CN113890105B - 基于最大电压点跟踪的并联逆变器同步控制方法 - Google Patents

基于最大电压点跟踪的并联逆变器同步控制方法 Download PDF

Info

Publication number
CN113890105B
CN113890105B CN202111162857.XA CN202111162857A CN113890105B CN 113890105 B CN113890105 B CN 113890105B CN 202111162857 A CN202111162857 A CN 202111162857A CN 113890105 B CN113890105 B CN 113890105B
Authority
CN
China
Prior art keywords
inverter
maximum voltage
point tracking
newly
voltage point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111162857.XA
Other languages
English (en)
Other versions
CN113890105A (zh
Inventor
朱文卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN202111162857.XA priority Critical patent/CN113890105B/zh
Publication of CN113890105A publication Critical patent/CN113890105A/zh
Application granted granted Critical
Publication of CN113890105B publication Critical patent/CN113890105B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

基于最大电压点跟踪的并联逆变器同步控制方法,包括以下步骤:步骤1:当新的逆变器投入时,通过扰动观察法改变新投入的逆变器的相位,实现对负载电压的最大电压点跟踪;步骤2:当连续多次检测到负载电压的幅值发生来回波动时,表明新投入的逆变器同步操作已完成,此时新投入逆变器退出最大电压点跟踪控制切换为定频率控制。相比于传统锁相环,本发明中最大电压点跟踪方法中每台逆变器的地位相同,任意一台逆变器的退出都不会影响系统的正常运行,提高了系统的可靠性。

Description

基于最大电压点跟踪的并联逆变器同步控制方法
技术领域
本发明涉及逆变器并联运行控制技术领域,具体涉及一种基于最大电压点跟踪的并联逆变器同步控制方法。
背景技术
高比例可再生能源发电与高比例电力电子装备正在改变电力系统的形态。随着可再生能源发电占比的提高,一定区域内可再生能源超过70%的超高比例,甚至达100%的全可再生能源发电场景变为现实。对于以可再生能源为主体的电力系统,多台逆变器通过协调控制支撑电力系统的电压和频率是提高可再生能源渗透率的关键技术。
目前逆变器并联运行控制策略主要包括集中控制、主从控制、下垂控制。其中:1)、集中控制通过公共总线对各逆变器进行统一控制,公共模块故障将导致系统崩溃,可靠性不高。2)、主从控制以一台逆变器作为主控单元,采用电压电流双闭环控制,并通过通信线将电流指令发送至其余逆变器,但通信线的存在也将降低系统的可靠性。3)、下垂控制则无需通信线,每台逆变器根据自身信息量进行控制,可靠性较高,但是由于引入了功率量,导致控制系统呈现非线性,稳定性较差。此外,下垂特性也会导致固有的频率偏差。基于虚拟阻抗法的下垂控制能有效改善传统下垂控制的缺点,但这种方法需要各逆变器相位保持同步。
目前,逆变器的相位同步多通过锁相环实现,但基于锁相环的同步方法要求主逆变器提供参考相位,一旦主逆变器因故障退出运行,其它逆变器也将无法正常工作。同样的,基于通信的同步方法也同样存在可靠性较差的问题,且投资成本更高。
发明内容
为解决上述技术问题,本发明提供一种基于最大电压点跟踪的并联逆变器同步控制方法,相比于传统锁相环,本发明中最大电压点跟踪方法中每台逆变器的地位相同,任意一台逆变器的退出都不会影响系统的正常运行,提高了系统的可靠性。
本发明采取的技术方案为:
基于最大电压点跟踪的并联逆变器同步控制方法,包括以下步骤:
步骤1:当新的逆变器投入时,通过扰动观察法改变新投入的逆变器的相位,实现对负载电压的最大电压点跟踪;
步骤2:当连续多次检测到负载电压的幅值发生来回波动时,表明新投入的逆变器同步操作已完成,此时新投入逆变器退出最大电压点跟踪控制切换为定频率控制。
所述步骤1包括以下步骤:
步骤1.1:首先,在k-1时刻测量负载电压的幅值为U0(k-1);
步骤1.2:然后,对新投入逆变器相位
Figure BDA0003290413260000021
施加扰动
Figure BDA0003290413260000022
并观察此时的负载电压U0(k);
步骤1.3:比较U0(k)与U0(k-1),若U0(k)≥U0(k-1),表明扰动方向正确,继续保持同方向扰动
Figure BDA0003290413260000023
使U0(k)趋向于进一步增大;若U0(k)<U0(k-1),则施加反方向扰动
Figure BDA0003290413260000024
使U0(k)趋向于增大;
步骤1.4:重复步骤1.3,不断调整新投入的逆变器的相位,负载电压将不断向最大电压点逼近,使新投入的逆变器与已投入的逆变器进行同步。
所述步骤2中,当连续5次检测到负载电压U0(k)=U0(k-2)时,确认同步操作已完成,此时新投入逆变器退出最大电压点跟踪控制,切换为定频率控制。
所述步骤2中,同步操作对应的控制方程为
Figure BDA0003290413260000025
所述步骤2中,定频率控制对应的控制方程为
Figure BDA0003290413260000026
本发明一种基于最大电压点跟踪的并联逆变器同步控制方法,技术效果如下:
1)相比于锁相环,本发明同步控制方法中每台逆变器均采用定频率控制,所以任意逆变器的退出,都不会影响其它逆变器的正常运行,可靠性高。
2)由于各逆变器均采用定频率控制,所以逆变器输出电压的频率固定为50Hz,消除了传统功率下垂控制的固有频率偏差问题,极大地提高了电能质量。
3)由扰动观察法的控制思路可以看出,扰动观察法具有简单直接的优点,便于在数字控制系统中进行编程实现。
附图说明
图1为逆变器并联运行等效电路图。
图2为逆变器同步控制流程图。
图3为逆变器同步过程相位控制框图。
图4为逆变器定频率控制框图。
具体实施方式
基于最大电压点跟踪的并联逆变器同步控制方法,使用最大电压点跟踪方法,使各换流器的相位保持一致。所述最大电压点跟踪方法的理论依据为:当且仅当各逆变器输出电压的相位相同时,负载电压的幅值取得最大值。因此提出了基于扰动观察法的最大电压点跟踪方法,以实现各并联运行逆变器的同步。
具体包括以下步骤:
步骤1:当新的逆变器投入时,通过扰动观察法改变新投入的逆变器的相位,实现对负载电压的最大电压点跟踪;
所述步骤1包括以下步骤:
步骤1.1:首先,在k-1时刻测量负载电压的幅值为U0(k-1);
步骤1.2:然后,通过逆变器的控制系统对新投入逆变器相位
Figure BDA0003290413260000037
施加扰动
Figure BDA0003290413260000038
并观察此时的负载电压U0(k);扰动
Figure BDA0003290413260000039
单位为:“度”。
步骤1.3:比较U0(k)与U0(k-1),若U0(k)≥U0(k-1),表明扰动方向正确,继续保持同方向扰动
Figure BDA00032904132600000310
使U0(k)趋向于进一步增大;若U0(k)<U0(k-1),则施加反方向扰动
Figure BDA00032904132600000311
使U0(k)趋向于增大;
步骤1.4:重复步骤1.3,不断调整新投入的逆变器的相位,负载电压将不断向最大电压点逼近,使新投入的逆变器与已投入的逆变器进行同步。
步骤2:当连续多次检测到负载电压的幅值发生来回波动时,表明新投入的逆变器同步操作已完成,此时新投入逆变器退出最大电压点跟踪控制切换为定频率控制。具体是:当连续5次检测到负载电压U0(k)=U0(k-2)时,确认同步操作已完成,此时新投入逆变器退出最大电压点跟踪控制,切换为定频率控制。
对比观察图3和图4可知,在控制系统中设置
Figure BDA00032904132600000312
即可将最大电压点跟踪控制切换为定频率控制。
实施例:
图1为多逆变器并联运行的等效电路图。其中:
Figure BDA0003290413260000031
为负载电压,
Figure BDA0003290413260000032
为所有已同步逆变器的等效电压,
Figure BDA0003290413260000033
为新投入的逆变器的电压,
Figure BDA0003290413260000034
为已同步的第i(i=3,4,5,…,n)台逆变器的电压,Ri为各逆变器所对应的虚拟电阻,RL、LL为分别为负载电阻和负载电容。
根据戴维南定理,图1左侧的逆变器并联运行电路可等效为图1右侧的两台逆变器并联运行电路,其中:
Figure BDA0003290413260000035
R1=R3//R4//…//Rn。根据图1,运用叠加定理可求得负载电压与各逆变器电压的关系为:
Figure BDA0003290413260000036
设R1:R2=k,代入上式可简化得:
Figure BDA0003290413260000041
观察上式可知,负载电压
Figure BDA0003290413260000042
与逆变器空载输出电压的矢量和
Figure BDA0003290413260000043
存在一定的关系,当且仅当
Figure BDA0003290413260000044
Figure BDA0003290413260000045
方向相同,即
Figure BDA0003290413260000046
时,负载电压幅值U0取得最大值。因此,可以通过调节新投入的逆变器的输出相位,使负载电压幅值U0最大,此时必定有
Figure BDA0003290413260000047
图2为逆变器同步控制流程图。当新的逆变器投入运行时,首先,通过逆变器的控制系统判断计数变量Count≥5确认是否完成了同步,Count为设置的计数变量,如果是,则结束同步控制,切换为如图4所示定频率控制,如果否,则再通过判断U0(k)=U0(k-2)确定是否已经进入了电压来回波动阶段,如果是,那么Count++,如果否,那么对Count进行清零。接着,通过扰动观察法改变新投入的逆变器的相位,若U0(k)≥U0(k-1),表明扰动方向正确,继续保持同方向扰动,并将扰动量叠加在原有的相位基础上,即令φ(k)=φ(k-1)+2π·f0Δt+Δφ=2π·f0·t(k-1),其中:f0为工频,取50Hz,Δt为中断周期,一般设为0.1ms。反之,若U0(k)<U0(k-1),则施加反方向扰动。
图3为逆变器同步过程相位控制框图。其对应的控制方程为:
φ(k)=φ(k-1)+2π·f0Δt+Δφ。
图4为逆变器定频率控制框图,其对应的控制方程为:
φ(k)=φ(k-1)+2π·f0Δt。

Claims (4)

1.基于最大电压点跟踪的并联逆变器同步控制方法,其特征在于包括以下步骤:
步骤1:当新的逆变器投入时,通过扰动观察法改变新投入的逆变器的相位,实现对负载电压的最大电压点跟踪;
步骤1包括以下步骤:
步骤1.1:首先,在k-1时刻测量负载电压的幅值为U0(k-1);
步骤1.2:然后,对新投入逆变器相位
Figure FDA0003602064540000011
施加扰动
Figure FDA0003602064540000012
并观察此时的负载电压U0(k);
步骤1.3:比较U0(k)与U0(k-1),若U0(k)≥U0(k-1),表明扰动方向正确,继续保持同方向扰动
Figure FDA0003602064540000013
使U0(k)趋向于进一步增大;若U0(k)<U0(k-1),则施加反方向扰动
Figure FDA0003602064540000014
使U0(k)趋向于增大;
步骤1.4:重复步骤1.3,不断调整新投入的逆变器的相位,负载电压将不断向最大电压点逼近,使新投入的逆变器与已投入的逆变器进行同步;
步骤2:当连续多次检测到负载电压的幅值发生来回波动时,表明新投入的逆变器同步操作已完成,此时新投入逆变器退出最大电压点跟踪控制切换为定频率控制。
2.根据权利要求1所述基于最大电压点跟踪的并联逆变器同步控制方法,其特征在于:所述步骤2中,当连续5次检测到负载电压U0(k)=U0(k-2)时,确认同步操作已完成,此时新投入逆变器退出最大电压点跟踪控制,切换为定频率控制。
3.根据权利要求1或2所述基于最大电压点跟踪的并联逆变器同步控制方法,其特征在于:所述步骤2中,同步操作对应的控制方程为
Figure FDA0003602064540000015
4.根据权利要求1或2所述基于最大电压点跟踪的并联逆变器同步控制方法,其特征在于:所述步骤2中,定频率控制对应的控制方程为
Figure FDA0003602064540000016
CN202111162857.XA 2021-09-30 2021-09-30 基于最大电压点跟踪的并联逆变器同步控制方法 Active CN113890105B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111162857.XA CN113890105B (zh) 2021-09-30 2021-09-30 基于最大电压点跟踪的并联逆变器同步控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111162857.XA CN113890105B (zh) 2021-09-30 2021-09-30 基于最大电压点跟踪的并联逆变器同步控制方法

Publications (2)

Publication Number Publication Date
CN113890105A CN113890105A (zh) 2022-01-04
CN113890105B true CN113890105B (zh) 2022-06-07

Family

ID=79005024

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111162857.XA Active CN113890105B (zh) 2021-09-30 2021-09-30 基于最大电压点跟踪的并联逆变器同步控制方法

Country Status (1)

Country Link
CN (1) CN113890105B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600749A (zh) * 2015-02-06 2015-05-06 中国科学院广州能源研究所 一种适用于微电网的分层同步控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104035476B (zh) * 2014-05-13 2016-04-20 西安理工大学 基于输出电压频率步进扰动的最大功率点跟踪方法
GB201513549D0 (en) * 2015-07-31 2015-09-16 Siemens Ag Inverter
US10044193B2 (en) * 2016-07-25 2018-08-07 Mitsubishi Electric Research Laboratories, Inc. System and method for controlling outputs of photovoltaic system
CN106873709A (zh) * 2017-03-17 2017-06-20 浙江大学 一种快速跟踪光伏发电最大功率点的mppt方法
CN111244958A (zh) * 2020-03-12 2020-06-05 山东大学 一种基于循环扰动观察的闭环全局同步脉冲宽度调制方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600749A (zh) * 2015-02-06 2015-05-06 中国科学院广州能源研究所 一种适用于微电网的分层同步控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
光伏并网发电的研究进展;余涛等;《上海电力学院学报》;第27卷;20110430;第27卷(第02期);第110-114、143页 *

Also Published As

Publication number Publication date
CN113890105A (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
Simpson-Porco et al. Secondary frequency and voltage control of islanded microgrids via distributed averaging
Li et al. Model predictive control of a voltage-source inverter with seamless transition between islanded and grid-connected operations
Molina-García et al. Reactive power flow control for PV inverters voltage support in LV distribution networks
Zhong et al. Self-synchronized universal droop controller
Tenti et al. Distribution loss minimization by token ring control of power electronic interfaces in residential microgrids
Hu et al. Virtual flux droop method—A new control strategy of inverters in microgrids
Sharma et al. Synchronization of inverters in grid forming mode
Fang et al. State-space modeling and control of grid-tied power converters with capacitive/battery energy storage and grid-supportive services
CN106300435B (zh) 孤立微网单相多逆变器并联系统及其分布式控制方法
Fani et al. An enhanced decentralized reactive power sharing strategy for inverter-based microgrid
Jin et al. Coordination secondary control for autonomous hybrid AC/DC microgrids with global power sharing operation
Prabaharan et al. An overview of control techniques and technical challenge for inverters in micro grid
Choi et al. Selective frequency synchronization technique for fast grid connection of islanded microgrid using prediction method
Yu et al. Control of parallel inverter-interfaced distributed energy resources
Gurugubelli et al. Comparison of deadzone and vanderpol oscillator controlled voltage source inverters in islanded microgrid
He et al. Switching-Cycle-Based Startup for Grid-tied Inverters
Zhang et al. An enhanced droop control strategy for accurate reactive power sharing in islanded microgrids
CN113890105B (zh) 基于最大电压点跟踪的并联逆变器同步控制方法
Das et al. A dq voltage droop control method for inverter paralleling without any communication between individual invertres
Xiao et al. A virtual inertia control strategy of interlinking converters in islanded hybrid AC/DC microgrid
Ahmed et al. A state of the art review of control techniques for power electronics converter based distributed generation systems in different modes of operation
Naeem et al. A robust auto-synchronizer for synchronverter
EP3542435B1 (en) Synchronization of microgrids with each other
Wang et al. High-performance adaptive control for inverter-based residential microgrids
Wang et al. Distributed secondary control of energy storage systems in islanded ac microgrids

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant