccg gatgcatctg ggaaaagcaa aaaaggggct cgtccctgtt 21480
tccggaggaa tttgcaagcg gggtcttgca tgacggggag gcaaaccccc gttcgccgca 21540
gtccggccgg tccgagactc gaaccggggg tcccgcgact caacccttgg aaaataaccc 21600
tccggctaca gggagcgagc cacttaatgc tttcgctttc cagcctaacc gcttacgctg 21660
cgcgcggcca gtggccaaaa aagctagcgc agcagccgcc gcgcctggaa ggaagccaaa 21720
aggagcactc ccccgttgtc tgacgtcgca cacctgggtt cgacacgcgg gcggtaaccg 21780
catggatcac ggcggacggc cggatacggg gctcgaaccc cggtcgtccg ccatgatacc 21840
cttgcgaatt tatccaccag accacggaag agtgcccgct tacaggctct ccttttgcac 21900
gctagagcgt caacgattgc gcgcgcctga ccggccagag cgtcccgacc atggagcact 21960
ttttgccgct gcgcaacatc tggaaccgcg tccgcgactt tccgcgcgcc tccaccaccg 22020
ccgccggcat cacctggatg tccaggtaca tctacggata tcatcgcctt atgttggaag 22080
atctcgcccc cggagccccg gccaccctac gctggcccct ctaccgccag ccgccgccgc 22140
actttttggt gggataccag tacctggtgc ggacttgcaa cgactacgta tttgactcga 22200
gggcttactc gcgtctcagg tacaccgagc tctcgcagcc gggtcaccag accgttaact 22260
ggtccgttat ggccaactgc acttacacca tcaacacggg cgcataccac cgctttgtgg 22320
acatggatga cttccagtct accctcacgc aggtgcagca ggccatatta gccgagcgcg 22380
ttgtcgccga cctagccctg cttcagccga tgaggggctt cggggtcaca cgcatgggag 22440
gaagagggcg ccacctacgg ccaaactccg ccgccgccgc agcgatagat gcaagagatg 22500
caggacaaga ggaaggagaa gaagaagtgc cggtagaaag gctcatgcaa gactactaca 22560
aagacctgcg ccgatgtcaa aacgaagcct ggggcatggc cgaccgcctg cgcattcagc 22620
aggccggacc caaggacatg gtgcttctgt cgaccatccg ccgtctcaag accgcctact 22680
ttaattacat catcagcagc acctccgcca gaaacaaccc cgaccgccgc ccgctgccgc 22740
ccgccacggt gctcagccta ccttgcgact gtgactggtt agacgccttt ctcgagaggt 22800
tttccgatcc ggtcgatgcg gactcgctca ggtccctcgg cggcggagta cctacacaac 22860
aattgttgag atgcatcgtt agcgccgtat ccctgccgca tggcagcccc ccgccaaccc 22920
ataaccggga catgacgggc ggcgtcttcc aactgcgccc ccgcgagaac ggccgcgccg 22980
tcaccgagac catgcgccgt cgccgcgggg agatgatcga gcgctttgtc gaccgcctcc 23040
cggtgcgccg tcgtcgccgc cgtgtccccc ctcccccacc gccgccagaa gaagaagaag 23100
gggaggccct tatggaagag gagattgaag aagaagaaga ggcccctgta gcctttgagc 23160
gcgaggtgcg cgacactgtc gccgagctca tccgtcttct ggaggaggag ttaaccgtgt 23220
cggcgcgcaa ctcccagttt ttcaacttcg ccgtggactt ctacgaggcc atggagcgcc 23280
ttgaggcctt gggggatatc aacgaatcca cgttgcgacg ctgggttatg tacttcttcg 23340
tggcagaaca caccgccacc accctcaact acctctttca gcgcctgcga aactacgccg 23400
tcttcgcccg gcacgtggag ctcaatctcg cgcaggtggt catgcgcgcc cgcgatgccg 23460
aagggggcgt ggtctacagc cgcgtctgga acgagggagg cctcaacgcc ttctcgcagc 23520
tcatggcccg catttccaac gacctcgccg ccaccgtgga gcgagccgga cgcggagatc 23580
tccaggagga agagatcgag cagttcatgg ccgagatcgc ctatcaagac aactcaggag 23640
acgtgcagga gattttgcgc caggccgccg tcaacgacac cgaaattgat tctgtcgaac 23700
tctctttcag gttcaagctc accgggcccg tcgtcttcac gcagaggcgc cagattcagg 23760
agatcaaccg ccgcgtcgtc gcgttcgcca gcaacctacg cgcgcagcac cagctcctgc 23820
ccgcgcgcgg cgccgacgtg cccctgcccc ctctcccggc gggtccggag ccccccctac 23880
ctccgggggc tcgcccgcgt caccgctttt agatgcatca tccaaggaca cccccgcggc 23940
ccaccgcccg ccgcgcggta ccgtagtcgc gccgcgggga tgcggcctct tgcaagccat 24000
cgacgccgcc accaaccagc ccctggaaat taggtatcac ctggatctag cccgcgccct 24060
gacccgtcta tgcgaggtaa acctgcagga gctcccgcct gacctgacgc cgcgggagct 24120
ccagaccatg gacagctccc atctgcgcga tgttgtcatc aagctccgac cgccgcgcgc 24180
ggacatctgg actttgggct cgcgcggcgt ggtggtccga tccaccgtaa ctcccctcga 24240
gcagccagac ggtcaaggac aagcagccga agtagaagac caccagccaa acccgccagg 24300
cgaggggctc aaattcccac tctgcttcct tgtgcgcggt cgtcaggtca acctcgtgca 24360
ggatgtacag cccgtgcacc gctgccagta ctgcgcacgt ttttacaaaa gccagcacga 24420
gtgttcggcc cgtcgcaggg acttctactt tcaccacatc aatagccact cctccaattg 24480
gtggcgggag atccagttct tcccgatcgg ctcgcatcct cgcaccgagc gtctctttgt 24540
cacctacgat gtagagacct atacttggat gggggccttt gggaagcagc tcgtgccctt 24600
catgctggtc atgaagttcg gcggagatga gcctctagtg actgccgcgc gagacctagc 24660
cgcgaacctt ggatgggacc gctgggaaca agacccgctt accttctact gcatcacccc 24720
agaaaaaatg gccataggtc gccagtttag gacctttcgc gaccacctgc aaatgctaat 24780
ggcccgtgac ctgtggagct cattcgtcgc ttccaaccct catcttgcag actgggccct 24840
ttcagagcac gggctcagct cccctgaaga gctcacctac gaggaactta aaaaattgcc 24900
ttccatcaag ggcatcccgc gcttcttgga actttacatt gtgggccaca acatcaacgg 24960
ctttgacgag atcgtgctcg ccgcccaggt aattaacaac cgttccgagg tgccgggacc 25020
cttccgcatc acacgcaact ttatgcctcg cgcgggaaag atactcttca acgatgtcac 25080
cttcgccctg ccaaatccgc gttccaaaaa gcgcacggac tttttgctct gggagcaggg 25140
cggatgcgac gacactgact tcaaatacca gtacctcaaa gtcatggtca gggacacctt 25200
tgcgctcacc cacacctcgc tccggaaggc cgcgcaggca tacgcgctac ccgtagaaaa 25260
gggatgctgc gcctaccagg ccgtcaacca gttctacatg ctaggctctt accgttcgga 25320
ggccgacggg tttccgatcc aagagtactg gaaagaccgc gaagagtttg tcctcaaccg 25380
cgagctgtgg aaaaaaaagg gacaggataa gtatgacatc atcaaggaaa ccctggacta 25440
ctgcgcccta gacgtgcagg tcaccgccga gctggtcaac aagctgcgcg actcctacgc 25500
ctccttcgtg cgtgacgcgg taggtctcac agacgccagc ttcaacgtct tccagcgtcc 25560
aaccatatca tccaactcac atgccatctt caggcagata gtcttccgag cagagcagcc 25620
cgcccgtagc aacctcggtc ccgacctcct cgctccctcg cacgaactat acgattacgt 25680
gcgcgccagc atccgcggtg gaagatgcta ccctacatat cttggaatac tcagagagcc 25740
cctctacgtt tacgacattt gcggcatgta cgcctccgcg ctcacccacc ccatgccatg 25800
gggtccccca ctcaacccat acgagcgcgc gcttgccgcc cgcgcatggc agcaggcgct 25860
agacttgcaa ggatgcaaga tagactactt cgacgcgcgc ctgctgcccg gggtctttac 25920
cgtggacgca gaccccccgg acgagacgca gctagacccc ctaccgccat tctgctcgcg 25980
caagggcggc cgcctctgct ggaccaacga gcgcctacgc ggagaggtag ccaccagcgt 26040
tgaccttgtc accctgcaca accgcggttg gcgcgtgcac ctggtgcccg acgagcgcac 26100
caccgtcttt cccgaatggc ggtgcgttgc gcgcgaatac gtgcagctaa acatcgcggc 26160
caaggagcgc gccgatcgcg acaaaaacca aaccctgcgc tccatcgcca agttgctgtc 26220
caacgccctc tacgggtcgt ttgccaccaa gcttgacaac aaaaagattg tcttttctga 26280
ccagatggat gcggccaccc tcaaaggcat caccgcgggc caggtgaata tcaaatcctc 26340
ctcgtttttg gaaactgaca atcttagcgc agaagtcatg cccgcttttc agagggagta 26400
ctcaccccaa cagctggccc tcgcagacag cgatgcggaa gagagtgagg acgaacgcgc 26460
ccccaccccc ttttatagcc ccccttcagg aacacccggt cacgtggcct acacctacaa 26520
accaatcacc ttccttgatg ccgaagaggg cgacatgtgt cttcacaccc tggagcgagt 26580
ggacccccta gtggacaacg accgctaccc ctcccactta gcctccttcg tgctggcctg 26640
gacgcgagcc tttgtctcag agtggtccga gtttctatac gaggaggacc gcggaacacc 26700
gctcgaggac aggcctctca agtctgtata cggggacacg gacagccttt tcgtcaccga 26760
gcgtggacac cggctcatgg aaaccagagg taagaaacgc atcaaaaagc atgggggaaa 26820
cctggttttt gaccccgaac ggccagagct cacctggctc gtggaatgcg agaccgtctg 26880
cggggcctgc ggcgcggatg cctactcccc ggaatcggta tttctcgcgc ccaagctcta 26940
cgccctcaaa agtctgcact gcccctcgtg cggcgcctcc tccaagggca agctgcgcgc 27000
caagggccac gccgcggagg ggctggacta tgacaccatg gtcaaatgct acctggccga 27060
cgcgcagggc gaagaccggc agcgcttcag caccagcagg accagcctca agcgcaccct 27120
ggccagcgcg cagcccggag cgcacccctt caccgtgacc cagactacgc tgacgaggac 27180
cctgcgcccg tggaaagaca tgaccctggc ccgtctggac gagcaccgac tactgccgta 27240
cagcgaaagc cgccccaacc cgcgaaacga ggagatatgc tggatcgaga tgccgtagag 27300
caggtgaccg agctgtggga ccgcctggaa ctgcttggtc aaacgctcaa aagcatgcct 27360
acggcggacg gtctcaaacc gttgaaaaac tttgcttcct tgcaagaact gctatcgctg 27420
ggcggcgagc gccttctggc ggatttggtc agggaaaaca tgcgagtcag ggacatgctt 27480
aacgaagtgg cccccctgct cagggatgac ggcagctgca gctctcttaa ctaccagttg 27540
cagccggtaa taggtgtgat ttacgggccc accggctgcg gtaagtcgca gctgctcagg 27600
aacctgcttt cttcccagct gatctcccct accccggaaa ccgttttctt catcgccccg 27660
caggtagaca tgatcccccc atctgaactc aaagcgtggg aaatgcaaat ctgtgagggt 27720
aactacgccc ctgggccgga tggaaccatt ataccgcagt ctggcaccct ccgcccgcgc 27780
tttgtaaaaa tggcctatga cgatctcatc ctggaacaca actatgacgt tagtgatccc 27840
agaaatatct tcgcccaggc cgccgcccgt gggcccattg ccatcattat ggacgaatgc 27900
atggaaaatc ttggaggtca caagggcgtc tccaagttct tccacgcatt tccttctaag 27960
ctacatgaca aatttcccaa gtgcaccgga tacactgtgc tggtggttct gcacaacatg 28020
aatccccgga gggatatggc tgggaacata gccaacctaa aaatacagtc caagatgcat 28080
ctcatatccc cacgtatgca cccatcccag cttaaccgct ttgtaaacac ttacaccaag 28140
ggcctgcccc tggcaatcag cttgctactg aaagacattt ttaggcacca cgcccagcgc 28200
tcctgctacg actggatcat ctacaacacc accccgcagc atgaagctct gcagtggtgc 28260
tacctccacc ccagagacgg gcttatgccc atgtatctga acatccagag tcacctttac 28320
cacgtcctgg aaaaaataca caggaccctc aacgaccgag accgctggtc ccgggcctac 28380
cgcgcgcgca aaacccctaa ataaagacag caagacactt gcttgatcca aatccaaaca 28440
gagtctggtt ttttatttat gttttaaacc gcattgggag gggaggaagc cttcagggca 28500
gaaacctgct ggcgcagatc caacagctgc tgagaaacga cattaagttc ccgggtcaaa 28560
gaatttaaat tctactcgct ggcactcaag agtggcctct tgaggaactc accgggtata 28620
aatacactac acgtcagctg actataataa taaaacgcca actttgaccc ggaacgcgga 28680
aaacacctga gaaaaacacc tgggcgagtc tccacgtaaa cggtcaaagt ccccgcggcc 28740
ctagacaaat attacgcgct atgagtaaca caaaattatt cagatttcac ttcctcttat 28800
tcagttttcc cgcgaaaatg gccaaatctt actcggttac gcccaaattt actacaacat 28860
ccgcctaaaa ccgcgcgaaa attgtcactt cctgtgtaca ccggcgcaca ccaaaaacgt 28920
cacttttgcc acatccgtcg cttacatgtg ttccgccaca cttgcaacat cacacttccg 28980
ccacactact acgtcacccg ccccgttccc acgccccgcg ccacgtcaca aactccaccc 29040
cctcattatc atattggctt caatccaaaa taaggtatat tattgatgat gataagctat 29100
caaacatgag aattcggcgc gccattatca tttgcgggtc ctttccggcg atccgccttg 29160
ttacggggcg gcgacctcgc gggttttcgc tatttatgaa aattttccgg tttaaggcgt 29220
ttccgttctt cttcgtcata acttaatgtt tttatttaaa ataccctctg aaaagaaagg 29280
aaacgacagg tgctgaaagc gagctttttg gcctctgtcg tttcctttct ctgtttttgt 29340
ccgtggaatg aacaacgcgc ctcactgccc gctttccagt cgggaaacct gtcgtgccag 29400
ctgcattaat gaatcggcca acgcgcgggg agaggcggtt tgcgtattgg gcgccagggt 29460
ggtttttctt ttcaccagtg agacgggcaa cagctgattg cccttcaccg cctggccctg 29520
agagagttgc agcaagcggt ccacgctggt ttgccccagc aggcgaaaat cctgtttgat 29580
ggtggttgac ggcgggatat aacatgagct gtcttcggta tcgtcgtatc ccactaccga 29640
gatatccgca ccaacgcgca gcccggactc ggtaatggcg cgcattgcgc ccagcgccat 29700
ctgatcgttg gcaaccagca tcgcagtggg aacgatgccc tcattcagca tttgcatggt 29760
ttgttgaaaa ccggacatgg cactccagtc gccttcccgt tccgctatcg gctgaatttg 29820
attgcgagtg agatatttat gccagccagc cagacgcaga cgcgccgaga cagaacttaa 29880
tgggcccgct aacagcgcga tttgctggtg acccaatgcg accagatgct ccacgcccag 29940
tcgcgtaccg tcttcatggg agaaaataat actgttgatg ggtgtctggt cagagacatc 30000
aagaaataac gccggaacat tagtgcaggc agcttccaca gcaatggcat cctggtcatc 30060
cagcggatag ttaatgatca gcccactgac gcgttgcgcg agaagattgt gcaccgccgc 30120
tttacaggct tcgacgccgc ttcgttctac catcgacacc accacgctgg cacccagttg 30180
atcggcgcga gatttaatcg ccgcgacaat ttgcgacggc gcgtgcaggg ccagactgga 30240
ggtggcaacg ccaatcagca acgactgttt gcccgccagt tgttgtgcca cgcggttggg 30300
aatgtaattc agctccgcca tcgccgcttc cactttttcc cgcgttttcg cagaaacgtg 30360
gctggcctgg ttcaccacgc gggaaacggt ctgataagag acaccggcat actctgcgac 30420
atcgtataac gttactggtt tcacattcac caccctgaat tgactctctt ccgggcgcta 30480
tcatgccata ccgcgaaagg ttttgcacca ttcacctgca caccgcgcct taattaagaa 30540
ttccgtgtat tctatagtgt cacctaaatc gtatgtgtat gatacataag gttatgtatt 30600
aattgtagcc gcgttctaac gacaatatgt acaagcctaa ttgtgtagca tctggcttac 30660
tgaagcagac cctatcatct ctctcgtaaa ctgccgtcag agtcggtttg gttggacgaa 30720
ccttctgagt ttctggtaac gccgttccgc accccggaaa tggtcagcga accaatcagc 30780
agggtcatcg ctagccagat cctctacgcc ggacgcatcg tggccaaaag gatctaggtg 30840
aagatccttt ttgataatct catgaccaaa atcccttaac gtgagttttc gttccactga 30900
gcgtcagacc ccttaataag atgatcttct tgagatcgtt ttggtctgcg cgtaatctct 30960
tgctctgaaa acgaaaaaac cgccttgcag ggcggttttt cgaaggttct ctgagctacc 31020
aactctttga accgaggtaa ctggcttgga ggagcgcagt caccaaaact tgtcctttca 31080
gtttagcctt aaccggcgca tgacttcaag actaactcct ctaaatcaat taccagtggc 31140
tgctgccagt ggtgcttttg catgtctttc cgggttggac tcaagacgat agttaccgga 31200
taaggcgcag cggtcggact gaacgggggg ttcgtgcata cagtccagct tggagcgaac 31260
tgcctacccg gaactgagtg tcaggcgtgg aatgagacaa acgcggccat aacagcggaa 31320
tgacaccggt aaaccgaaag gcaggaacag gagagcgcac gagggagccg ccagggggaa 31380
acgcctggta tctttatagt cctgtcgggt ttcgccacca ctgatttgag cgtcagattt 31440
cgtgatgctt gtcagggggg cggagcctat ggaaaaacgg ctttgccgcg gccctctcac 31500
ttccctgtta agtatcttcc tggcatcttc caggaaatct ccgccccgtt cgtaagccat 31560
ttccgctcgc cgcagtcgaa cgaccgagcg tagcgagtca gtgagcgagg aagcggaata 31620
tatcctgtat cacatattct gctgacgcac cggtgcagcc ttttttctcc tgccacatga 31680
agcacttcac tgacaccctc atcagtgcca acatagtaag ccagtataca ctccgctagc 31740
gctgaggtct gcctcgtgaa gaaggtgttg ctgactcata ccaggcctga atcgccccat 31800
catccagcca gaaagtgagg gagccacggt tgatgagagc tttgttgtag gtggaccagt 31860
tggtgatttt gaacttttgc tttgccacgg aacggtctgc gttgtcggga agatgcgtga 31920
tctgatcctt caactcagca aaagttcgat ttattcaaca aagccacgtt gtgtctcaaa 31980
atctctgatg ttacattgca caagataaaa atatatcatc atgaacaata aaactgtctg 32040
cttacataaa cagtaataca aggggtgtta tgagccatat tcaacgggaa acgtcttgct 32100
cgaggccgcg attaaattcc aacatggatg ctgatttata tgggtataaa tgggctcgcg 32160
ataatgtcgg gcaatcaggt gcgacaatct atcgattgta tgggaagccc gatgcgccag 32220
agttgtttct gaaacatggc aaaggtagcg ttgccaatga tgttacagat gagatggtca 32280
gactaaactg gctgacggaa tttatgcctc ttccgaccat caagcatttt atccgtactc 32340
ctgatgatgc atggttactc accactgcga tccccgggaa aacagcattc caggtattag 32400
aagaatatcc tgattcaggt gaaaatattg ctgatgcgct ggcagtgttc ctgcgccggt 32460
tgcattcgat tcctgtttgt aattgtcctt ttaacagcga tcgcgtattt cgtctcgctc 32520
aggcgcaatc acgaatgaat aacggtttgg ttgatgcgag tgattttgat gacgagcgta 32580
atggctggcc tgttgaacaa gtctggaaag aaatgcata 32619
<210> 6
<211> 39784
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 6
agcttttgcc attctcaccg gattcagtcg tcactcatgg tgatttctca cttgataacc 60
ttatttttga cgaggggaaa ttaataggtt gtattgatgt tggacgagtc ggaatcgcag 120
accgatacca ggatcttgcc atcctatgga actgcctcgg tgagttttct ccttcattac 180
agaaacggct ttttcaaaaa tatggtattg ataatcctga tatgaataaa ttgcagtttc 240
atttgatgct cgatgagttt ttctaatcag aattggttaa ttggttgtaa cactggcaga 300
gcattacgct gacttgacgg gacggcggct ttgttgaata aatcgaactt ttgctgagtt 360
gaaggatcag atcacgcatc ttcccgacaa cgcagaccgt tccgtggcaa agcaaaagtt 420
caaaatcacc aactggtcca cctacaacaa agctctcatc aaccgtggct ccctcacttt 480
ctggctggat gatggggcga ttcaggcctg gtatgagtca gcaacacctt cttcacgagg 540
cagacctcag cgctcaaaga tgcaggggta aaagctaacc gcatctttac cgacaaggca 600
tccggcagtt caacagatcg ggaagggctg gatttgctga ggatgaaggt ggaggaaggt 660
gatgtcattc tggtgaagaa gctcgaccgt cttggccgcg acacgccgac atgatccaac 720
tgataaaaga gtttgatgct cagggtgtag cggttcggtt tattgacgac gggatcagta 780
ccgacggtga tatggggcaa atggtggtca ccatcctgtc ggctgtggca caggctgaac 840
gccggaggat cctagagcgc acgaatgagg gccgacagga agcaaagctg aaaggaatca 900
aatttggccg caggcgtacc gtggacagga gcgtcgattt ttgtgatgct cgtcaggggg 960
gcggagccta tggaaaaacg ccagcaacgc ggccttttta cggttcctgg ccttttgctg 1020
gccttttgct cacatgttct ttcctgcgtt atcccctgat tctgtggata accgtattac 1080
cgcctttgag tgagctgata ccgctcgccg cagccgaacg accgagcgca gcgagtcagt 1140
gagcgaggaa gcggaagagc gcccaatacg caaaccgcct ctccccgcgc gttggccgat 1200
tcattaatgc agctggcacg acaggtttcc cgactggaaa gcgggcagtg agcgcaacgc 1260
aattaatgtg agttagctca ctcattaggc accccaggct ttacacttta tgcttccggc 1320
tcgtatgttg tgtggaattg tgagcggata acaatttcac acaggaaaca gctatgacca 1380
tgattacgcc aagcttgcat gcctgcaggt cgatcgatta attaacgacc catcatcaat 1440
aatatacctt attttggatt gaagccaata tgataatgag ggggtggagt ttgtgacgtg 1500
gcgcggggcg tgggaacggg gcgggtgacg taggttttag ggcggagtaa cttgtatgtg 1560
ttgggaattg tagttttctt aaaatgggaa gttacgtaac gtgggaaaac ggaagtgacg 1620
atttgaggaa gttgtgggtt ttttggcttt cgtttctggg cgtaggttcg cgtgcggttt 1680
tctgggtgtt ttttgtggac tttaaccgtt acgtcatttt ttagtcctat atatactcgc 1740
tctgcacttg gccctttttt acactgtgac tgattgagct ggtgccgtgt cgagtggtgt 1800
tttttaaaag aaaagggggg attggggggt acagtgcagg ggaaagaata gtagacataa 1860
tagcaacaga catacaaact aaagaattac aaaaacaaat tacaaaattc aaaattttat 1920
cgtactagtg gatctgcgat cgctccggtg cccgtcagtg ggcagagcgc acatcgccca 1980
cagtccccga gaagttgggg ggaggggtcg gcaattgaac gggtgcctag agaaggtggc 2040
gcggggtaaa ctgggaaagt gatgtcgtgt actggctccg cctttttccc gagggtgggg 2100
gagaaccgta tataagtgca gtagtcgccg tgaacgttct ttttcgcaac gggtttgccg 2160
ccagaacaca gctgaagctt cgaggggctc gcatctctcc ttcacgcgcc cgccgcccta 2220
cctgaggccg ccatccacgc cggttgagtc gcgttctgcc gcctcccgcc tgtggtgcct 2280
cctgaactgc gtccgccgtc taggtaagtt taaagctcag gtcgagaccg ggcctttgtc 2340
cggcgctccc ttggagccta cctagactca gccggctctc cacgctttgc ctgaccctgc 2400
ttgctcaact ctacgtcttt gtttcgtttt ctgttctgcg ccgttacaga tccaagctgt 2460
gaccggcgcc tacggatccg ccaccatggg gaatcgcggg tcttctacct cctctcgccc 2520
cctgccctcc tccgaagcca atatctatgc caagctgcag gaccatatcc agcgccagac 2580
ccgccccttc tccggaggag gatactttaa cggaggcggc gacaaaaacc ccgtgcagca 2640
catcaaggac taccacatcg acagcgtgag ctccaaagcc aagctcagaa tcatcgaagg 2700
aattatccgc gccatcgcca agatcggctt taaggtggac acaaaacagc ccatcgaaga 2760
catcctcaag gacatcaaga aacagctgcc cgacccccgc gccggctcta cctttgtgaa 2820
gaacgccgaa aaacaggaaa ccgtctgcaa gatgattgcc gacgccatca accaggaatt 2880
catcgacctg ggccaggaca agctgatcga caccaccgaa ggggccgcct ccatctgccg 2940
ccagatcgtc ctctatatca atagcctgac ccacggactg cgggccgaat acctggacgt 3000
gcacggcagc atcgagaaca ccctggaaaa catcaaactg ctgaacgacg ccatcaaaca 3060
gctgcacgaa cggatggtga ccgaagtgac caaggccgcc cccaacgagg aagtgattaa 3120
cgctgtgaca atgatcgaag ccgtgtaccg ccgcctgctc aacgagcaga acctccagat 3180
caacatcctc accaacttca tcgacaacat cctgaccccc acccagaaag aactggacaa 3240
gctccagacc gacgaagtcg acatcatcaa actcctcaac gacaccaaca gcgtcctcgg 3300
caccaaaaac ttcggcaaag tgctgagcta caccctctgc aacctgggca tcgccgccag 3360
cgtcgccaac aagatcaaca aggccctcca gaaagtggga ctgaaggtgg agcagtatct 3420
ccagagcaag aactgggccg aattcgacaa agaactcgac ctgaaacgct tctccggcct 3480
ggtgagcgcc gagaacatcg ccgaattcga gaaggctgtg aacctgctga ggcagacctt 3540
caacgaaagg cacaagatcc tggagaacag ctgcgccaaa aagggcggaa gcggagctac 3600
taacttcagc ctgctgaagc aggctggaga cgtggaggag aaccctggac ctatgcccag 3660
caacatgaag cagttctgca agatcagcgt gtggctgcag cagcacgacc ccgacctcct 3720
ggagatcatc aacaacctct gcatgctggg gaacctgagc gccgccaagt acaagcacgg 3780
cgtgacattc atctacccaa agcaggccaa gatccgcgac gaaattaaaa agcacgccta 3840
cagcaacgac cccagccagg ccatcaagac cctcgaatcc ctcatcctcc cattctacat 3900
ccccaccccc gccgaattca ccggagagat cggcagctac accggggtga agctggaggt 3960
ggaaaaaacc gaggccaaca aggtgatcct gaagaacggc gaggccgtgc tggtgcccgc 4020
cgccgacttc aagcccttcc ccgaccgccg cctggccgtg tggatcatgg agagcggcag 4080
catgcccctg gagggccccc cctacaagcg caagaaggag ggcggcggca acgacccccc 4140
cgtgcccaag cacatcagcc cctacacccc ccgcacccgc atcgccatcg aggtggagaa 4200
ggccttcgac gactgcatgc gccagaactg gtgcagcgtg aacaacccct acctggccaa 4260
gagcgtgagc ctgctgagct tcctgagcct gaaccacccc accgagttca tcaaggtgct 4320
gcccctgatc gacttcgacc ccctggtgac cttctacctg ctgctggagc cctacaagac 4380
ccacggcgac gacttcctga tccccgagac catcctgttc ggccccaccg gctggaacgg 4440
caccgacctg taccagagcg ccatgctgga gttcaagaag ttcttcaccc agatcacccg 4500
ccagaccttc atggacatcg ccgacagcgc caccaaggag gtggacgtgc ccatctgcta 4560
cagcgacccc gagaccgtgc acagctacgc caaccacgtg cgcaccgaga tcctgcacca 4620
caacgccgtg aacaaggtga ccacccccaa cctggtggtg caggcctaca acgagctgga 4680
gcagaccaac accatccgcc actacggccc catcttcccc gagagcacca tcaacgccct 4740
gcgcttctgg aagaagctgt ggcaggacga gcagcgcttc gtgatccacg gcctgcaccg 4800
caccctgatg gaccagccca cctacgagac cagcgagttc gccgagatcg tgcgcaacct 4860
gcgcttcagc cgccccggca acaactacat caacgagctg aacatcacca gccccgccat 4920
gtacggcgac aagcacacca ccggcgacat cgcccccaac gaccgcttcg ccatgctggt 4980
ggccttcatc aacagcaccg acttcctgta caccgccatc cccgaggaga aggtgggcgg 5040
caacgagacc cagaccagca gcctgaccga cctggtgccc acccgcctgc acagcttcct 5100
gaaccacaac ctgagcaagc tgaagatcct gaaccgcgcc cagcagaccg tgcgcaacat 5160
cctgagcaac gactgcctga accagctgaa gcactacgtg aagcacaccg gcaagaacga 5220
gatcctgaag ctgctgtaac tcgagtctag agggcccgtt taaacccgct gatcagcctc 5280
gataatcatc tcttgtacat gtcccactgt tcaagcctcc aagctgtgcc ttgggtggct 5340
ttggggcatg gacattgacc cttataaaga atttggagct actgtggagt tactctcgtt 5400
tttgccttct gacttctttc cttccgtcag agatctccta gacaccgcct cagctctgta 5460
tcgagaagcc ttagagtctc ctcttctgag gcggaaagaa ccagctgggg ctctagcaat 5520
tgaaaaataa acacgttgaa acataacaca aacgattctt tattcttggg caatgtatga 5580
aaaagtgtaa gaggatgtgg caaatatttc attaatgtag ttgtggccag accagtccca 5640
tgaaaatgac atagagtatg cacttggagt tgtgtctcct gtttcctgtg taccgtttag 5700
tgtaatggtt agtgttacag gtttagtttt gtctccgttt aagtaaactt gactgacaat 5760
gttacttttg gcagttttac cgtgagattt tggataagct gataggttag gcataaatcc 5820
aacagcgttt gtataggctg tgccttcagt aagatctcca tttctaaagt tccaatattc 5880
tgggtccagg aaggaattgt ttagtagcac tccattttcg tcaaatctta taataagatg 5940
agcactttga actgttccag atattggagc caaactgcct ttaacagcca aaactgaaac 6000
tgtagcaagt atttgactgc cacattttgt taagaccaaa gtgagtttag catctttctc 6060
tgcatttagt ctacagttag gagatggagc tggtgtggtc cacaaagtta gcttatcatt 6120
atttttgttt cctactgtaa tggcacctgt gctgtcaaaa ctaaggccag ttcctagttt 6180
aggaaccata gccttgtttg aatcaaattc taggccatgg ccaatttttg ttttgagggg 6240
atttgtgttt ggtgcattag gtgaaccaaa ttcaagccca tctcctgcat taatggctat 6300
ggctgtagcg tcaaacatca accccttggc agtgcttagg ttaacctcaa gctttttgga 6360
attgtttgaa gctgtaaaca agtaaaggcc tttgttgtag ttaatatcca agttgtgggc 6420
tgagtttata aaaagagggc cctgtcctag tcttagattt agttggtttt gagcatcaaa 6480
cggataacta acatcaagta taaggcgtct gttttgagaa tcaatcctta gtcctcctgc 6540
tacattaagt tgcatattgc cttgtgaatc aaaacccaag gctccagtaa ctttagtttg 6600
caaggaagta ttattaatag tcacacctgg accagttgct acggtcaaag tgtttaggtc 6660
gtctgttaca tgcaaaggag ccccgtactt tagtcctagt tttccatttt gtgtataaat 6720
gggctctttc aagtcaatgc ccaagctacc agtggcagta gttagagggg gtgaggcagt 6780
gatagtaagg gtactgctat cggtggtggt gagggggcct gatgtttgca gggctagctt 6840
tccttctgac actgtgaggg gtccttgggt ggcaatgcta agtttggagt cgtgcacggt 6900
tagcggggcc tgtgattgca tggtgagtgt gttgcccgcg accattagag gtgcggcggc 6960
agccacagtt agggcttctg aggtaactgt gaggggtgca gatatttcca ggtttatgtt 7020
tgacttggtt tttttgagag gtgggctcac agtggttaca ttttgggagg taaggttgcc 7080
ggcctcgtcc agagagaggc cgttgcccat tttgagcgca agcatgccat tggaggtaac 7140
tagaggttcg gataggcgca aagagagtac cccaggggga ctctcttgaa acccattggg 7200
ggatacaaag ggaggagtaa gaaaaggcac agttggagga ccggtttccg tgtcatatgg 7260
atacacgggg ttgaaggtat cttcagacgg tcttgcgcgc ttcatctgca acaacatgaa 7320
gatagtgggt gcggatggac aggaacagga ggaaactgac attccattta gattgtggag 7380
aaagtttgca gccaggagga agctgcaata ccagagctgg gaggagggca aggaggtgct 7440
gctgaataaa ctggacagaa atttgctaac tgattttaag taagtgatgc tttattattt 7500
ttttttatta gttaaaggga ataagatctt tgagaccgca cagggtctta ataagggtgc 7560
agagatcctc aggtccttga caaggtgagt gaatgcagcc ttcggtttct accgagtgct 7620
gagttatggt aatgggcttt tctcccacca tgaccaccaa tttctgacgc ttggttggca 7680
acttgtagct aaggcggtgt ccggtggtat tactgtcgta ggtgactttg gcctgcttta 7740
ccagacaaaa gatacccctt ttgcactggt gcaagttaac catgtcttgg agctcttgat 7800
tcatgcgctg ttgctcggcc gctgccctgc gtctttctag caggcgctgc tctgtaataa 7860
ttccgtccat ttctagctag agaaacctga attagaatag cccgtagagt tgcttgaatt 7920
gttcataaac cccacagtag ctgcgccttt ggcctaatac cctaagggtt ttctaagctc 7980
acctcctgtt ctggtaaaca gagttattga ggtctgtccg gaaaaagtct ggtttacggt 8040
caggcggtag gtgtggtgca gcggccggtg acgcactcgt acgttcccgg caggtaagga 8100
gggtggtgtt ttttctgatg gagtagctga gctcggagag gttctctcgt agactcactc 8160
cgtctgggtt gaaactgttg taaatcacag agggagagat gttaaaagta ccaggtaagg 8220
ttcgccttgg tttgcttggg cgggtgaaga cggtggcgtt tacaggatgg cgataggagc 8280
cccagtatat tttaatttct gtatttatta tactcagcac agagatggca acaaagatct 8340
tgatgtaatc cagggttagg acagttgcaa atcacagtga gaacacaggg tcccctgtcc 8400
cgctcaacta gcagggggcg ctgggtaaac tcccgaatca ggctacgggc aagctctccc 8460
tgggcggtaa gccggacgcc gtgcgccggg ccctcgatat gatcctcggg caattcaaag 8520
tagcaaaact caccggagtc gcgggcaaag cacttgtggc ggcgacagtg gaccaggtgt 8580
ttcaggcgca gttgctctgc ctctccactt aacattcagt cgtagccgtc cgccgagtcc 8640
tttaccgcgt caaagttagg aataaattga tccggatagt ggccgggagg tcccgagaag 8700
gggttaaagt agaccgatgg cacaaactcc tcaataaatt gcagagttcc aatgcctcca 8760
gagcgcggct cagaggacga ggtctgcaga gttaggattg cctgacgagg cgtgaatgaa 8820
gagcggccgg cgccgccgat ctgaaatgtc ccgtccggac ggagaccaag cgaggagctc 8880
accgactcgt cgttgagctg aatacctcgc cctctgattg tcaggtgagt tataccctgc 8940
ccgggcgacc gcaccctgtg acgaaagccg cccgcaagct gcgcccctga gttagtcatc 9000
tgaacttcgg cctgggcgtc tctgggaagt accacagtgg tgggagcggg actttcctgg 9060
tacaccaggg cagcgggcca actacgggga ttaaggttat tacgaggtgt ggtggtaata 9120
gccgcctgtt ccaggagaat tcggtttcgg tgggcgcgta ttccgttgac ccgggatatc 9180
atgtggggtc ccgcgctcat gtagtttatt cgggttgagt agtcttgggc agctccagcc 9240
gcaagtccca tttgtggctg gtaactccac atgtagggcg tgggaatttc cttgctcata 9300
atggcgctga caacaggtgc tggcgccggg tgtggccgct ggagatgacg tagttttcgc 9360
gcttaaattt gagaaagggc gcgaaactag tccttaagag tcagcgcgca gtatttactg 9420
aagagagcct ccgcgtcttc cagcgtgcgc cgaagctgat cttcgctttt gtgatacagg 9480
cagctgcggg tgagggatcg cagagacctg ttttttattt tcagctcttg ttcttggccc 9540
ctgctctgtt gaaatatagc atacagagtg ggaaaaatcc tgtttctaag ctcgcgggtc 9600
gatacgggtt cgttgggcgc cagacgcagc gctcctcctc ctgctgctgc cgccgctgtg 9660
gatttcttgg gctttgtcag agtcttgcta tccggtcgcc tttgcttctg tgtggccgct 9720
gctgttgctg ccgctgccgc cggtgcagta tgggctgtag agatgacggt agtaatgcag 9780
gatgttacgg gggaaggcca cgccgtgatg gtagagaaga aagcggcggg cgaaggagat 9840
gttgccccca cagtcttgca agcaagcaac tatggcgttc ttgtgcccgc gccatgagcg 9900
gtagccttgg cgctgttgtt gctcttgggc taacggcggc ggctgcttgg acttaccggc 9960
cctggttcca gtggtgtccc atctacggtt gggtcggcga acgggcagtg ccggcggcgc 10020
ctgaggagcg gaggttgtag ccatgctgga accggttgcc gatttctggg gcgccggcga 10080
ggggaatgcg accgagggtg acggtgtttc gtctgacacc tcttcgacct cggaagcttc 10140
ctcgtctagg ctctcccagt cttccatcat gtcctcctcc tcctcgtcca aaacctcctc 10200
tgcctgactg tcccagtatt cctcctcgtc cgtgggtggc ggcggcagct gcagcttctt 10260
tttgggtgcc atcctgggaa gcaagggccc gcggctgctg ctgatagggc tgcggcggcg 10320
gggggattgg gttgagctcc tcgccggact gggggtccaa gtaaaccccc cgtccctttc 10380
gtagcagaaa ctcttggcgg gctttgttga tggcttgcaa ttggccaaga atgtggccct 10440
gggtaatgac gcaggcggta agctccgcat taggcgggcg ggattggtct tcgtagaacc 10500
taatctcgtg ggcgtggtag tcctcaggta caaatttgcg aaggtaagcc gacgtccaca 10560
gccccggagt gagtttcaac cccggagccg cggacttttc gtcaggcgag ggaccctgca 10620
gctcaaaggt accgataatt tgactttcgt taagcagctg cgaattgcaa accagggagc 10680
ggtgcggggt gcataggttg cagcgacagt gacactccag tagaccgtca ccgctcacgt 10740
cttccattat gtcagagtgg taggcaaggt agttggctag ctgcagaagg tagcagtggc 10800
cccaaagcgg cggagggcat tcgcggtact taatgggcac aaagtcgcta ggaagtgcac 10860
agcaggtggc gggcaagatt cctgagcgct ctaggataaa gttcctaaag ttctgcaaca 10920
tgctttgact ggtgaagtct ggcagaccct gttgcagggt tttaagcagg cgttcgggga 10980
aaatgatgtc cgccaggtgc gcggccacgg agcgctcgtt gaaggccgtc cataggtcct 11040
tcaagttttg ctttagcagt ttctgcagct ccttgaggtt gcactcctcc aagcactgct 11100
gccaaacgcc catggccgtc tgccaggtgt agcatagaaa taagtaaacg cagtcgcgga 11160
cgtagtcgcg gcgcgcctcg cccttgagcg tggaatgaag cacgttttgc ccaaggcggt 11220
tttcgtgcaa aattccaagg taggagacca ggttgcagag ctccacgttg gagatcttgc 11280
aggcctggcg tacgtagccc tgtcgaaagg tgtagtgcaa tgtttcctct agcttgcgct 11340
gcatctccgg gtcagcaaag aaccgctgca tgcactcaag ctccacggta acgagcactg 11400
cggccatcat tagtttgcgt cgctcctcca agtcggcagg ctcgcgcgtt tgaagccagc 11460
gcgctagctg ctcgtcgcca actgcgggta ggccctcctc tgtttgttct tgcaaatttg 11520
catccctctc caggggctgc gcacggcgca cgatcagctc actcatgact gtgctcatga 11580
ccttgggggg taggttaagt gccgggtagg caaagtgggt gacctcgatg ctgcgtttta 11640
gtacggctag gcgcgcgttg tcaccctcga gttccaccaa cactccagag tgactttcat 11700
tttcgctgtt ttcctgttgc agagcgtttg ccgcgcgctt ctcgtcgcgt ccaagaccct 11760
caaagatttt tggcacttcg ttgagcgagg cgatatcagg tatgacagcg ccctgccgca 11820
aggccagctg cttgtccgct cggctgcggt tggcacggca ggataggggt atcttgcagt 11880
tttggaaaaa gatgtgatag gtggcaagca cctctggcac ggcaaatacg gggtagaagt 11940
tgaggcgcgg gttgggctcg catgtgccgt tttcttggcg tttggggggt acgcgcggtg 12000
agaataggtg gcgttcgtag gcaaggctga catccgctat ggcgaggggc acatcgctgc 12060
gctcttgcaa cgcgtcgcag ataatggcgc actggcgctg cagatgcttc aacagcacgt 12120
cgtctcccac atctaggtag tcgccatgcc tttcgtcccc ccgcccgact tgttcctcgt 12180
ttgcctctgc gttgtcctgg tcttgctttt tatcctctgt tggtactgag cggtcctcgt 12240
cgtcttcgct tacaaaacct gggtcctgct cgataatcac ttcctcctcc tcaagcgggg 12300
gtgcctcgac ggggaaggtg gtaggcgcgt tggcggcatc ggtggaggcg gtggtggcga 12360
actcagaggg ggcggttagg ctgtccttct tctcgactga ctccatgatc tttttctgcc 12420
tataggagaa ggaaacttgt atgtgttggg aattgtagtt ttcttaaaat gggaagttac 12480
gtaacgtggg aaaacggaag tgacgatttg aggaagttgt gggttttttg gctttcgttt 12540
ctgggcgtag gttcgcgtgc ggttttctgg gtgttttttg tggactttaa ccgttacgtc 12600
attttttagt cctatatata ctcgctctgc acttggccct tttttacact gtgactgatt 12660
gagctggtgc cgtgtcgagt ggtgtttttt taataggttt tcttttttac tggtaaggct 12720
gactgttatg actacgtccg gcgttccatt tggcatgaca ctacgaccaa cacgatctcg 12780
gttgtctcgg cgcactccgt acagtaggga tcgtctacct ccttttgaga cagaaacccg 12840
cgctaccata ctggaggatc atccgctgct gcccgaatgt aacactttga caatgcacaa 12900
cgtgagttac gtgcgaggtc ttccctgcag tgtgggattt acgctgattc aggaatgggt 12960
tgttccctgg gatatggttc taacgcggga ggagcttgta atcctgagga agtgtatgca 13020
cgtgtgcctg tgttgtgcca acattgatat catgacgagc atgatgatcc atggttacga 13080
gtcctgggct ctccactgtc attgttccag tcccggttcc ctgcagtgta tagccggcgg 13140
gcaggttttg gccagctggt ttaggatggt ggtggatggc gccatgttta atcagaggtt 13200
tatatggtac cgggaggtgg tgaattacaa catgccaaaa gaggtaatgt ttatgtccag 13260
cgtgtttatg aggggtcgcc acttaatcta cctgcgcttg tggtatgatg gccacgtggg 13320
ttctgtggtc cccgccatga gctttggata cagcgccttg cactgtggga ttttgaacaa 13380
tattgtggtg ctgtgctgca gttactgtgc tgatttaagt gagatcaggg tgcgctgctg 13440
tgcccggagg acaaggcgcc ttatgctgcg ggcggtgcga atcatcgctg aggagaccac 13500
tgccatgttg tattcctgca ggacggagcg gcggcggcag cagtttattc gcgcgctgct 13560
gcagcaccac cgccctatcc tgatgcacga ttatgactct acccccatgt agactagggt 13620
tctgtgagtt tgattaaggt acggtgatct gtataagcta tgtggtggtg gggctatact 13680
actgaatgaa aaatgacttg aaattttctg caattgaaaa ataaacacgt tgaaacataa 13740
cacaaacgat acggcgcaga cggcaagggt gggggtaaat aatcacccga gagtgtacaa 13800
ataaaagcat ttgcctttat tgaaagtgtc tctagtacat tatttttaca tgtttttcaa 13860
gtgacaaaaa gaagtggcgc tcctaatctg cgcactgtgg ctgcggaagt agggcgagtg 13920
gcgctccagg aagctgtaga gctgttcctg gttgcgacgc agggtgggct gtacctgggg 13980
actgttgagc atggagttgg gtaccccggt aataaggttc atggtggggt tgtgatccat 14040
gggagtttgg ggccagttgg caaaggcgtg gagaaacatg cagcagaata gtccacaggc 14100
ggccgagttg ggcccctgta cgctttgggt ggacttttcc agcgttatac agcggtcggg 14160
ggaagaagca atggcgctac ggcgcaggag tgactcgtac tcaaactggt aaacctgctt 14220
gagtcgctgg tcagaaaagc caaagggctc aaagaggtag catgtttttg agtgcgggtt 14280
ccaggcaaag gccatccagt gtacgccccc agtctcgcga ccggccgtat tgactatggc 14340
gcaggcgagc ttgtgtggag aaacaaagcc tggaaagcgc ttgtcatagg tgcccaaaaa 14400
atatggccca caaccaagat ctttgacaat ggctttcagt tcctgctcac tggagcccat 14460
ggcggcagct gttgttgatg ttgcttgctt ctttatgttg tggcgttgcc ggccgagaag 14520
ggcgtgcgca ggtacacggt ttcgatgacg ccgcggtgcg gctggtgcac acggaccacg 14580
tcaaagactt caaacaaaac ataaagaagg gtgggctcgt ccatgggatc cacctcaaaa 14640
gtcatgtcta gcgcgtgggc ggagttggcg tagagaaggt tttggcccag gtctgtgagt 14700
gcgcccatgg acataaagtt actggagaat gggatgcgcc aaagggtgcg atcgcaaaga 14760
aactttttct gggtaatgct gtcaactgcg gtcttgccta taagcggata ggggaagtta 14820
gcagggtagg cctgtccttc gcgcatggtg ggggcaaggt agccaacaaa tccagagttg 14880
ttgtgttggt gtaggatgcc cacctgttgg tagtccttgt atttagtatc atccaccacc 14940
tgacggctca tgggctggaa gtttctaaag aaggagtaca tgcggtcctt gtagctctct 15000
gggatataga agccctggta gccaatgtta tagttagcta gcatttgtac caggaaccag 15060
tctttggtca tgttacactg ggcaacgttg taaccctccc cgtcaactga gcgcttaatt 15120
tcaaactcgt tgggggtaag caggcggtca ttgccaggcc agctgacaga agagtcaaag 15180
gtaatggcca ccttcttaaa ggtgtggttg aggtaaaagg ttccatctag gtagggtata 15240
gagccagagt aggtgtaata agggtcgtag cccgagccca gtgatggggt ttccttagtc 15300
ttaaggcgcg tgaaggccca gccgcggaaa gccgcccagt tgcgggaggg gatggatatg 15360
ggcacgttgg tagcgttggc gggtataggg tagagcatgt tggcggcgga gagatagtcg 15420
ttaaaggact ggtcgttggt gtcgtttcta agcatggcct caagcgtgga ggcggtgttg 15480
tgggccatgg ggaagaaggt ggcgtaaagg caaatgctat caaacttaat gctggctccg 15540
tcaaccctta ggtcatttcc tagggagctc tgcagaacca tgttaacatc cttcctgaag 15600
ttccactcgt aggtgtatga gcccggcagg agaaggaggt ttttaatggc aaagaacttc 15660
tgaggcacct ggatgtggaa gggcacatag cgaccattgc ccagcaacat tgagcggtag 15720
cgcaggccag cattgcggtg gtggttaaat gggttgacgt tgtccatata gtcaagggac 15780
cagcgtgctc caaggttaat gtagcagtcc actagcccgg gagccaccac tcgcttgttc 15840
atgtagtcgt aggtgtttgg gttatcagaa atttttacgt tggaaggact gtactttagc 15900
ttgtcgggca aatacagcgc tatgttggag tacaggaaat ttctccacag gttggcattt 15960
agattgattt ccatggcaaa attatttcca actcttattt catttttatc tgaaaattct 16020
gtagcatctt tttcccatcc attttcctga cctgttttag gttttacctt ggtaagagtc 16080
tctgtattaa tcacacctcc cagtggaaag cagtaatttg gaagttcatc ttcagttcca 16140
tgattttcaa taattctaac atctggatca tagctgtcaa cagcctgatt ccacatagaa 16200
aagtacctgg ttctatcacc aatggaatca agcaaaagct ggtatgaaag ctctgtgttt 16260
ctgtcttgca aatctacaac agcattcaac tgcgatgctt ggcccgccag aacacccata 16320
ttacccgtgc tgttgtaata cattagacca ataaaattgt ccctaaaagc aatgtaatta 16380
ggcctgttgg gcatagattg ttggcccatt agttctcgtg agttaccttc cttaatagtg 16440
ggcatgtaag aaatatgagt gtctggggtt tctatatcta catcttcact gtacaatacc 16500
actttaggag tcaagttatc accattgcct gcggctgcct cagtagttga gaaaaattgc 16560
atttccactt gactttctag ctttccattt tgttgcttta caagaatgcc ttgccctcca 16620
ttttcatttg tgggttttgc atatgaaccg taacatggtt tcattggggt agtctttttt 16680
aggactctcc cagctgcatg attaatttct gtttcgtacc actgagattc tcctatttga 16740
ggttcaggtt gaaatgtttt atcggcatat ttaggtgttt gaccttcgac acctatttga 16800
ataccctcct ttgtaatatt tataccagaa taaggcgcct gcccaaatac gtgagttttt 16860
tgctgctcag cttgctcgtc tacttcgtct tcgttgtcat cgtcctcttc ttctaggttt 16920
atttcaagag cagtagcagc ttcatcccat tcgcaaggat ttggggcacc cttgggagcc 16980
agggcgttgt aggcagtgcc agagtagggc ttaaaagtag ggcccctgtc cagcacgccg 17040
cggatgtcaa agtacgtgga agccatgtcc agcacacggt tatcacccac agctagggtg 17100
aaccgcgcct tgtacgagta cgcagtatcc tcacggtcca cagggatgaa ccgcagcgtc 17160
aaacgctggg accggtctgt ggtcacgtcg tgcgtaggcg ccaccgtggg gtttctaaac 17220
ttgttattca ggctgaagta cgtctcggtg gcgcgggcaa actgcaccag cccggggctc 17280
aggtactccg aggcgtcctg gcccgagatg tgcatgtaag accactgcgg catcatcgaa 17340
ggggtagcca tcttggaaag cgggcgcgcg gcggctcagc agctcctctg gcggcgacat 17400
ggacgcatac atgacacaca tacgacacgt tagctatcag aagcatcgtc ggcgcttcag 17460
ggattgcacc cccagaccca cgatgctgtt cagtgtgctt tgccagttgc cactggctac 17520
gggccgcaac gatcgcggac cgctggcggc gcggcgcagg gacgcgcggc taggacgggt 17580
tacaacaacg gcggtcgggc ctggcagcac aggtttctgc tgggtgtcgg cggggggagg 17640
caggtccagc gttacgggtg tgtgctggcc cagcactccg gtagccatgg gcgcgatggg 17700
acgggtggtg ggcaggcctt gctttagtgc ctcctcgtac gagggaggct cgtctatttg 17760
cgtcaccaga gtttcttccc tgtcggggcg cggacgcttt tcgccacgcc cctctggaga 17820
cactgtctcc acggccggtg gaggctcctc tacgggaggg cggggatcaa gcttactgtt 17880
aatcttattt tgcactgcct ggttggccag gtccaccacc ccgctaatgc cagaggccag 17940
gccatctacc accttttgtt ggaaattttg ctctttcaac ttatccctca gcatctggcc 18000
tgtgctgctg ttccaggcct tgctgccata gttcttaacg gtggaaccga aatttttaat 18060
gccgctccac agcgagcccc agctgaaggc gccaccgctc atattgctgg tgccgatatc 18120
ttgccagttt cccatgaacg ggcgcgagcc gtgtcgcggg gccagagacg caaagttgat 18180
gtcttccatt ctacaaaata gttacaggac caagcgagcg tgagagtcca gactttttat 18240
tttgattttt ccacatgcaa cttgttttta atcagtgtct ctgcgcctgc aaggccacgg 18300
atgcaattcc gggcacggcg ccaatcgccg cggcgatcag tggaataagg aggggcagga 18360
taccgccgcg catgcgacgg tgcgacgcgc gccgccgccg gtggtgcgca cgacgcatgc 18420
cgcccgtcag gccgtggccg gccatgcccc tcctacggtg cattcttcct cggaatcccg 18480
gcaccgggaa acggaggcgg caggtgaggg ccatatctgc aagaaccaca aagaccggct 18540
tttaaacgat gctggggtgg tagcgcgctg ttggcagcac cagggtcctg cctccttcgc 18600
gagccaccct gcgcacggaa atcggggcca gcacgggctg gcgacggcga cggcggcggc 18660
gggttccagt ggtggttcgg cgtcgggtag ttgctcgtct tctggggcgg taggtgtagc 18720
cacgatagcc gggggtaggc gcaatggaag gatgtagggc atattcgggc agtagcgcgc 18780
tggcggcgcc gtacttcctc gaacggcgcg ggcgccgggg ggctgaaacg cgaaacatcc 18840
acgggtccgt ttgcacctcc gtagaggtct tggacgcggc cgcagcgacc gcctgcaccg 18900
cggcatccgc caccgctgag gcaaccgggg acgtttgtgt ctccatgccc tctgtggcgg 18960
tggcaatact ggtgctactg gtagtgggta tctgaacgtc cacggtctgc acgcccagtc 19020
ccggcgccac ctgcttgatt ggccgcacgc ggacctcggg ctccagccca ggttccacgg 19080
tcattttttc caagacatct tccagtcgct ggcgcttggg taccatcagc tgcacggtgg 19140
gtgccaagtc accagactcg cgctttaggc cgcgcttttc ttcggacggt gcaagcgcgg 19200
gcagcacctg ctgcagtgtt acgggcttta ggctaggtgt tgggttgccc tcgtccagcg 19260
gcaacgccag catgtcctta tgccgctttc cgtaggcaaa ctccccgagg cgctcgttgg 19320
cctgctcaag caggtcctcg tcgccgtaca cctcatcata cacgcgcttg taggtgcggg 19380
tggagcgctc accgggcgta aagactacgg tggtgccggg tcgcaaaaca cgttttacgc 19440
gtcgaccttt ccactgtacc cgtcgcctgg gcgcggtagc gtgcagcagt tccacctcgt 19500
cgtcaagttc atcatcatca tctttctttt tctttttgac ccgctttagc tttcggggct 19560
tgtaatcctg ctcttccttc ttcggggggc catagatctc cggcgcgatg acctggagca 19620
tctcttcttt gattttgcgc ttggacatag cttcgttgcg cgccgccgcc gctggataca 19680
tacaacagta cgagtctaag tagttttttc ttgcaatcta gttgcgcggg gggcgggtgc 19740
gcacgggcac gcgcaggccg ctaaccgagt cgcgcaccca atacacgttg cccctgcgac 19800
cctgagtcat agcactaatg gccgcggctg ctgcggcggc cgctcgtcgc ctggacctgg 19860
ggggcacagt gacaataccc gcggccagcc ttcgagcggc ccgcatggcc gcccgtcggc 19920
cggtgcgacg tgcgcggtta agcagggccg ccgccgcgcg ttgggcggca gtgccgggtc 19980
ggcggcggtg gcgacgtgct acgcgcctcc gccgtctctt cattttagca tagcgccggg 20040
ctccgcgcac cacggtctga atggccgcgt ccactgtgga cactggtggc ggcgtgggcg 20100
tgtagttgcg cgcctcctcc accaccgcgt cgatggcgtc atcgacggtg gtgcgcccag 20160
tgcggccgcg tttgtgcgcg ccccagggcg cgcggtagtg cccgcgcacg cgcactgggt 20220
gttggtcgga gcgcttcttg gccccgccaa acatcttgct tgggaagcgc aggccccagc 20280
ctgtgttatt gctgggcgat ataaggatgg acatgcttgc tcaaaaagtg cggctcgata 20340
ggacgcgcgg cgagactatg cccagggcct tgtaaacgta ggggcaggtg cggcgtctgg 20400
cgtcagtaat ggtcactcgc tggactcctc cgatgctgtt gcgcagcggt agcgtcccgt 20460
gatctgtgag agcaggaacg ttttcactga cggtggtgat ggtgggggct ggcgggcgcg 20520
ccaaaatctg gttctcggga aagcgattga acacgtgggt cagagaggta aactggcgga 20580
tgagttggga gtagacggcc tggtcgttgt agaagctctt ggagtgcacg ggcaacagct 20640
cggcgcccac caccggaaag ttgctgatct ggcgcgtgga gcggaaggtc acggggtctt 20700
gcatcatgtc tggcaacgac cagtagacct gctccgagcc gcaggttacg tcaggagtgc 20760
aaagcagggt ccatgagcgg attccggtct gagggtcgcc gtagttgtat gcaaggtacc 20820
agctgcggta ctgggtgaag gtgctgtcat tgcttattag gttgtaactg cgtttcttgc 20880
tgtcctctgt caggggtttg atcaccggtt tcttctgagg cttctcgacc tcgggttgcg 20940
cagcgggggc ggcagcttcg gccgctgctt cggcctcagc gcgcttctcc tcagcccgtg 21000
tggcaaaggt gtcgccgcga atggcatgat cgttcatgtc ctccaccggc tgcattgccg 21060
cggctgccgc gttggagttc tcttccgcgc cgctgccact gctgttgctg ccgcctgcgc 21120
cacccccgcc ctgttcggtg tcatctttca agctcgcctg gtaggcgtcc acatccaaca 21180
gtgcgggaat gttaccaccc tccagatcat cgtaggtgat cctaaagccc tcctggaagg 21240
gttgccgctt gcggatgccc aacaagttgc tcaggcggct gtgggtgaag tccaccccgc 21300
atcctggcag caaaatgatg tctggatgga aggcttcgtt tgtatatacc ccaggcatga 21360
caagaccagt gacggggtca aaccccagtc tgaagttgcg ggtgtcaaac tttaccccga 21420
tgtcgctttc cagaaccccg ttctgtctgc ccactttcaa gtagtgctcc acgatcgcgt 21480
tgttcataag gtctatggtc atggtctcgg agtagttgcc ctcgggcagc gtgaactcca 21540
cccactcgta tttcagctcc acctgattgt ccttagtagg caagcgcgac accatcaccc 21600
gcgccttaaa cttattggta aacatgaact cgttcacatt tggcatgttg gtatgcagga 21660
tggttttcag gtcgccgccc cagtgcgacc ggtcgtcaag attgatggtc tgtgtgcttg 21720
cctcccccgg gctgtagtca ttgttttgaa tgaccgtggt cagaaagttg ctgtggtcgt 21780
tctggtagtt cagggatgcc acatccgttg acttgttgtc caccaggtac acacgggtgg 21840
tgtcgaatag gggtgccaac tcagagtaac ggatgctgtt tctccccccg gtaggccgca 21900
ggtaccgcgg aggcacaaac ggcgggtcca ggggagcatc gaagggagaa cccagcgccg 21960
ccgccactgg cgccgcgctc accacactct cgtaggaggg aggaggacct tcctcataca 22020
tcgccgcgcg ccgcatacta aggggaatac aagaaaacca acgctcggtg ccatggcctt 22080
ggtgagtttt ttattttgca tcatgctttt ttttttttta aaacattctc cccagcctgg 22140
ggcgaaggtg cgcaaacggg ttgccactcc ctcccaaatc caggacgctg ctgtcgtctg 22200
ccgagtcatc gtcctcccac accagacccc gctgacggtc gtgcctttga cgacgggtgg 22260
gcgggcgcgg gcctggcacg tccctgtgct cctgcgcgta cgtcttccat ctactcatct 22320
tgtccactag gctctctatc ccgttgttgg gaaatgccgg aggcaggttt ttttcgcgct 22380
gcggctgcag cagcgagttg tttaggtact cctcctcgcc cagcaggcgc gggcgggtgg 22440
tgcgagtgct ggtaagagac cctatcaagc ttggaaatgg gctactagca tctgaccgcg 22500
gggccgcagc gcctagatcg gacaagctgc ttggcctgcg gaagctttcc tttcgcagcg 22560
ccgcctctgc ctgctcgcgc tgttgcaact ctagcagggt ctgcggttgc ggggaaaaca 22620
cgctgtcgtc tatgtcgtcc cagaggaatc catcgttacc ctcgggcacc tcgaatcccc 22680
cggtgtagaa accagggggc ggtagccagt gcgggttcaa gatggcattg gtgaaatact 22740
cggggttcac ggcggccgcg cgatgcaagt agtccattag gcggttgata aacggccggt 22800
ttgaggcata catgcccggt tccatgttgc gcgcggtcat gtccagcgcc acgctgggcg 22860
ttaccccgtc gcgcatcagg ttaaggctca cgctctgctg cacgtagcgc aaaatgcgct 22920
cctcctcgct gtttaaactg tgcaacgagg ggatcttctg ccgccggttg gtcagcaggt 22980
agtttagggt tgcctccagg ctgcccgtgt cctcctgccc cagcgcgcgg ctgacacttg 23040
taatctcctg gaaagtatgc tcgtccacat gcgcctgacc tatggcctcg cggtacagtg 23100
tcagcaagtg acctaggtat gtgtcccggg acacgctgcc actgtccgtg aagggcgcta 23160
ttagcagcag caacaggcgc gagttgggcg tcagcaagct agacacggtc gcgcggtcgc 23220
ctgtgggagc ccgcaccccc cacagcccct gcaagttttt gaaagcctgg ctcaggttta 23280
cggtctgcag gccttgtcta ctggtctgga aaaaatagtc tggcccagac tggtacacct 23340
cactttgcgg tgtctcagtc accattagcc gcagtgcgct cacaaagttg gtgtagtcct 23400
cctgtccccg cggcacgttg gcgggctgtg tactcaggaa ggcgtttagt gcaaccatgg 23460
agcccaggtt gccctgctgc tgcgcgcgct cacgctgcgc cacggcctcg cgcacatccc 23520
ccaccagccg gtccaggttg gtctgcacgt tgccgctgtt gtaacgagcc acgcgctgaa 23580
gcagcgcgtc gtagaccagg ccggcctcgt cgggccggat ggccctgttt tcggccagcg 23640
cgtttacgat cgccagcacc ttctcgtgcg tggggtttgc gcgcgccggg accaccgctt 23700
ccagaattgc ggagagccgg ttggcctgcg gctgctgccg gaacgcgtca ggattgcgcg 23760
cagtcagcga catgatgcgg tccatgacct ggcgccagtc gtccgtggag ttaaggccgg 23820
acggctggct ctgcagcgcc gcccgcaccg ccgggtccgt tgcgtcttgc atcatctgat 23880
cagaaacatc accgcttagt actcgccgtc ctctggctcg tactcatcgt cctcgtcata 23940
ttcctccacg ccgccgacgt tgccagcgcg cgcgggtgcc accgccagcc caggtccggc 24000
cccagctgcc tccagggcgc gtcggcttgg ggcccagcgc aggtcagcgc ccgcgtcaaa 24060
gtaggactcg gcctctctat cgccgctgcc cgtgccagcc agggcccttt gcaggctgtg 24120
catcagctcg cggtcgctga gctcgcgccg ccggctcacg ctcacggcct tgtggatgcg 24180
ctcgttgcga taaacgccca ggtcgtcgct caaggtaagc accttcagcg ccatgcgcat 24240
gtagaacccc tcgatcttta cctccttgtc tatgggaacg taaggggtat ggtatatctt 24300
gcgggcgtaa aacttgccca ggctaagcat ggaatagttg atggcggcca ccttgtcagc 24360
caggctcaag ctgcgctcct gcaccactat gctctgcagg atgtttatca aatcgagcag 24420
ccagcggccc tcgggctcta ctatgtttag cagcgcatcc ctgaatgcct cgttgtccct 24480
gctgtgctgc actataagga acagctgcgc catgagcggc ttgctatttg ggttttgctc 24540
cagcgcgctt acaaagtccc acagatgcat cagtcctata gccacctcct cgcgcgccac 24600
aagcgtacgc acgtggttgt taaagctttt ttgaaagtta atctcctggt tcaccgtctg 24660
ctcgtatgcg gttaccaggt cggcggccgc cacgtgtgcg cgcgcgggac taatcccggt 24720
tcgcgcgtcg ggctcaaagt cctcctcgcg cagcaaccgc tcgcgattca ggccatgccg 24780
cagctcgcgc cctgcgtgga actttcgatc ccgcatctcc tcgggctcct ctccctcgcg 24840
gtcgcgaaac aggttctgcc gcggcacgta cgcctcacgc gtatcacgct tcagctgcac 24900
ccttgggtgc cgctcaggag agggcgctcc tagccgcgcc aggccctcgc cctcctccaa 24960
gtccaggtag tgccgggccc ggcgccgcgg gggttcgtaa tcaccatctg ctgccgcgtc 25020
aaccgcggat gtcgcccctc ctgacgcggt aggaggaggg gagggtgccc tgcatgtctg 25080
ccgctgctct tgctcttgcc gctgctgagg aggggggcgc atctgccgca gcaccggatg 25140
catctgggaa aagcaaaaaa ggggctcgtc cctgtttccg gaggaatttg caagcggggt 25200
cttgcatgac ggggaggcaa acccccgttc gccgcagtcc ggccggtccg agactcgaac 25260
cgggggtccc gcgactcaac ccttggaaaa taaccctccg gctacaggga gcgagccact 25320
taatgctttc gctttccagc ctaaccgctt acgctgcgcg cggccagtgg ccaaaaaagc 25380
tagcgcagca gccgccgcgc ctggaaggaa gccaaaagga gcactccccc gttgtctgac 25440
gtcgcacacc tgggttcgac acgcgggcgg taaccgcatg gatcacggcg gacggccgga 25500
tacggggctc gaaccccggt cgtccgccat gatacccttg cgaatttatc caccagacca 25560
cggaagagtg cccgcttaca ggctctcctt ttgcacgcta gagcgtcaac gattgcgcgc 25620
gcctgaccgg ccagagcgtc ccgaccatgg agcacttttt gccgctgcgc aacatctgga 25680
accgcgtccg cgactttccg cgcgcctcca ccaccgccgc cggcatcacc tggatgtcca 25740
ggtacatcta cggatatcat cgccttatgt tggaagatct cgcccccgga gccccggcca 25800
ccctacgctg gcccctctac cgccagccgc cgccgcactt tttggtggga taccagtacc 25860
tggtgcggac ttgcaacgac tacgtatttg actcgagggc ttactcgcgt ctcaggtaca 25920
ccgagctctc gcagccgggt caccagaccg ttaactggtc cgttatggcc aactgcactt 25980
acaccatcaa cacgggcgca taccaccgct ttgtggacat ggatgacttc cagtctaccc 26040
tcacgcaggt gcagcaggcc atattagccg agcgcgttgt cgccgaccta gccctgcttc 26100
agccgatgag gggcttcggg gtcacacgca tgggaggaag agggcgccac ctacggccaa 26160
actccgccgc cgccgcagcg atagatgcaa gagatgcagg acaagaggaa ggagaagaag 26220
aagtgccggt agaaaggctc atgcaagact actacaaaga cctgcgccga tgtcaaaacg 26280
aagcctgggg catggccgac cgcctgcgca ttcagcaggc cggacccaag gacatggtgc 26340
ttctgtcgac catccgccgt ctcaagaccg cctactttaa ttacatcatc agcagcacct 26400
ccgccagaaa caaccccgac cgccgcccgc tgccgcccgc cacggtgctc agcctacctt 26460
gcgactgtga ctggttagac gcctttctcg agaggttttc cgatccggtc gatgcggact 26520
cgctcaggtc cctcggcggc ggagtaccta cacaacaatt gttgagatgc atcgttagcg 26580
ccgtatccct gccgcatggc agccccccgc caacccataa ccgggacatg acgggcggcg 26640
tcttccaact gcgcccccgc gagaacggcc gcgccgtcac cgagaccatg cgccgtcgcc 26700
gcggggagat gatcgagcgc tttgtcgacc gcctcccggt gcgccgtcgt cgccgccgtg 26760
tcccccctcc cccaccgccg ccagaagaag aagaagggga ggcccttatg gaagaggaga 26820
ttgaagaaga agaagaggcc cctgtagcct ttgagcgcga ggtgcgcgac actgtcgccg 26880
agctcatccg tcttctggag gaggagttaa ccgtgtcggc gcgcaactcc cagtttttca 26940
acttcgccgt ggacttctac gaggccatgg agcgccttga ggccttgggg gatatcaacg 27000
aatccacgtt gcgacgctgg gttatgtact tcttcgtggc agaacacacc gccaccaccc 27060
tcaactacct ctttcagcgc ctgcgaaact acgccgtctt cgcccggcac gtggagctca 27120
atctcgcgca ggtggtcatg cgcgcccgcg atgccgaagg gggcgtggtc tacagccgcg 27180
tctggaacga gggaggcctc aacgccttct cgcagctcat ggcccgcatt tccaacgacc 27240
tcgccgccac cgtggagcga gccggacgcg gagatctcca ggaggaagag atcgagcagt 27300
tcatggccga gatcgcctat caagacaact caggagacgt gcaggagatt ttgcgccagg 27360
ccgccgtcaa cgacaccgaa attgattctg tcgaactctc tttcaggttc aagctcaccg 27420
ggcccgtcgt cttcacgcag aggcgccaga ttcaggagat caaccgccgc gtcgtcgcgt 27480
tcgccagcaa cctacgcgcg cagcaccagc tcctgcccgc gcgcggcgcc gacgtgcccc 27540
tgccccctct cccggcgggt ccggagcccc ccctacctcc gggggctcgc ccgcgtcacc 27600
gcttttagat gcatcatcca aggacacccc cgcggcccac cgcccgccgc gcggtaccgt 27660
agtcgcgccg cggggatgcg gcctcttgca agccatcgac gccgccacca accagcccct 27720
ggaaattagg tatcacctgg atctagcccg cgccctgacc cgtctatgcg aggtaaacct 27780
gcaggagctc ccgcctgacc tgacgccgcg ggagctccag accatggaca gctcccatct 27840
gcgcgatgtt gtcatcaagc tccgaccgcc gcgcgcggac atctggactt tgggctcgcg 27900
cggcgtggtg gtccgatcca ccgtaactcc cctcgagcag ccagacggtc aaggacaagc 27960
agccgaagta gaagaccacc agccaaaccc gccaggcgag gggctcaaat tcccactctg 28020
cttccttgtg cgcggtcgtc aggtcaacct cgtgcaggat gtacagcccg tgcaccgctg 28080
ccagtactgc gcacgttttt acaaaagcca gcacgagtgt tcggcccgtc gcagggactt 28140
ctactttcac cacatcaata gccactcctc caattggtgg cgggagatcc agttcttccc 28200
gatcggctcg catcctcgca ccgagcgtct ctttgtcacc tacgatgtag agacctatac 28260
ttggatgggg gcctttggga agcagctcgt gcccttcatg ctggtcatga agttcggcgg 28320
agatgagcct ctagtgactg ccgcgcgaga cctagccgcg aaccttggat gggaccgctg 28380
ggaacaagac ccgcttacct tctactgcat caccccagaa aaaatggcca taggtcgcca 28440
gtttaggacc tttcgcgacc acctgcaaat gctaatggcc cgtgacctgt ggagctcatt 28500
cgtcgcttcc aaccctcatc ttgcagactg ggccctttca gagcacgggc tcagctcccc 28560
tgaagagctc acctacgagg aacttaaaaa attgccttcc atcaagggca tcccgcgctt 28620
cttggaactt tacattgtgg gccacaacat caacggcttt gacgagatcg tgctcgccgc 28680
ccaggtaatt aacaaccgtt ccgaggtgcc gggacccttc cgcatcacac gcaactttat 28740
gcctcgcgcg ggaaagatac tcttcaacga tgtcaccttc gccctgccaa atccgcgttc 28800
caaaaagcgc acggactttt tgctctggga gcagggcgga tgcgacgaca ctgacttcaa 28860
ataccagtac ctcaaagtca tggtcaggga cacctttgcg ctcacccaca cctcgctccg 28920
gaaggccgcg caggcatacg cgctacccgt agaaaaggga tgctgcgcct accaggccgt 28980
caaccagttc tacatgctag gctcttaccg ttcggaggcc gacgggtttc cgatccaaga 29040
gtactggaaa gaccgcgaag agtttgtcct caaccgcgag ctgtggaaaa aaaagggaca 29100
ggataagtat gacatcatca aggaaaccct ggactactgc gccctagacg tgcaggtcac 29160
cgccgagctg gtcaacaagc tgcgcgactc ctacgcctcc ttcgtgcgtg acgcggtagg 29220
tctcacagac gccagcttca acgtcttcca gcgtccaacc atatcatcca actcacatgc 29280
catcttcagg cagatagtct tccgagcaga gcagcccgcc cgtagcaacc tcggtcccga 29340
cctcctcgct ccctcgcacg aactatacga ttacgtgcgc gccagcatcc gcggtggaag 29400
atgctaccct acatatcttg gaatactcag agagcccctc tacgtttacg acatttgcgg 29460
catgtacgcc tccgcgctca cccaccccat gccatggggt cccccactca acccatacga 29520
gcgcgcgctt gccgcccgcg catggcagca ggcgctagac ttgcaaggat gcaagataga 29580
ctacttcgac gcgcgcctgc tgcccggggt ctttaccgtg gacgcagacc ccccggacga 29640
gacgcagcta gaccccctac cgccattctg ctcgcgcaag ggcggccgcc tctgctggac 29700
caacgagcgc ctacgcggag aggtagccac cagcgttgac cttgtcaccc tgcacaaccg 29760
cggttggcgc gtgcacctgg tgcccgacga gcgcaccacc gtctttcccg aatggcggtg 29820
cgttgcgcgc gaatacgtgc agctaaacat cgcggccaag gagcgcgccg atcgcgacaa 29880
aaaccaaacc ctgcgctcca tcgccaagtt gctgtccaac gccctctacg ggtcgtttgc 29940
caccaagctt gacaacaaaa agattgtctt ttctgaccag atggatgcgg ccaccctcaa 30000
aggcatcacc gcgggccagg tgaatatcaa atcctcctcg tttttggaaa ctgacaatct 30060
tagcgcagaa gtcatgcccg cttttcagag ggagtactca ccccaacagc tggccctcgc 30120
agacagcgat gcggaagaga gtgaggacga acgcgccccc accccctttt atagcccccc 30180
ttcaggaaca cccggtcacg tggcctacac ctacaaacca atcaccttcc ttgatgccga 30240
agagggcgac atgtgtcttc acaccctgga gcgagtggac cccctagtgg acaacgaccg 30300
ctacccctcc cacttagcct ccttcgtgct ggcctggacg cgagcctttg tctcagagtg 30360
gtccgagttt ctatacgagg aggaccgcgg aacaccgctc gaggacaggc ctctcaagtc 30420
tgtatacggg gacacggaca gccttttcgt caccgagcgt ggacaccggc tcatggaaac 30480
cagaggtaag aaacgcatca aaaagcatgg gggaaacctg gtttttgacc ccgaacggcc 30540
agagctcacc tggctcgtgg aatgcgagac cgtctgcggg gcctgcggcg cggatgccta 30600
ctccccggaa tcggtatttc tcgcgcccaa gctctacgcc ctcaaaagtc tgcactgccc 30660
ctcgtgcggc gcctcctcca agggcaagct gcgcgccaag ggccacgccg cggaggggct 30720
ggactatgac accatggtca aatgctacct ggccgacgcg cagggcgaag accggcagcg 30780
cttcagcacc agcaggacca gcctcaagcg caccctggcc agcgcgcagc ccggagcgca 30840
ccccttcacc gtgacccaga ctacgctgac gaggaccctg cgcccgtgga aagacatgac 30900
cctggcccgt ctggacgagc accgactact gccgtacagc gaaagccgcc ccaacccgcg 30960
aaacgaggag atatgctgga tcgagatgcc gtagagcagg tgaccgagct gtgggaccgc 31020
ctggaactgc ttggtcaaac gctcaaaagc atgcctacgg cggacggtct caaaccgttg 31080
aaaaactttg cttccttgca agaactgcta tcgctgggcg gcgagcgcct tctggcggat 31140
ttggtcaggg aaaacatgcg agtcagggac atgcttaacg aagtggcccc cctgctcagg 31200
gatgacggca gctgcagctc tcttaactac cagttgcagc cggtaatagg tgtgatttac 31260
gggcccaccg gctgcggtaa gtcgcagctg ctcaggaacc tgctttcttc ccagctgatc 31320
tcccctaccc cggaaaccgt tttcttcatc gccccgcagg tagacatgat ccccccatct 31380
gaactcaaag cgtgggaaat gcaaatctgt gagggtaact acgcccctgg gccggatgga 31440
accattatac cgcagtctgg caccctccgc ccgcgctttg taaaaatggc ctatgacgat 31500
ctcatcctgg aacacaacta tgacgttagt gatcccagaa atatcttcgc ccaggccgcc 31560
gcccgtgggc ccattgccat cattatggac gaatgcatgg aaaatcttgg aggtcacaag 31620
ggcgtctcca agttcttcca cgcatttcct tctaagctac atgacaaatt tcccaagtgc 31680
accggataca ctgtgctggt ggttctgcac aacatgaatc cccggaggga tatggctggg 31740
aacatagcca acctaaaaat acagtccaag atgcatctca tatccccacg tatgcaccca 31800
tcccagctta accgctttgt aaacacttac accaagggcc tgcccctggc aatcagcttg 31860
ctactgaaag acatttttag gcaccacgcc cagcgctcct gctacgactg gatcatctac 31920
aacaccaccc cgcagcatga agctctgcag tggtgctacc tccaccccag agacgggctt 31980
atgcccatgt atctgaacat ccagagtcac ctttaccacg tcctggaaaa aatacacagg 32040
accctcaacg accgagaccg ctggtcccgg gcctaccgcg cgcgcaaaac ccctaaataa 32100
agacagcaag acacttgctt gatccaaatc caaacagagt ctggtttttt atttatgttt 32160
taaaccgcat tgggagggga ggaagccttc agggcagaaa cctgctggcg cagatccaac 32220
agctgctgag aaacgacatt aagttcccgg gtcaaagaat ccaattgtgc caaaagagcc 32280
gtcaacttgt catcgcgggc ggatgaacgg gaagctgcac tgcttgcaag cgggctcagg 32340
aaagcaaagt cagtcacaat cccgcgggcg gtggctgcag cggctgaagc ggcggcggag 32400
gctgcagtct ccaacggcgt tccagacacg gtctcgtagg tcaaggtagt agagtttgcg 32460
ggcaggacgg ggcgaccatc aatgctggag cccatcacat tctgacgcac cccggcccat 32520
gggggcatgc gcgttgtcaa atatgagctc acaatgcttc catcaaacga gttggtgctc 32580
atggcggcgg cggctgctgc aaaacagata caaaactaca taagaccccc accttatata 32640
ttctttccca cccttgtatc tgctccctgc ttgtgtgttg gaggtcgctg agtagtgcgc 32700
gagcaaaatt taagctacaa caaggcaagg cttgaccgac aattgcatga agaatctgct 32760
tagggttagg cgttttgcgc tgcttcgcga tgtacgggcc agatatacgc gttgacattg 32820
attattgact agttattaat agtaatcaat tacggggtca ttagttcata gcccatatat 32880
ggagttccgc gttacataac ttacggtaaa tggcccgcct ggctgaccgc ccaacgaccc 32940
ccgcccattg acgtcaataa tgacgtatgt tcccatagta acgccaatag ggactttcca 33000
ttgacgtcaa tgggtggagt atttacggta aactgcccac ttggcagtac atcaagtgta 33060
tcatatgcca agtacgcccc ctattgacgt caatgacggt aaatggcccg cctggcatta 33120
tgcccagtac atgaccttat gggactttcc tacttggcag tacatctacg tattagtcat 33180
cgctattacc atggtgatgc ggttttggca gtacatcaat gggcgtggat agcggtttga 33240
ctcacgggga tttccaagtc tccaccccat tgacgtcaat gggagtttgt tttggcacca 33300
aaatcaacgg gactttccaa aatgtcgtaa caactccgcc ccattgacgc aaatgggcgg 33360
taggcgtgta cggtgggagg tctatataag cagagctctc tggctaacta gagaacccac 33420
tgcttactgg cttatcgaaa ttaatacgac tcactatagg gagacccaag ctggctagcg 33480
tttaaactta agcttggtac cgagctcgga tccgccacca tggtggagac ccagatggac 33540
aagctggggt tcctgctgaa ccacatcggc aagcaggtga ccaccaaggt gctgagcaac 33600
gcccacatca cccagaccat gaaggaaatc atcctggaga atcacagcgt ggacggcggc 33660
gccgccaaga acgtgagcaa gggcaagagc agccccaaag aaaaaaagca ctggaccgag 33720
ttcgagagct gggagcagct gagcaagagc aagcgcagct tcaaggagta ctgggccgag 33780
cgcaacgaga tcgtgaacac cctgctgctg aactgggaca acgtgcgcgg cgccatcaag 33840
aagttcctgg acgacgaccg cgagtggtgc ggccggatca acatgatcaa cggcgtgccc 33900
gagatcgtgg agatcatccc cagcccctac cgcgccggcg agaacatcta cttcggcagc 33960
gaggccatga tgcccgccga catctacagc cgcgtggcca acaagcccgc catgttcgtg 34020
ttccacaccc accccaacct gggcagctgc tgcggcggca tgcccagcat ctgcgacatc 34080
agcaccaccc tgcgctacct gctgatgggc tggaccgccg gccacctgat catcagcagc 34140
aaccaggtgg gcatgctgac cgtggacaag cgcatcatcg tggacctgtg ggccaacgag 34200
aacccccgct ggctgatggc ccagaagatc ctggacatct tcatgatgct gaccagccgc 34260
cgcagcctgg tgaacccctg gaccctgcgc gacctgaaga agatcctgca ggactacggc 34320
atcgagtaca tcatcttccc cagcaacgac ttcttcatct acgaggacga gcgcctgctg 34380
atgttcagca agaagtggac caacttcttc accctgcacg agctgctgga cgacctggag 34440
accatcgaga ccaaggccag cagcaccacc tacccctacg acgtgcccga ctacgcctga 34500
gatatcggac tataaggatg atgacgacaa ataatagcaa ttcctcgacg actgcatagg 34560
gttacccccc tctccctccc ccccccctaa cgttactggc cgaagccgct tggaataagg 34620
ccggtgtgcg tttgtctata tgttattttc caccatattg ccgtcttttg gcaatgtgag 34680
ggcccggaaa cctggccctg tcttcttgac gagcattcct aggggtcttt cccctctcgc 34740
caaaggaatg caaggtctgt tgaatgtcgt gaaggaagca gttcctctgg aagcttcttg 34800
aagacaaaca acgtctgtag cgaccctttg caggcagcgg aaccccccac ctggcgacag 34860
gtgcctctgc ggccaaaagc cacgtgtata agatacacct gcaaaggcgg cacaacccca 34920
gtgccacgtt gtgagttgga tagttgtgga aagagtcaaa tggctctcct caagcgtatt 34980
caacaagggg ctgaaggatg cccagaaggt accccattgt atgggatctg atctggggcc 35040
tcggtgcaca tgctttacat gtgtttagtc gaggttaaaa aacgtctagg ccccccgaac 35100
cacggggacg tggttttcct ttgaaaaaca cgatgataat ggccacaacc gcggccgcat 35160
gaacaagaag atcatcgtga tgatggccct gctgcacaag gagaagctga tcgagtgcat 35220
ctaccacgag ctggaaaacg gcggaaccat cctgctgctg accaagaaca tcgtggtctc 35280
cgagatcagc tacattggca acacctacaa atacttcacc ttcaacgaca accacgacct 35340
catcagcaaa gaagacctga agggcgccac ctccaaaaac atcgccaaaa tgatctacaa 35400
ctggatcatc aaaaaccccc agaacaacaa gatctggtcc ggcgaacccc gcacccagat 35460
ctacttcgag aacgacctgt accacaccaa ctacaaccac aaatgcatca aggacttctg 35520
gaacgtgagc acctccgtgg gcccccacat ctttaacgac cgctccatct ggtgcaccaa 35580
gtgcaccagc ttttacccct tcaccaacat catgtccccc aacatcttcc agcaccatca 35640
ccaccaccac tgactcgagt ctagagggcc cgtttaaacc cgctgatcac ttcgcccacc 35700
ccaacttgtt tattgcagct tataatggtt acaaataaag caatagcatc acaaatttca 35760
caaataaagc atttttttca ctgcattcta gttgtggttt gtccaaactc atcaatgtat 35820
cttatcatgt ctggatcggt gatcaccgat cccggaaaaa cacctgggcg agtctccacg 35880
taaacggtca aagtccccgc gggccctaga caaatattac gcgctatgag taacacaaaa 35940
ttattcagat ttcacttcct cttattcagt tttcccgcga aaatggccaa atcttactcg 36000
gttacgccca aatttactac aacatccgcc taaaaccgcg cgaaaattgt cacttcctgt 36060
gtacaccggc gcacaccaaa aacgtcactt ttgccacatc cgtcgcttac atgtgttccg 36120
ccacacttgc aacatcacac ttccgccaca ctactacgtc acccgccccg ttcccacgcc 36180
ccgcgccacg tcacaaactc caccccctca ttatcatatt ggcttcaatc caaaataagg 36240
tatattattg atgatgataa gctatcaaac atgagaattc ggcgcgccat tatcatttgc 36300
gggtcctttc cggcgatccg ccttgttacg gggcggcgac ctcgcgggtt ttcgctattt 36360
atgaaaattt tccggtttaa ggcgtttccg ttcttcttcg tcataactta atgtttttat 36420
ttaaaatacc ctctgaaaag aaaggaaacg acaggtgctg aaagcgagct ttttggcctc 36480
tgtcgtttcc tttctctgtt tttgtccgtg gaatgaacaa cgcgcctcac tgcccgcttt 36540
ccagtcggga aacctgtcgt gccagctgca ttaatgaatc ggccaacgcg cggggagagg 36600
cggtttgcgt attgggcgcc agggtggttt ttcttttcac cagtgagacg ggcaacagct 36660
gattgccctt caccgcctgg ccctgagaga gttgcagcaa gcggtccacg ctggtttgcc 36720
ccagcaggcg aaaatcctgt ttgatggtgg ttgacggcgg gatataacat gagctgtctt 36780
cggtatcgtc gtatcccact accgagatat ccgcaccaac gcgcagcccg gactcggtaa 36840
tggcgcgcat tgcgcccagc gccatctgat cgttggcaac cagcatcgca gtgggaacga 36900
tgccctcatt cagcatttgc atggtttgtt gaaaaccgga catggcactc cagtcgcctt 36960
cccgttccgc tatcggctga atttgattgc gagtgagata tttatgccag ccagccagac 37020
gcagacgcgc cgagacagaa cttaatgggc ccgctaacag cgcgatttgc tggtgaccca 37080
atgcgaccag atgctccacg cccagtcgcg taccgtcttc atgggagaaa ataatactgt 37140
tgatgggtgt ctggtcagag acatcaagaa ataacgccgg aacattagtg caggcagctt 37200
ccacagcaat ggcatcctgg tcatccagcg gatagttaat gatcagccca ctgacgcgtt 37260
gcgcgagaag attgtgcacc gccgctttac aggcttcgac gccgcttcgt tctaccatcg 37320
acaccaccac gctggcaccc agttgatcgg cgcgagattt aatcgccgcg acaatttgcg 37380
acggcgcgtg cagggccaga ctggaggtgg caacgccaat cagcaacgac tgtttgcccg 37440
ccagttgttg tgccacgcgg ttgggaatgt aattcagctc cgccatcgcc gcttccactt 37500
tttcccgcgt tttcgcagaa acgtggctgg cctggttcac cacgcgggaa acggtctgat 37560
aagagacacc ggcatactct gcgacatcgt ataacgttac tggtttcaca ttcaccaccc 37620
tgaattgact ctcttccggg cgctatcatg ccataccgcg aaaggttttg caccattcac 37680
ctgcacaccg cgccttaatt aagaattccg tgtattctat agtgtcacct aaatcgtatg 37740
tgtatgatac ataaggttat gtattaattg tagccgcgtt ctaacgacaa tatgtacaag 37800
cctaattgtg tagcatctgg cttactgaag cagaccctat catctctctc gtaaactgcc 37860
gtcagagtcg gtttggttgg acgaaccttc tgagtttctg gtaacgccgt tccgcacccc 37920
ggaaatggtc agcgaaccaa tcagcagggt catcgctagc cagatcctct acgccggacg 37980
catcgtggcc aaaaggatct aggtgaagat cctttttgat aatctcatga ccaaaatccc 38040
ttaacgtgag ttttcgttcc actgagcgtc agacccctta ataagatgat cttcttgaga 38100
tcgttttggt ctgcgcgtaa tctcttgctc tgaaaacgaa aaaaccgcct tgcagggcgg 38160
tttttcgaag gttctctgag ctaccaactc tttgaaccga ggtaactggc ttggaggagc 38220
gcagtcacca aaacttgtcc tttcagttta gccttaaccg gcgcatgact tcaagactaa 38280
ctcctctaaa tcaattacca gtggctgctg ccagtggtgc ttttgcatgt ctttccgggt 38340
tggactcaag acgatagtta ccggataagg cgcagcggtc ggactgaacg gggggttcgt 38400
gcatacagtc cagcttggag cgaactgcct acccggaact gagtgtcagg cgtggaatga 38460
gacaaacgcg gccataacag cggaatgaca ccggtaaacc gaaaggcagg aacaggagag 38520
cgcacgaggg agccgccagg gggaaacgcc tggtatcttt atagtcctgt cgggtttcgc 38580
caccactgat ttgagcgtca gatttcgtga tgcttgtcag gggggcggag cctatggaaa 38640
aacggctttg ccgcggccct ctcacttccc tgttaagtat cttcctggca tcttccagga 38700
aatctccgcc ccgttcgtaa gccatttccg ctcgccgcag tcgaacgacc gagcgtagcg 38760
agtcagtgag cgaggaagcg gaatatatcc tgtatcacat attctgctga cgcaccggtg 38820
cagccttttt tctcctgcca catgaagcac ttcactgaca ccctcatcag tgccaacata 38880
gtaagccagt atacactccg ctagcgctga ggtctgcctc gtgaagaagg tgttgctgac 38940
tcataccagg cctgaatcgc cccatcatcc agccagaaag tgagggagcc acggttgatg 39000
agagctttgt tgtaggtgga ccagttggtg attttgaact tttgctttgc cacggaacgg 39060
tctgcgttgt cgggaagatg cgtgatctga tccttcaact cagcaaaagt tcgatttatt 39120
caacaaagcc acgttgtgtc tcaaaatctc tgatgttaca ttgcacaaga taaaaatata 39180
tcatcatgaa caataaaact gtctgcttac ataaacagta atacaagggg tgttatgagc 39240
catattcaac gggaaacgtc ttgctcgagg ccgcgattaa attccaacat ggatgctgat 39300
ttatatgggt ataaatgggc tcgcgataat gtcgggcaat caggtgcgac aatctatcga 39360
ttgtatggga agcccgatgc gccagagttg tttctgaaac atggcaaagg tagcgttgcc 39420
aatgatgtta cagatgagat ggtcagacta aactggctga cggaatttat gcctcttccg 39480
accatcaagc attttatccg tactcctgat gatgcatggt tactcaccac tgcgatcccc 39540
gggaaaacag cattccaggt attagaagaa tatcctgatt caggtgaaaa tattgctgat 39600
gcgctggcag tgttcctgcg ccggttgcat tcgattcctg tttgtaattg tccttttaac 39660
agcgatcgcg tatttcgtct cgctcaggcg caatcacgaa tgaataacgg tttggttgat 39720
gcgagtgatt ttgatgacga gcgtaatggc tggcctgttg aacaagtctg gaaagaaatg 39780
cata 39784
<210> 7
<211> 1023
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 7
atcgtttgtg ttatgtttca acgtgtttat ttttcaattg cagaaaattt caagtcattt 60
ttcattcagt agtatagccc caccaccaca tagcttatac agatcaccgt accttaatca 120
aactcacaga accctagtct acatgggggt agagtcataa tcgtgcatca ggatagggcg 180
gtggtgctgc agcagcgcgc gaataaactg ctgccgccgc cgctccgtcc tgcaggaata 240
caacatggca gtggtctcct cagcgatgat tcgcaccgcc cgcagcataa ggcgccttgt 300
cctccgggca cagcagcgca ccctgatctc acttaaatca gcacagtaac tgcagcacag 360
caccacaata ttgttcaaaa tcccacagtg caaggcgctg tatccaaagc tcatggcggg 420
gaccacagaa cccacgtggc catcatacca caagcgcagg tagattaagt ggcgacccct 480
cataaacacg ctggacataa acattacctc ttttggcatg ttgtaattca ccacctcccg 540
gtaccatata aacctctgat taaacatggc gccatccacc accatcctaa accagctggc 600
caaaacctgc ccgccggcta tacactgcag ggaaccggga ctggaacaat gacagtggag 660
agcccaggac tcgtaaccat ggatcatcat gctcgtcatg atatcaatgt tggcacaaca 720
caggcacacg tgcatacact tcctcaggat tacaagctcc tcccgcgtta gaaccatatc 780
ccagggaaca acccattcct gaatcagcgt aaatcccaca ctgcagggaa gacctcgcac 840
gtaactcacg ttgtgcattg tcaaagtgtt acattcgggc agcagcggat gatcctccag 900
tatggtagcg cgggtttctg tctcaaaagg aggtagacga tccctactgt acggagtgcg 960
ccgagacaac cgagatcgtg ttggtcgtag tgtcatgcca aatggaacgc cggacgtagt 1020
cat 1023
<210> 8
<211> 644
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 8
ggactataag gatgatgacg acaaataata gcaattcctc gacgactgca tagggttacc 60
cccctctccc tccccccccc ctaacgttac tggccgaagc cgcttggaat aaggccggtg 120
tgcgtttgtc tatatgttat tttccaccat attgccgtct tttggcaatg tgagggcccg 180
gaaacctggc cctgtcttct tgacgagcat tcctaggggt ctttcccctc tcgccaaagg 240
aatgcaaggt ctgttgaatg tcgtgaagga agcagttcct ctggaagctt cttgaagaca 300
aacaacgtct gtagcgaccc tttgcaggca gcggaacccc ccacctggcg acaggtgcct 360
ctgcggccaa aagccacgtg tataagatac acctgcaaag gcggcacaac cccagtgcca 420
cgttgtgagt tggatagttg tggaaagagt caaatggctc tcctcaagcg tattcaacaa 480
ggggctgaag gatgcccaga aggtacccca ttgtatggga tctgatctgg ggcctcggtg 540
cacatgcttt acatgtgttt agtcgaggtt aaaaaacgtc taggcccccc gaaccacggg 600
gacgtggttt tcctttgaaa aacacgatga taatggccac aacc 644
<210> 9
<211> 66
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 9
ggaagcggag ctactaactt cagcctgctg aagcaggctg gagacgtgga ggagaaccct 60
ggacct 66
<210> 10
<211> 2796
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 10
gaattccgtg tattctatag tgtcacctaa atcgtatgtg tatgatacat aaggttatgt 60
attaattgta gccgcgttct aacgacaata tgtacaagcc taattgtgta gcatctggct 120
tactgaagca gaccctatca tctctctcgt aaactgccgt cagagtcggt ttggttggac 180
gaaccttctg agtttctggt aacgccgttc cgcaccccgg aaatggtcag cgaaccaatc 240
agcagggtca tcgctagcca gatcctctac gccggacgca tcgtggccgg catcaccggc 300
gccacaggtg cggttgctgg cgcctatatc gccgacatca ccgatgggga agatcgggct 360
cgccacttcg ggctcatgag cgcttgtttc ggcgtgggta tggtggcagg ccccgtggcc 420
gggggactgt tgggcgccat ctccttgcat gcaccattcc ttgcggcggc ggtgctcaac 480
ggcctcaacc tactactggg ctgcttccta atgcaggagt cgcataaggg agagcgtcga 540
tatggtgcac tctcagtaca atctgctctg atgccgcata gttaagccag ccccgacacc 600
cgccaacacc cgctgacgcg ccctgacggg cttgtctgct cccggcatcc gcttacagac 660
aagctgtgac cgtctccggg agctgcatgt gtcagaggtt ttcattcacc gtcatcaccg 720
aaacgcgcga gacgaaaggg cctcgtgata cgcctatttt tataggttaa tgtcatgata 780
ataatggttt cttagacgtc aggtggcact tttcggggaa atgtgcgcgg aacccctatt 840
tgtttatttt tctaaataca ttcaaatatg tatccgctca tgagacaata accctgataa 900
atgcttcaat aatattgaaa aaggaagagt atgagtattc aacatttccg tgtcgccctt 960
attccctttt ttgcggcatt ttgccttcct gtttttgctc acccagaaac gctggtgaaa 1020
gtaaaagatg ctgaagatca gttgggtgca cgagtgggtt acatcgaact ggatctcaac 1080
gtaagatcct tgagagtttt cgccccgaag aacgttttcc aatgatgagc acttttaaag 1140
ttctgctatg tggcgcggta ttatcccgta ttgacgccgg gcaagagcaa ctcggtcgcc 1200
gcatacacta ttctcagaat gacttggttg agtactcacc agtcacagaa aagcatctta 1260
cggatggcat gacagtaaga gaattatgca gtgctgccat aaccatgagt gataacactg 1320
cggccaactt acttctgaca acgatcggag gaccgaagga gctaaccgct tttttgcaca 1380
acatggggga tcatgtaact cgccttgatc gttgggaacc ggagctgaat gaagccatac 1440
caaacgacga gcgtgacacc acgatgcctg tagcaatggc aacaacgttg cgcaaactat 1500
taactggcga actacttact ctagcttccc ggcaacaatt aatagactgg atggaggcgg 1560
ataaagttgc aggaccactt ctgcgctcgg cccttccggc tggctggttt attgctgata 1620
aatctggagc cggtgagcgt gggtctcgcg gtatcattgc agcactgggg ccagatggta 1680
agccctcccg tatcgtagtt atctacacga cggggagtca ggcaactatg gatgaacgaa 1740
atagacagat cgctgagata ggtgcctcac tgattaagca ttggtaactg tcagaccaag 1800
tttactcata tatactttag attgatttaa aacttcattt ttaatttaaa aggatctagg 1860
tgaagatcct ttttgataat ctcatgacca aaatccctta acgtgagttt tcgttccact 1920
gagcgtcaga ccccgtagaa aagatcaaag gatcttcttg agatcctttt tttctgcgcg 1980
taatctgctg cttgcaaaca aaaaaaccac cgctaccagc ggtggtttgt ttgccggatc 2040
aagagctacc aactcttttt ccgaaggtaa ctggcttcag cagagcgcag ataccaaata 2100
ctgtccttct agtgtagccg tagttaggcc accacttcaa gaactctgta gcaccgccta 2160
catacctcgc tctgctaatc ctgttaccag tggctgctgc cagtggcgat aagtcgtgtc 2220
ttaccgggtt ggactcaaga cgatagttac cggataaggc gcagcggtcg ggctgaacgg 2280
ggggttcgtg cacacagccc agcttggagc gaacgaccta caccgaactg agatacctac 2340
agcgtgagct atgagaaagc gccacgcttc ccgaagggag aaaggcggac aggtatccgg 2400
taagcggcag ggtcggaaca ggagagcgca cgagggagct tccaggggga aacgcctggt 2460
atctttatag tcctgtcggg tttcgccacc tctgacttga gcgtcgattt ttgtgatgct 2520
cgtcaggggg gcggagccta tggaaaaacg ccagcaacgc ggccttttta cggttcctgg 2580
ccttttgctg gccttttgct cacatgttct ttcctgcgtt atcccctgat tctgtggata 2640
accgtattac cgcctttgag tgagctgata ccgctcgccg cagccgaacg accgagcgca 2700
gcgagtcagt gagcgaggaa gcggaagagc gcccaatacg caaaccgcct ctccccgcgc 2760
gttggccgat tcattaatgc agctggctta tcgaaa 2796
<210> 11
<211> 1722
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 11
ttttaaaaga aaagggggga ttggggggta cagtgcaggg gaaagaatag tagacataat 60
agcaacagac atacaaacta aagaattaca aaaacaaatt acaaaattca aaattttatc 120
gtactagtgg atctgcgatc gctccggtgc ccgtcagtgg gcagagcgca catcgcccac 180
agtccccgag aagttggggg gaggggtcgg caattgaacg ggtgcctaga gaaggtggcg 240
cggggtaaac tgggaaagtg atgtcgtgta ctggctccgc ctttttcccg agggtggggg 300
agaaccgtat ataagtgcag tagctcccta tcagtgatag agatctccct atcagtgata 360
gagattcgcc gtgaacgttc tttttcgcaa cgggtttgcc gccagaacac agctgaagct 420
tcgaggggct cgcatctctc cttcacgcgc ccgccgccct acctgaggcc gccatccacg 480
ccggttgagt cgcgttctgc cgcctcccgc ctgtggtgcc tcctgaactg cgtccgccgt 540
ctaggtaagt ttaaagctca ggtcgagacc gggcctttgt ccggcgctcc cttggagcct 600
acctagactc agccggctct ccacgctttg cctgaccctg cttgctcaac tctacgtctt 660
tgtttcgttt tctgttctgc gccgttacag atccaagctg tgaccggcgc ctacggatcc 720
gccaccatgg tgagcaaggg cgaggagctg ttcaccgggg tggtgcccat cctggtcgag 780
ctggacggcg acgtaaacgg ccacaagttc agcgtgtccg gcgagggcga gggcgatgcc 840
acctacggca agctgaccct gaagttcatc tgcaccaccg gcaagctgcc cgtgccctgg 900
cccaccctcg tgaccaccct gacctacggc gtgcagtgct tcagccgcta ccccgaccac 960
atgaagcagc acgacttctt caagtccgcc atgcccgaag gctacgtcca ggagcgcacc 1020
atcttcttca aggacgacgg caactacaag acccgcgccg aggtgaagtt cgagggcgac 1080
accctggtga accgcatcga gctgaagggc atcgacttca aggaggacgg caacatcctg 1140
gggcacaagc tggagtacaa ctacaacagc cacaacgtct atatcatggc cgacaagcag 1200
aagaacggca tcaaggtgaa cttcaagatc cgccacaaca tcgaggacgg cagcgtgcag 1260
ctcgccgacc actaccagca gaacaccccc atcggcgacg gccccgtgct gctgcccgac 1320
aaccactacc tgagcaccca gtccgccctg agcaaagacc ccaacgagaa gcgcgatcac 1380
atggtcctgc tggagttcgt gaccgccgcc gggatcactc tcggcatgga cgagctgtac 1440
aagtaactcg agtctagagg gcccgtttaa acccgctgat cagcctcgat aatcatctct 1500
tgtacatgtc ccactgttca agcctccaag ctgtgccttg ggtggctttg gggcatggac 1560
attgaccctt ataaagaatt tggagctact gtggagttac tctcgttttt gccttctgac 1620
ttctttcctt ccgtcagaga tctcctagac accgcctcag ctctgtatcg agaagcctta 1680
gagtctcctc ttctgaggcg gaaagaacca gctggggctc ta 1722
<210> 12
<211> 957
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 12
gtatctgctc cctgcttgtg tgttggaggt cgctgagtag tgcgcgagca aaatttaagc 60
tacaacaagg caaggcttga ccgacaattg catgaagaat ctgcttaggg ttaggcgttt 120
tgcgctgctt cgcgatgtac gggccagata tacgcgttga cattgattat tgactagtta 180
ttaatagtaa tcaattacgg ggtcattagt tcatagccca tatatggagt tccgcgttac 240
ataacttacg gtaaatggcc cgcctggctg accgcccaac gacccccgcc cattgacgtc 300
aataatgacg tatgttccca tagtaacgcc aatagggact ttccattgac gtcaatgggt 360
ggagtattta cggtaaactg cccacttggc agtacatcaa gtgtatcata tgccaagtac 420
gccccctatt gacgtcaatg acggtaaatg gcccgcctgg cattatgccc agtacatgac 480
cttatgggac tttcctactt ggcagtacat ctacgtatta gtcatcgcta ttaccatggt 540
gatgcggttt tggcagtaca tcaatgggcg tggatagcgg tttgactcac ggggatttcc 600
aagtctccac cccattgacg tcaatgggag tttgttttgg caccaaaatc aacgggactt 660
tccaaaatgt cgtaacaact ccgccccatt gacgcaaatg ggcggtaggc gtgtacggtg 720
ggaggtctat ataagcagag ctctctggct aactagagaa cccactgctt actggcttat 780
cgaaattaat acgactcact atagggagac ccaagctggc tagcgtttaa acttaagctt 840
ggtaccgagc tcggatccac tagtccagtg tggtggaatt ctgcagatat ccagcacagt 900
ggcggccgct cgagtctaga gggcccgttt aaacccgctg atcacttcgc ccacccc 957
<210> 13
<211> 147
<212> DNA
<213> Artificial sequence (Artificial Sequence)
<400> 13
aacttgttta ttgcagctta taatggttac aaataaagca atagcatcac aaatttcaca 60
aataaagcat ttttttcact gcattctagt tgtggtttgt ccaaactcat caatgtatct 120
tatcatgtct gtataccgtc gacctct 147

Claims (10)

1. The African swine fever virus vaccine is characterized in that the vaccine is obtained by constructing a recombinant adenovirus vector for coexpression of four antigen genes of African swine fever virus and packaging the recombinant adenovirus vector by 293TD37 cells;
the four antigen genes are F317L, A151R, P and pp62 respectively, wherein F317L and A151R are expressed in an E1 region, P34 and pp62 are expressed in an E4 region, and the four antigen genes are co-expressed in a recombinant adenovirus vector pAd5LCL 3; constructing four antigen gene coexpression recombinant adenovirus vectors;
wherein, the recombinant adenovirus vector is packaged by 293TD37 cells constructed by pcDNA3.1+ (hyg) -ORF6-IRES-DBP, and the cell strain preservation number of the 293TD37 cells is: CCTCC NO. C201996, preserved in China center for type culture Collection;
the nucleotide sequences of F317L, A151R, P, pp62 and pAd5LCL3 are shown as Seq ID No.1, seq ID No.2, seq ID No.3, seq ID No.4 and Seq ID No.5 in the sequence table.
2. A method for constructing a recombinant adenovirus vector co-expressed with four antigen genes of african swine fever virus according to claim 1, comprising the steps of:
1) The E1 gene of the adenovirus circular vector plasmid is knocked out by using CRISPR/cas9, a SwaI enzyme cutting site is introduced, the fused fragment and the vector are subjected to seamless cloning, the E3 gene is knocked out by using CRISPR/cas9, and then the adenovirus circular vector plasmid pAd5 with the E1 and E3 genes deleted is obtained by adopting a seamless cloning mode for connection;
2) Then, knocking out the E4 gene of the adenovirus circular vector plasmid pAd5 by using CRISPR/cas9, amplifying by using PCR, introducing an I-sceI enzyme cutting site, and obtaining adenovirus vector plasmid pAd5 delta E4 with deleted E1, E3 and E4 genes by using a seamless cloning method;
3) Knocking out the E2a gene of adenovirus circular vector plasmid pAd5 delta E4 by using CRISPR/cas9, placing an ORF6/7 expression cassette of an E4 region at the sequence position of the knocked-out E2a region, and obtaining adenovirus vector plasmid pAd5LCL3 with deleted E1, E3, E4 and E2a genes by using a seamless cloning method;
4) Constructing an adenovirus E1 region shuttle plasmid pS5E1, and respectively connecting the adenovirus E1 region shuttle plasmid pS5E1-F317L-IRES-A151R with F317L, IRES and A151R gene fragments through DNA ligase to construct an African swine fever adenovirus 5 type vector E1 region shuttle plasmid pS5E1-F317L-IRES-A151R;
5) Constructing an adenovirus E4 region shuttle plasmid pS5E4-EGFP, obtaining a P34-2A-pp62 gene fragment by fusion PCR technology through the genes P34 and 2A, pp, and deleting the EGFP by enzyme cutting the shuttle plasmid pS5E4-EGFP, and connecting the EGFP with the P34-2A-pp62 through DNA ligase to construct an African swine fever adenovirus 5 type vector E4 region shuttle plasmid pS5E4-P34-2A-pp62;
6) Homologous recombination is carried out on the shuttle plasmid pS5E1-F317L-IRES-A151R and the adenovirus vector plasmid pAd5LCL3 to obtain adenovirus vector plasmid pAd5LCL3-F317L-IRES-A151R;
7) The shuttle plasmid pS5E4-P34-2A-pp62 and an adenovirus vector plasmid pAd5LCL3-F317L-IRES-A151R are subjected to homologous recombination to obtain a recombinant adenovirus vector co-expressed by four antigen genes, wherein the nucleotide sequence of the recombinant adenovirus vector co-expressed by the four antigen genes is shown as a sequence table of Seq ID No. 6.
3. The method according to claim 2, wherein the adenovirus circular vector plasmid of step 1) is derived from amplifying wild-type human adenovirus type 5 virus in a549 cells, collecting and concentrating the virus solution, extracting adenovirus type 5 genome by HirtVirual DNA Extract method, constructing linear adenovirus type 5 genome into circular adenovirus circular vector plasmid by cosmid method.
4. The method according to claim 2, wherein the nucleotide sequence of the ORF6/7 expression cassette gene of step 3) is shown as Seq ID No.7 in the sequence listing; the nucleotide sequence of the IRES in the step 4) is shown as a Seq ID No.8 in a sequence table; the nucleotide sequence of the 2A in the step 5) is shown as a Seq ID No.9 in a sequence table.
5. The method of claim 2, wherein the shuttle plasmid pS5E1 backbone of step 4) employs a puc origin, an amp base element, ad5 left arm ITR partial sequence, right arm PIX, PIVa2 partial sequence, and CMV-MCS SV40 early polyA; the skeleton of the E4 region shuttle plasmid pS5E4-EGFP adopts puc origin and amp basic elements, the Ad5E4 region left arm ITR sequence, the right arm partial fiber gene sequence and the EF1 alpha-EGFP-HBV polyA gene; the nucleotide sequences of the basic elements of the puc origin and the amp are shown as SEQ ID NO.10 in the sequence table, and the nucleotide sequence of the EF1 alpha-EGFP-HBV polyA gene is shown as SEQ ID NO.11 in the sequence table.
6. The method of claim 2, wherein step 6) the shuttle plasmid pS5E1-F317L-IRES-A151R is homologously recombined with the adenovirus vector plasmid pAd5LCL3 by enzyme digestion of the shuttle plasmid pS5E1-F317L-IRES-A151R and the adenovirus vector plasmid pAd5LCL3 with PacI and SwaI, dephosphorylation of the enzyme digestion product, gel recovery of vector and fragment with OMEGA Ultra-Sep Gel Extraction Kit, plating of the transformed product, picking colonies, and XhoI enzyme digestion verification.
7. The method of claim 2, wherein step 7) the shuttle plasmid pS5E4-P34-2A-pp62 is subjected to homologous recombination with the adenovirus vector plasmid pAd5LCL3-F317L-IRES-A151R by digestion of the shuttle plasmid pS5E4-P34-2A-pp62 and the adenovirus vector plasmid pAd5LCL3-F317L-IRES-A151R with PacI and I-sceI, dephosphorylation of the digested product, gel recovery of the vector and fragments with OMEGA Ultra-Sep Gel Extraction Kit, plating of the transformed product, picking colonies, and XhoI digestion verification.
8. A packaging method of a recombinant adenovirus vector, which is characterized in that the recombinant adenovirus vector co-expressed by four antigen genes of African swine fever virus according to claim 1 is cut by PacI, and a linearized plasmid is used for transfection; 293TD37 cells constructed from pcDNA3.1+ (hyg) -ORF6-IRES-DBP were transfected and cell suspensions were collected.
9. The method of claim 8, wherein the method comprises the steps of:
1) The four antigen gene co-expression recombinant adenovirus vectors are cut by PacI enzyme, and the linearized plasmid is used for transfection; transfecting 293TD37 cells with PEI transfection reagent;
2) Transfected 293TD37 cells were incubated at 37℃with 5% CO 2 Culturing in an incubator for 72-96 hours, and collecting cell suspension, namely TP0 adenovirus;
3) TP0 adenovirus infection 293TD37 cells at 37 ℃,5% CO 2 Culturing in an incubator for 72 hours, and collecting cell suspension, namely TP1 adenovirus;
4) Repeating the step 3), and collecting cell suspension, namely TP2 generation adenovirus;
5) The inoculation is continued until the cells are diseased.
Use of 10.293TD37 cells for packaging a recombinant adenovirus vector co-expressed by four antigen genes of african swine fever virus according to claim 1, wherein the four antigen genes are F317L, A151R, P and pp62, respectively, wherein F317L and a151R are expressed in the E1 region and P34 and pp62 are expressed in the E4 region, to form a recombinant adenovirus vector co-expressed by the four antigen genes;
wherein, the 293TD37 cell is constructed by pcDNA3.1+ (hyg) -ORF6-IRES-DBP, and the cell strain is deposited with the number: CCTCC NO. C201996, which is preserved in China center for type culture Collection.
CN202110762391.0A 2020-07-06 2021-07-06 Recombinant adenovirus vaccine for African swine fever and construction method thereof Active CN113897391B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2020106427542 2020-07-06
CN202010642754 2020-07-06

Publications (2)

Publication Number Publication Date
CN113897391A CN113897391A (en) 2022-01-07
CN113897391B true CN113897391B (en) 2023-08-22

Family

ID=79187542

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110762391.0A Active CN113897391B (en) 2020-07-06 2021-07-06 Recombinant adenovirus vaccine for African swine fever and construction method thereof

Country Status (1)

Country Link
CN (1) CN113897391B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108148138A (en) * 2017-12-14 2018-06-12 石河子大学 African swine fever virus multi-epitope fusion diagnosis antigen and its preparation method and application
CN110302371A (en) * 2019-08-21 2019-10-08 军事科学院军事医学研究院军事兽医研究所 Inactivate purposes of the ASFV as the Immunization protective ingredient of combination vaccine
CN110656090A (en) * 2019-10-28 2020-01-07 嘉兴安宇生物科技有限公司 Expression plasmid, cell strain of second-generation adenovirus for increasing packaging capacity and application of cell strain
CN110904127A (en) * 2018-09-18 2020-03-24 瓦赫宁恩研究基金会 African swine fever virus vaccine
WO2020102370A1 (en) * 2018-11-15 2020-05-22 Kansas State University Research Foundation Immunogenic compositions for african swine fever virus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190307879A1 (en) * 2015-12-04 2019-10-10 The Texas A&M University System Adenovirus-vectored multivalent vaccine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108148138A (en) * 2017-12-14 2018-06-12 石河子大学 African swine fever virus multi-epitope fusion diagnosis antigen and its preparation method and application
CN110904127A (en) * 2018-09-18 2020-03-24 瓦赫宁恩研究基金会 African swine fever virus vaccine
WO2020102370A1 (en) * 2018-11-15 2020-05-22 Kansas State University Research Foundation Immunogenic compositions for african swine fever virus
CN110302371A (en) * 2019-08-21 2019-10-08 军事科学院军事医学研究院军事兽医研究所 Inactivate purposes of the ASFV as the Immunization protective ingredient of combination vaccine
CN110656090A (en) * 2019-10-28 2020-01-07 嘉兴安宇生物科技有限公司 Expression plasmid, cell strain of second-generation adenovirus for increasing packaging capacity and application of cell strain

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Subunit Vaccine Approaches for African Swine Fever Virus;Natasha N. Gaudreault等;《Vaccines》;第7卷(第56期);全文 *

Also Published As

Publication number Publication date
CN113897391A (en) 2022-01-07

Similar Documents

Publication Publication Date Title
Chang et al. A new avian hepadnavirus infecting snow geese (Anser caerulescens) produces a significant fraction of virions containing single-stranded DNA
CN113897395B (en) Recombinant adenovirus vaccine for African swine fever and construction method thereof
CN113897390B (en) Recombinant adenovirus vaccine for African swine fever and construction method thereof
CN107236739A (en) The method of CRISPR/SaCas9 specific knockdown people&#39;s CXCR4 genes
KR20180012857A (en) Adenovirus polynucleotides and polypeptides
KR20190092471A (en) Adenovirus Polynucleotides and Polypeptides
CN113897394B (en) Recombinant adenovirus vaccine for African swine fever and construction method thereof
KR20160102024A (en) A method of making adenovirus and corresponding plasmids
WO2022007800A1 (en) Recombinant adenovirus vaccine for african swine fever and method for constructing same
KR20200066349A (en) Replicable adenovirus vector
DK166357B (en) PARTICLES WITH THE IMMUNOGENIC PROPERTIES RESPONSIBLE FOR THE HBS ANTIGEN AND VECTORS AND ANIMAL CELLS FOR PRODUCING SUCH PARTICLES
KR20210013589A (en) Immune checkpoint inhibitor co-expression vector
CN109402071B (en) Recombinant turkey herpesvirus expressing H9N2 subtype avian influenza virus H9 protein
TW201033363A (en) New permanent human cell line
CN106536722B (en) Method for rapid preparation of infectious RNA viruses
CN110951778A (en) CDV-3 strain infectious cDNA clone of canine distemper virus, construction method and application thereof
CN113913461A (en) Construction method of bovine viral diarrhea E0-E2 gene recombinant adenovirus vaccine
CN113897391B (en) Recombinant adenovirus vaccine for African swine fever and construction method thereof
CN112156181A (en) Adenovirus quadrivalent vaccine
EP0998576A2 (en) Bovine adenovirus type 3 genome
JP3026029B2 (en) Recombinant varicella virus and its production method
CN113897393B (en) Recombinant adenovirus vaccine for African swine fever and construction method thereof
JP3375347B2 (en) Recombinant vaccine against Marek&#39;s disease
CN106929483B (en) Construction and application of recombinant turkey herpesvirus expressing newcastle disease virus F gene
JP2002506355A (en) Selective control of adenovirus production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant