CN113889662B - Halide solid electrolyte material and preparation method and application thereof - Google Patents

Halide solid electrolyte material and preparation method and application thereof Download PDF

Info

Publication number
CN113889662B
CN113889662B CN202111153803.7A CN202111153803A CN113889662B CN 113889662 B CN113889662 B CN 113889662B CN 202111153803 A CN202111153803 A CN 202111153803A CN 113889662 B CN113889662 B CN 113889662B
Authority
CN
China
Prior art keywords
electrolyte material
solid electrolyte
halide
halides
halide solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111153803.7A
Other languages
Chinese (zh)
Other versions
CN113889662A (en
Inventor
周宇楠
陈少杰
曹晓菊
李瑞杰
黄海强
王磊
刘景超
王志文
李生
张琪
袁文森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Svolt Energy Technology Co Ltd
Original Assignee
Svolt Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Svolt Energy Technology Co Ltd filed Critical Svolt Energy Technology Co Ltd
Priority to CN202111153803.7A priority Critical patent/CN113889662B/en
Publication of CN113889662A publication Critical patent/CN113889662A/en
Application granted granted Critical
Publication of CN113889662B publication Critical patent/CN113889662B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

The invention relates to the technical field of lithium ion batteries, in particular to a halide solid electrolyte material and a preparation method and application thereof. The chemical general formula of the halide solid electrolyte material provided by the invention is LiaA 1‑x‑y M x N y X 3+a‑x+y Wherein a is more than or equal to 1 and less than or equal to 6; x is more than or equal to 0.02 and less than or equal to 0.9; y is more than or equal to 0.02 and less than or equal to 0.9; a is selected from Al 3+ 、Ga 3+ 、In 3+ 、Fe 3+ 、Y 3+ 、Sc 3+ One or more kinds of metals having a valence of +3 La; m is selected from Cu 2+ 、Zn 2+ 、Cd 2+ 、Mg 2+ 、Ca 2+ 、Sr 2+ 、Ba 2+ One or more of (a); n is selected from Zr 4+ 、Hf 4+ 、Ti 4+ One or more of (a); x is selected from F 、Cl 、Br 、I One or more of (a). The halide solid electrolyte material provided by the invention can obviously reduce the diffusion impedance of lithium ions in the electrolyte material, improve the shuttle capability and transmission speed of the lithium ions in the electrolyte lattice, and improve the conductivity of the lithium ions.

Description

一种卤化物固态电解质材料及其制备方法和应用A kind of halide solid electrolyte material and its preparation method and application

技术领域technical field

本发明涉及锂离子电池技术领域,具体涉及一种卤化物固态电解质材料及其制备方法和应用。The invention relates to the technical field of lithium ion batteries, in particular to a halide solid electrolyte material and a preparation method and application thereof.

背景技术Background technique

自推出锂离子电池以来,已经在各类便携式电子产品和电动汽车等领域实现了广泛应用。但近期新能源汽车安全事故频繁发生,主要是由于传统的锂离子电池需使用易燃的有机溶剂作为电解液,故而存在极大的安全隐患,采用通常的改进方法无法彻底解决。相比而言,使用固态电解质的固态锂离子电池更具安全优势。采用固态电解质,不仅可以从根本上解决锂离子电池的安全性问题,同时有望大大简化制造封装工艺,提高电池的能量密度、可靠性和设计自由度。在各类新型电池体系中,固态电池是距离产业化最近的下一代技术,为了满足高性能固态电池的需求,高离子电导率的电解质是极为关键材料。Since the introduction of lithium-ion batteries, they have been widely used in various portable electronic products and electric vehicles. However, the recent frequent occurrence of new energy vehicle safety accidents is mainly due to the fact that traditional lithium-ion batteries need to use flammable organic solvents as electrolytes, so there are great safety hazards, which cannot be completely solved by usual improvement methods. In comparison, solid-state lithium-ion batteries using solid-state electrolytes have a safety advantage. The use of solid-state electrolytes can not only fundamentally solve the safety problem of lithium-ion batteries, but also is expected to greatly simplify the manufacturing and packaging process, and improve the energy density, reliability and design freedom of batteries. Among all kinds of new battery systems, solid-state batteries are the next-generation technology closest to industrialization. In order to meet the needs of high-performance solid-state batteries, electrolytes with high ionic conductivity are extremely critical materials.

目前离子电导率最高的无机电解质当属硫化物体系,在离子电导率方面可以达到甚至超过目前商用电解液水平。但硫化物的原料成本较高,制备条件苛刻,与锂金属负极或高电压正极不能稳定匹配,并且电池组装需要在高昂的干燥室内进行,以避免与空气中水氧接触导致分解。相比于硫化物,以锂镧锆氧(LLZO)为代表的氧化物电解质可以匹配高电压正极和锂金属负极,但是正负极界面接触阻抗较大,且需要在高温高压的苛刻制备条件下才能实现其高离子电导率(>1mS/cm)。卤化物Li3AX6(X为Cl或Br)是一类新近受到关注的固体电解质材料,具有高离子电导率和良好正极材料兼容性等诸多优点。然而Li3AX6相结构、离子电导率以及金属负极稳定性受A金属离子的种类和半径大小影响,为了维持结构稳定性和高离子电导率,A主要选自离子半径介于0.65-0.92之间的三价金属离子,主要包括In3+和稀土离子,这些元素在地壳中的含量偏少、价格昂贵,而且三价离子之间的互相取代难以有效调节锂离子/空穴比例、改善锂离子扩散通道和提升离子电导率。At present, the inorganic electrolyte with the highest ionic conductivity is the sulfide system, which can reach or even exceed the level of the current commercial electrolyte in terms of ionic conductivity. However, the cost of raw materials for sulfide is high, the preparation conditions are harsh, and it cannot be stably matched with lithium metal negative electrodes or high-voltage positive electrodes, and battery assembly needs to be carried out in an expensive dry room to avoid decomposition caused by contact with water and oxygen in the air. Compared with sulfide, oxide electrolytes represented by lithium lanthanum zirconium oxide (LLZO) can match high-voltage positive electrodes and lithium metal negative electrodes, but the interface contact resistance of positive and negative electrodes is relatively large, and it needs to be prepared under harsh conditions of high temperature and high pressure. In order to achieve its high ionic conductivity (>1mS/cm). The halide Li 3 AX 6 (X is Cl or Br) is a class of solid electrolyte materials that has recently attracted attention, with many advantages such as high ionic conductivity and good compatibility with cathode materials. However, the Li 3 AX 6 phase structure, ionic conductivity, and metal negative electrode stability are affected by the type and radius of the metal ion A. In order to maintain structural stability and high ionic conductivity, A is mainly selected from the ionic radius between 0.65-0.92. The inter-trivalent metal ions mainly include In 3+ and rare earth ions. The content of these elements in the earth's crust is relatively small and expensive, and the mutual substitution between trivalent ions is difficult to effectively adjust the ratio of lithium ions/holes and improve the quality of lithium ions. Ion diffusion channels and enhanced ionic conductivity.

发明内容Contents of the invention

本发明的目的在于克服现有卤化物固态电解质材料成本较高、电解质材料之中的扩散阻抗较高、锂离子电导率有限的缺陷,进而提供一种卤化物固态电解质材料及其制备方法和应用。The purpose of the present invention is to overcome the defects of the existing halide solid electrolyte materials such as high cost, high diffusion resistance in the electrolyte material, and limited lithium ion conductivity, and further provide a halide solid electrolyte material and its preparation method and application .

为达到上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:

一种卤化物固态电解质材料,所述电解质材料的化学通式为LiaA1-x-yMxNyX3+a-x+y,其中1≤a≤6;0.02≤x≤0.9;0.02≤y≤0.9;A选自Al3+、Ga3+、In3+、Fe3+、Y3+、Sc3+、+3价La系金属中的一种或多种;M选自Cu2+、Zn2+、Cd2+、Mg2+、Ca2+、Sr2+、Ba2+中的一种或多种;N选自Zr4 +、Hf4+、Ti4+中的一种或多种;X选自F-、Cl-、Br-、I-中的一种或多种。A halide solid electrolyte material, the general chemical formula of the electrolyte material is LiaA 1-xy M x N y X 3+a-x+y , wherein 1≤a≤6; 0.02≤x≤0.9; 0.02≤y ≤0.9; A is selected from one or more of Al 3+ , Ga 3+ , In 3+ , Fe 3+ , Y 3+ , Sc 3+ , and +3-valent La metals; M is selected from Cu 2+ , Zn 2+ , Cd 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ one or more; N is selected from one of Zr 4 + , Hf 4+ , Ti 4+ or more; X is selected from one or more of F - , Cl - , Br - , I - .

可以理解的,在化学通式中A代表的金属元素可以为Al、Ga、In、Fe、Y、Sc和La系元素中的一种或多种;M代表的金属元素可以为Cu、Zn、Cd、Mg、Ca、Sr和Ba中的一种或多种;N代表的金属元素可以为Zr、Hf和Ti中的一种或多种;X代表F、Cl、Br和I中的一种或多种。可以理解的,A代表的金属在化学通式中呈+3价,M代表的金属在化学通式中呈+2价,N代表的金属在化学通式中呈+4价,X代表的卤素元素在化学通式中呈-1价。本发明La系金属包括但不限于La(镧),Ce(铈),Pr(镨),Nd(钕),Pm(钷),Sm(钐),Eu(铕),Gd(钆),Tb(铽),Dy(镝),Ho(钬),Er(铒),Tm(铥),Yb(镱),Lu(镥)。It can be understood that the metal element represented by A in the general chemical formula can be one or more of Al, Ga, In, Fe, Y, Sc and La series elements; the metal element represented by M can be Cu, Zn, One or more of Cd, Mg, Ca, Sr and Ba; the metal element represented by N can be one or more of Zr, Hf and Ti; X represents one of F, Cl, Br and I or more. It can be understood that the metal represented by A has a valence of +3 in the general chemical formula, the metal represented by M has a valence of +2 in the general chemical formula, the metal represented by N has a valence of +4 in the general chemical formula, and the halogen represented by X Elements have a valence of -1 in the general chemical formula. The La series metals of the present invention include but are not limited to La (lanthanum), Ce (cerium), Pr (praseodymium), Nd (neodymium), Pm (promethium), Sm (samarium), Eu (europium), Gd (gadolinium), Tb (terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), Yb (ytterbium), Lu (lutetium).

优选的,A选自Ga3+、In3+、Fe3+、Y3+、Sc3+、Ho3+、Er3+、Lu3+、Yb3+中的一种或多种;和/或,M选自Mg2+、Zn2+、Cu2+中的一种或多种;和/或,N选自Zr4+和/或Hf4+Preferably, A is selected from one or more of Ga 3+ , In 3+ , Fe 3+ , Y 3+ , Sc 3+ , Ho 3+ , Er 3+ , Lu 3+ , and Yb 3+ ; and /or, M is selected from one or more of Mg 2+ , Zn 2+ , Cu 2+ ; and/or, N is selected from Zr 4+ and/or Hf 4+ ;

和/或,2.2≤a≤3.8;和/或,0.1≤x≤0.5;和/或,0.1≤y≤0.7。And/or, 2.2≤a≤3.8; and/or, 0.1≤x≤0.5; and/or, 0.1≤y≤0.7.

优选的,A选自Fe3+,N选自Hf4+Preferably, A is selected from Fe 3+ , and N is selected from Hf 4+ .

优选的,所述卤化物固态电解质材料为玻璃相、玻璃-陶瓷相或结晶相中的任意一种形式。Preferably, the halide solid electrolyte material is in any form of glass phase, glass-ceramic phase or crystal phase.

本发明还提供一种上述所述卤化物固态电解质材料的制备方法,包括如下步骤:The present invention also provides a method for preparing the above-mentioned halide solid electrolyte material, comprising the following steps:

1)将配方比例的原料进行混合,得到混合料;1) mixing the raw materials in the formula ratio to obtain the mixture;

2)将混合料进行研磨、烧结,得到所述卤化物固态电解质材料。2) Grinding and sintering the mixture to obtain the halide solid electrolyte material.

在本发明中对混合料可采用球磨法、固相烧结法、加热共熔法中的任意一种方法制备卤化物固态电解质材料,优选的,对混合料采用研磨、烧结方法进行制备。In the present invention, any method of ball milling, solid phase sintering, and heating eutectic can be used to prepare the halide solid electrolyte material for the mixture. Preferably, the mixture is prepared by grinding and sintering.

本发明制备的卤化物固态电解质材料的离子传导率大于1×10-5S/cm。The ion conductivity of the halide solid electrolyte material prepared by the invention is greater than 1×10 -5 S/cm.

优选的,步骤2)中采用球磨方式对混合料进行研磨,球磨转速为100-500转/分钟,球磨时间为1-50h;优选的,球磨转速为200-450转/分钟,球磨时间为2-40h。Preferably, the mixture is ground by ball milling in step 2), the ball milling speed is 100-500 rpm, and the ball milling time is 1-50h; preferably, the ball milling speed is 200-450 rpm, and the ball milling time is 2 -40h.

所述研磨步骤在惰性气氛下进行;The grinding step is carried out under an inert atmosphere;

所述烧结温度为200-600℃,保温时间为1-40h,优选的,所述烧结温度为250-550℃,保温时间为2-30h。The sintering temperature is 200-600°C, and the holding time is 1-40h. Preferably, the sintering temperature is 250-550°C, and the holding time is 2-30h.

可选的,在烧结步骤中升温速率可为1-3℃/min,保温结束后降温速率可为1-3℃/min。Optionally, the heating rate during the sintering step may be 1-3° C./min, and the cooling rate may be 1-3° C./min after the heat preservation is completed.

优选的,步骤2)中烧结结束后还包括对烧结后的物料进行研磨的步骤。Preferably, after the sintering in step 2), a step of grinding the sintered material is also included.

优选的,步骤1)中可采用玛瑙研钵对原料进行混合,目的在于使原料混合均匀。可选的,本发明中的物料称量步骤、混合步骤均在惰性气体氛围下进行。Preferably, in step 1), an agate mortar can be used to mix the raw materials, so that the raw materials can be mixed evenly. Optionally, the material weighing step and mixing step in the present invention are all carried out under an inert gas atmosphere.

优选的,preferred,

步骤1)中所述原料为锂源、A源、M源和N源,其中锂源为卤化锂,A源选自Al的卤化物、Ga的卤化物、In的卤化物、Fe的卤化物、Y的卤化物、Sc的卤化物和La系金属的卤化物中的一种或多种;The raw materials described in step 1) are lithium source, A source, M source and N source, wherein the lithium source is lithium halide, and the A source is selected from Al halide, Ga halide, In halide, Fe halide , one or more of halides of Y, halides of Sc and halides of La-series metals;

M源选自Cu的卤化物、Zn的卤化物、Cd的卤化物、Mg的卤化物、Ca的卤化物、Sr的卤化物和Ba的卤化物中的一种或多种;The M source is selected from one or more of Cu halides, Zn halides, Cd halides, Mg halides, Ca halides, Sr halides and Ba halides;

N源选自Zr的卤化物、Hf的卤化物和Ti的卤化物中的一种或多种。可以理解的,上述金属卤化物包括金属碘化物、金属溴化物、金属氯化物和金属氟化物。以金属氯化物为例,锂源为氯化锂,A源选自氯化铝、氯化镓、氯化铟、三氯化铁、氯化钇、氯化钪和La系金属的氯化物中的一种或多种;The N source is selected from one or more of Zr halides, Hf halides and Ti halides. It can be understood that the aforementioned metal halides include metal iodides, metal bromides, metal chlorides and metal fluorides. Taking metal chloride as an example, the lithium source is lithium chloride, and the A source is selected from the chlorides of aluminum chloride, gallium chloride, indium chloride, ferric chloride, yttrium chloride, scandium chloride and La series metals one or more of

M源选自氯化铜、氯化锌、氯化镉、氯化镁、氯化钙、氯化锶和氯化钡中的一种或多种;The M source is selected from one or more of copper chloride, zinc chloride, cadmium chloride, magnesium chloride, calcium chloride, strontium chloride and barium chloride;

N源选自氯化锆、氯化铪和氯化钛中的一种或多种。The N source is selected from one or more of zirconium chloride, hafnium chloride and titanium chloride.

本发明还提供一种锂二次电池,包括正极层、电解质层和负极层,所述正极层、电解质层和负极层的至少一层中含有上述所述的卤化物固态电解质材料或上述所述制备方法制备得到的卤化物固态电解质材料。The present invention also provides a lithium secondary battery, comprising a positive electrode layer, an electrolyte layer and a negative electrode layer, at least one of the positive electrode layer, the electrolyte layer and the negative electrode layer contains the above-mentioned halide solid electrolyte material or the above-mentioned Preparation method The prepared halide solid electrolyte material.

优选的,所述锂二次电池包括液相锂二次电池、半固态锂二次电池以及全固态锂二次电池。Preferably, the lithium secondary battery includes a liquid phase lithium secondary battery, a semi-solid lithium secondary battery and an all-solid lithium secondary battery.

本发明的有益效果:Beneficial effects of the present invention:

1、本发明提供的卤化物固态电解质材料,在电解质组分中同时引入特定的二价和四价离子,利用二价离子和四价离子与三价离子之间的价态差异,二价离子和四价离子取代三价离子会引起晶格中锂离子和空穴数目的变化(取代过程:M2++Li+→A3++空穴;N4++空穴→A3++Li+),具体而言,二价离子取代三价离子会增加锂离子、减少空穴,而四价离子取代三价离子会增加空穴、减少锂离子,通过双方的相互作用与协调,可以灵活有效调节锂离子/空穴的比例;此外通过二价离子和四价离子同时引入到三价离子格位,二价离子、四价离子、三价离子在晶格中混合排列,产生电子云排布的局域差异化,这种电势差会对锂离子扩散形成驱动力,进而促进锂离子在晶格中之间的快速穿梭。上述两方面的共同作用能够显著降低锂离子在电解质材料之中的扩散阻抗,提高锂离子在电解质晶格内部的穿梭能力和传输速度,提升锂离子电导率,进而提升电池的倍率性能及快充能力。同时减少稀缺昂贵的三价离子的使用,进而降低电解质材料的原料成本,提升其实际应用价值。1. The halide solid-state electrolyte material provided by the present invention introduces specific divalent and tetravalent ions into the electrolyte components at the same time, and utilizes the valence difference between divalent ions and tetravalent ions and trivalent ions. Divalent ions Substitution of trivalent ions with tetravalent ions will cause changes in the number of lithium ions and holes in the lattice (substitution process: M 2+ +Li + →A 3+ + holes; N 4+ + holes →A 3+ + Li + ), specifically, the replacement of trivalent ions by divalent ions will increase lithium ions and reduce holes, while the replacement of trivalent ions by tetravalent ions will increase holes and reduce lithium ions. Through the interaction and coordination of the two sides, it can Flexible and effective adjustment of the ratio of lithium ions/holes; in addition, by introducing divalent ions and tetravalent ions into the trivalent ion site at the same time, divalent ions, tetravalent ions, and trivalent ions are mixed and arranged in the crystal lattice to generate an electron cloud The local differentiation of the arrangement, this potential difference will form a driving force for the diffusion of lithium ions, and then promote the rapid shuttling of lithium ions between lattices. The combined effect of the above two aspects can significantly reduce the diffusion resistance of lithium ions in the electrolyte material, improve the shuttle ability and transmission speed of lithium ions inside the electrolyte lattice, improve the conductivity of lithium ions, and then improve the rate performance and fast charge of the battery. ability. At the same time, the use of scarce and expensive trivalent ions is reduced, thereby reducing the raw material cost of the electrolyte material and enhancing its practical application value.

2、本发明提供的卤化物固态电解质材料,进一步的,A选自Ga3+、In3+、Fe3+、Y3+、Sc3 +、Ho3+、Er3+、Lu3+、Yb3+中的一种或多种;M选自Mg2+、Zn2+、Cu2+中的一种或多种;N选自Zr4+和/或Hf4+;2.2≤a≤3.8;0.1≤x≤0.5;0.1≤y≤0.7。本发明通过进一步限定金属A、M、N的元素种类,可进一步提升材料的离子电导率。2. The halide solid electrolyte material provided by the present invention, further, A is selected from Ga 3+ , In 3+ , Fe 3+ , Y 3+ , Sc 3+ , Ho 3+ , Er 3+ , Lu 3+ , One or more of Yb 3+ ; M is selected from one or more of Mg 2+ , Zn 2+ , Cu 2+ ; N is selected from Zr 4+ and/or Hf 4+ ; 2.2≤a≤ 3.8; 0.1≤x≤0.5; 0.1≤y≤0.7. In the present invention, by further limiting the element types of metals A, M, and N, the ion conductivity of the material can be further improved.

3、本发明提供的卤化物固态电解质材料,进一步的,A选自Fe3+,N选自Hf4+,本发明通过限定特定的A和N元素,同其它元素相互作用,可显著提升材料的离子电导率。3. The halide solid-state electrolyte material provided by the present invention, further, A is selected from Fe 3+ , and N is selected from Hf 4+ . The present invention can significantly improve the material by limiting specific A and N elements and interacting with other elements. ionic conductivity.

具体实施方式Detailed ways

提供下述实施例是为了更好地进一步理解本发明,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。The following examples are provided in order to further understand the present invention better, are not limited to the best implementation mode, and do not limit the content and protection scope of the present invention, anyone under the inspiration of the present invention or use the present invention Any product identical or similar to the present invention obtained by combining features of other prior art falls within the protection scope of the present invention.

实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。If no specific experimental steps or conditions are indicated in the examples, it can be carried out according to the operation or conditions of the conventional experimental steps described in the literature in this field. The reagents or instruments used, whose manufacturers are not indicated, are all commercially available conventional reagent products.

实施例1Example 1

本实施例提供一种卤化物固态电解质材料的制备方法,包括如下步骤:This embodiment provides a method for preparing a halide solid electrolyte material, comprising the following steps:

1)在氩气气氛保护下,称取3.425克LiCl、1.404克FeCl3、0.549克MgCl2、4.621克HfCl4;将上述物料置于玛瑙研钵中进行研磨10min,得到混合料;1) Under the protection of an argon atmosphere, weigh 3.425 grams of LiCl, 1.404 grams of FeCl 3 , 0.549 grams of MgCl 2 , and 4.621 grams of HfCl 4 ; put the above materials in an agate mortar and grind for 10 minutes to obtain a mixture;

2)将混合料倒入100mL球磨罐内,球料比为20:1,密封后采用行星式球磨机进行球磨,球磨转速为400转/分钟,球磨时间为20小时,球磨结束后在氩气气氛保护下打开球磨罐并把物料刮出,采用压片机把球磨好的物料压成12mm大小的片,放入单头石英管内,随后采用真空封管的方式密封并放置于马弗炉内高温烧结,所述烧结温度为450℃,保温时间为6h,保温结束后,冷却至室温,然后将石英管放入手套箱内打开,并用玛瑙研钵将所得材料研磨30min,即可获得玻璃-陶瓷相卤化物固态电解质材料Li2.8Fe0.3Mg0.2Hf0.5Cl6.12) Pour the mixture into a 100mL ball mill tank with a ball-to-material ratio of 20:1. After sealing, use a planetary ball mill for ball milling. The ball milling speed is 400 rpm, and the ball milling time is 20 hours. Under protection, open the ball mill tank and scrape out the material, use a tablet press to press the ball milled material into 12mm pieces, put it into a single-head quartz tube, then seal it with vacuum sealing and place it in a muffle furnace at high temperature Sintering, the sintering temperature is 450°C, and the holding time is 6h. After the holding is over, cool to room temperature, then put the quartz tube into the glove box and open it, and grind the obtained material with an agate mortar for 30 minutes to obtain the glass-ceramic Phase halide solid electrolyte material Li 2.8 Fe 0.3 Mg 0.2 Hf 0.5 Cl 6.1 .

实施例2Example 2

本实施例提供一种卤化物固态电解质材料的制备方法,包括如下步骤:This embodiment provides a method for preparing a halide solid electrolyte material, comprising the following steps:

1)在氩气气氛保护下,称取2.546克LiCl、0.961克GaCl3、0.372克ZnCl2、6.121克HfCl4;将上述物料置于玛瑙研钵中进行研磨10min,得到混合料;1) Under the protection of an argon atmosphere, weigh 2.546 grams of LiCl, 0.961 grams of GaCl 3 , 0.372 grams of ZnCl 2 , and 6.121 grams of HfCl 4 ; put the above materials in an agate mortar and grind for 10 minutes to obtain a mixture;

2)将混合料倒入100mL球磨罐内,球料比为20:1,密封后采用行星式球磨机进行球磨,球磨转速为500转/分钟,球磨时间为1小时,球磨结束后在氩气气氛保护下打开球磨罐并把物料刮出,采用压片机把球磨好的物料压成12mm大小的片,放入单头石英管内,随后采用真空封管的方式密封并放置于马弗炉内高温烧结,所述烧结温度为200℃,保温时间为1h,保温结束后,冷却至室温,然后将石英管放入手套箱内打开,并用玛瑙研钵将所得材料研磨30min,即可获得玻璃-陶瓷相卤化物固态电解质材料Li2.2Ga0.2Zn0.1Hf0.7Cl5.82) Pour the mixture into a 100mL ball mill tank with a ball-to-material ratio of 20:1. After sealing, use a planetary ball mill for ball milling. The ball milling speed is 500 rpm, and the ball milling time is 1 hour. Under protection, open the ball mill tank and scrape out the material, use a tablet press to press the ball milled material into 12mm pieces, put it into a single-head quartz tube, then seal it with vacuum sealing and place it in a muffle furnace at high temperature Sintering, the sintering temperature is 200°C, and the holding time is 1h. After the holding, cool to room temperature, then put the quartz tube into the glove box and open it, and grind the obtained material with an agate mortar for 30 minutes to obtain the glass-ceramic Phase halide solid electrolyte material Li 2.2 Ga 0.2 Zn 0.1 Hf 0.7 Cl 5.8 .

实施例3Example 3

本实施例提供一种卤化物固态电解质材料的制备方法,包括如下步骤:This embodiment provides a method for preparing a halide solid electrolyte material, comprising the following steps:

1)在氩气气氛保护下,称取3.192克LiCl、2.100克YCl3、2.410克CuCl2、2.297克HfCl4;将上述物料置于玛瑙研钵中进行研磨10min,得到混合料;1) Under the protection of an argon atmosphere, weigh 3.192 grams of LiCl, 2.100 grams of YCl 3 , 2.410 grams of CuCl 2 , and 2.297 grams of HfCl 4 ; put the above materials in an agate mortar and grind for 10 minutes to obtain a mixture;

2)将混合料倒入100mL球磨罐内,球料比为20:1,密封后采用行星式球磨机进行球磨,球磨转速为100转/分钟,球磨时间为50小时,球磨结束后在氩气气氛保护下打开球磨罐并把物料刮出,采用压片机把球磨好的物料压成12mm大小的片,放入单头石英管内,随后采用真空封管的方式密封并放置于马弗炉内高温烧结,所述烧结温度为600℃,保温时间为40h,保温结束后,冷却至室温,然后将石英管放入手套箱内打开,并用玛瑙研钵将所得材料研磨30min,即可获得玻璃-陶瓷相卤化物固态电解质材料Li2.1Y0.3Cu0.5Hf0.2Cl4.82) Pour the mixture into a 100mL ball mill tank with a ball-to-material ratio of 20:1. After sealing, use a planetary ball mill for ball milling. The ball milling speed is 100 rpm, and the ball milling time is 50 hours. Under protection, open the ball mill tank and scrape out the material, use a tablet press to press the ball milled material into 12mm pieces, put it into a single-head quartz tube, then seal it with vacuum sealing and place it in a muffle furnace at high temperature Sintering, the sintering temperature is 600°C, and the holding time is 40h. After the holding time, cool to room temperature, then put the quartz tube into the glove box and open it, and grind the obtained material with an agate mortar for 30 minutes to obtain the glass-ceramic Phase halide solid electrolyte material Li 2.1 Y 0.3 Cu 0.5 Hf 0.2 Cl 4.8 .

实施例4Example 4

本实施例提供一种卤化物固态电解质材料的制备方法,其与实施例1相比区别仅在于步骤1)中在氩气气氛保护下,称取3.865克LiCl、1.972克FeCl3、1.243克ZnCl2、2.920克HfCl4;将上述物料置于玛瑙研钵中进行研磨10min,得到混合料。本实施例制备的卤化物固态电解质材料为玻璃-陶瓷相,化学通式为Li3Fe0.4Zn0.3Hf0.3Cl6This example provides a method for preparing a halide solid-state electrolyte material. Compared with Example 1, the only difference is that in step 1) under the protection of an argon atmosphere, 3.865 grams of LiCl, 1.972 grams of FeCl 3 , and 1.243 grams of ZnCl were weighed. 2. 2.920 grams of HfCl 4 ; the above materials were ground in an agate mortar for 10 minutes to obtain a mixture. The halide solid electrolyte material prepared in this example is a glass-ceramic phase with a general chemical formula of Li 3 Fe 0.4 Zn 0.3 Hf 0.3 Cl 6 .

实施例5Example 5

本实施例提供一种卤化物固态电解质材料的制备方法,其与实施例1相比区别仅在于步骤1)中在氩气气氛保护下,称取0.715克LiCl、1.824克ScCl3、0.821克ZnCl2、1.930克HfCl4、4.710克LiBr;将上述物料置于玛瑙研钵中进行研磨10min,得到混合料。本实施例制备的卤化物固态电解质材料为玻璃-陶瓷相,化学通式为Li2.95Sc0.5Zn0.25Hf0.25Cl3.7Br2.25This example provides a method for preparing a halide solid-state electrolyte material. Compared with Example 1, the only difference is that in step 1) under the protection of an argon atmosphere, 0.715 grams of LiCl, 1.824 grams of ScCl 3 , and 0.821 grams of ZnCl were weighed. 2. 1.930 grams of HfCl 4 , and 4.710 grams of LiBr; the above materials were ground in an agate mortar for 10 minutes to obtain a mixture. The halide solid electrolyte material prepared in this example is a glass-ceramic phase, and its general chemical formula is Li 2.95 Sc 0.5 Zn 0.25 Hf 0.25 Cl 3.7 Br 2.25 .

实施例6Example 6

本实施例提供一种卤化物固态电解质材料的制备方法,其与实施例1相比区别仅在于步骤1)中在氩气气氛保护下,称取3.224克LiCl、2.261克YbCl3、1.078克MgCl2、3.017克ZrCl4、0.420克LiF;将上述物料置于玛瑙研钵中进行研磨10min,得到混合料。本实施例制备的卤化物固态电解质材料为玻璃-陶瓷相,化学通式为Li2.85Yb0.25Mg0.35Zr0.4F0.5Cl5.4This example provides a method for preparing a halide solid-state electrolyte material. The difference between it and Example 1 is that in step 1) under the protection of an argon atmosphere, 3.224 grams of LiCl, 2.261 grams of YbCl 3 , and 1.078 grams of MgCl were weighed. 2. 3.017 grams of ZrCl 4 , and 0.420 grams of LiF; the above materials were ground in an agate mortar for 10 minutes to obtain a mixture. The halide solid electrolyte material prepared in this example is a glass-ceramic phase with a general chemical formula of Li 2.85 Yb 0.25 Mg 0.35 Zr 0.4 F 0.5 Cl 5.4 .

实施例7Example 7

本实施例提供一种卤化物固态电解质材料的制备方法,其与实施例1相比区别仅在于步骤1)中在氩气气氛保护下,称取3.537克LuCl3、0.571克ZnCl2、1.342克HfCl4、4.549克LiBr;将上述物料置于玛瑙研钵中进行研磨10min,得到混合料。本实施例制备的卤化物固态电解质材料为玻璃-陶瓷相,化学通式为Li2.5Lu0.6Zn0.2Hf0.2Cl3Br2.5This example provides a method for preparing a halide solid electrolyte material. Compared with Example 1, the only difference is that in step 1) under the protection of an argon atmosphere, 3.537 grams of LuCl 3 , 0.571 grams of ZnCl 2 , and 1.342 grams of ZnCl 2 were weighed. HfCl 4 , 4.549 grams of LiBr; the above materials were placed in an agate mortar and ground for 10 minutes to obtain a mixture. The halide solid electrolyte material prepared in this example is a glass-ceramic phase, and its general chemical formula is Li 2.5 Lu 0.6 Zn 0.2 Hf 0.2 Cl 3 Br 2.5 .

实施例8Example 8

本实施例提供一种卤化物固态电解质材料的制备方法,其与实施例1相比区别仅在于步骤1)中在氩气气氛保护下,称取0.447克LiCl、1.499克HoCl3、0.813克HoBr3、0.203克CuCl2、3.003克HfBr4和4.034克LiI;将上述物料置于玛瑙研钵中进行研磨10min,得到混合料。本实施例制备的卤化物固态电解质材料为玻璃-陶瓷相,化学通式为Li2.7Ho0.5Cu0.1Hf0.4Cl2Br2I2This example provides a method for preparing a halide solid electrolyte material, which differs from Example 1 only in that in step 1) under the protection of an argon atmosphere, 0.447 grams of LiCl, 1.499 grams of HoCl 3 , and 0.813 grams of HoBr were weighed. 3. 0.203 grams of CuCl 2 , 3.003 grams of HfBr 4 and 4.034 grams of LiI; the above materials were ground in an agate mortar for 10 minutes to obtain a mixture. The halide solid electrolyte material prepared in this example is a glass-ceramic phase with a general chemical formula of Li 2.7 Ho 0.5 Cu 0.1 Hf 0.4 Cl 2 Br 2 I 2 .

实施例9Example 9

本实施例提供一种卤化物固态电解质材料的制备方法,其与实施例1相比区别仅在于步骤1)中在氩气气氛保护下,称取2.073克LiCl、2.509克ErBr3、1.250克ZnCl2、1.514克TiF4和2.654克LiBr;将上述物料置于玛瑙研钵中进行研磨10min,得到混合料。本实施例制备的卤化物固态电解质材料为玻璃-陶瓷相,化学通式为Li2.6Er0.3Zn0.3Ti0.4F1.6Cl3.1Br。This example provides a method for preparing a halide solid electrolyte material, which differs from Example 1 only in that in step 1) under the protection of an argon atmosphere, 2.073 grams of LiCl, 2.509 grams of ErBr 3 , and 1.250 grams of ZnCl are weighed. 2. 1.514 grams of TiF 4 and 2.654 grams of LiBr; the above materials were ground in an agate mortar for 10 minutes to obtain a mixture. The halide solid electrolyte material prepared in this example is a glass-ceramic phase, and its general chemical formula is Li 2.6 Er 0.3 Zn 0.3 Ti 0.4 F 1.6 Cl 3.1 Br.

实施例10Example 10

本实施例提供一种卤化物固态电解质材料的制备方法,其与实施例1相比区别仅在于步骤1)中在氩气气氛保护下,称取1.600克LiCl、5.217克LuBr3、0.233克CaCl2、0.332克SrCl2、1.343克HfCl4和1.275克LiBr;将上述物料置于玛瑙研钵中进行研磨10min,得到混合料。本实施例制备的卤化物固态电解质材料为玻璃-陶瓷相,化学通式为Li2.5Lu0.6Ca0.1Sr0. 1Hf0.2Cl3Br2.5This example provides a method for preparing a halide solid-state electrolyte material. Compared with Example 1, the only difference is that in step 1) under the protection of an argon atmosphere, 1.600 grams of LiCl, 5.217 grams of LuBr 3 , and 0.233 grams of CaCl were weighed. 2. 0.332 grams of SrCl 2 , 1.343 grams of HfCl 4 and 1.275 grams of LiBr; the above materials were ground in an agate mortar for 10 minutes to obtain a mixture. The halide solid electrolyte material prepared in this example is a glass-ceramic phase with a general chemical formula of Li 2.5 Lu 0.6 Ca 0.1 Sr 0. 1 Hf 0.2 Cl 3 Br 2.5 .

实施例11Example 11

本实施例提供一种卤化物固态电解质材料的制备方法,其与实施例1相比区别仅在于步骤1)中在氩气气氛保护下,称取0.693克LiCl、2.544克LuBr3、1.124克CdCl2、2.620克HfCl4和3.019克LiBr;将上述物料置于玛瑙研钵中进行研磨10min,得到混合料。本实施例制备的卤化物固态电解质材料为玻璃-陶瓷相,化学通式为Li2.5Lu0.3Cd0.3Hf0.4Cl3Br2.6This example provides a method for preparing a halide solid electrolyte material, which differs from Example 1 only in that in step 1) under the protection of an argon atmosphere, 0.693 grams of LiCl, 2.544 grams of LuBr 3 , and 1.124 grams of CdCl were weighed. 2. 2.620 grams of HfCl 4 and 3.019 grams of LiBr; the above materials were placed in an agate mortar and ground for 10 minutes to obtain a mixture. The halide solid electrolyte material prepared in this example is a glass-ceramic phase, and its general chemical formula is Li 2.5 Lu 0.3 Cd 0.3 Hf 0.4 Cl 3 Br 2.6 .

实施例12Example 12

本实施例提供一种卤化物固态电解质材料的制备方法,其与实施例1相比区别仅在于步骤1)中在氩气气氛保护下,称取3.162克LiCl、3.806克InCl3、1.195克BaCl2和1.837克HfCl4;将上述物料置于玛瑙研钵中进行研磨10min,得到混合料。本实施例制备的卤化物固态电解质材料为玻璃-陶瓷相,化学通式为Li2.6In0.6Ba0.2Hf0.2Cl5.6This example provides a method for preparing a halide solid-state electrolyte material. Compared with Example 1, the only difference is that in step 1) under the protection of an argon atmosphere, 3.162 grams of LiCl, 3.806 grams of InCl 3 , and 1.195 grams of BaCl were weighed. 2 and 1.837 g of HfCl 4 ; the above materials were ground in an agate mortar for 10 min to obtain a mixture. The halide solid electrolyte material prepared in this example is a glass-ceramic phase with a general chemical formula of Li 2.6 In 0.6 Ba 0.2 Hf 0.2 Cl 5.6 .

实施例13Example 13

本实施例提供一种卤化物固态电解质材料的制备方法,其与实施例1相比区别仅在于步骤1)中在氩气气氛保护下,称取6.041克LiCl、2.875克ScCl3、0.324克ZnCl2和0.761克HfCl4;将上述物料置于玛瑙研钵中进行研磨10min,得到混合料。本实施例制备的卤化物固态电解质材料为玻璃-陶瓷相,化学通式为Li6Sc0.8Zn0.1Hf0.1Cl9This example provides a method for preparing a halide solid-state electrolyte material. Compared with Example 1, the only difference is that in step 1) under the protection of an argon atmosphere, 6.041 grams of LiCl, 2.875 grams of ScCl 3 , and 0.324 grams of ZnCl were weighed. 2 and 0.761 g of HfCl 4 ; the above materials were placed in an agate mortar and ground for 10 min to obtain a mixture. The halide solid electrolyte material prepared in this example is a glass-ceramic phase, and its general chemical formula is Li 6 Sc 0.8 Zn 0.1 Hf 0.1 Cl 9 .

实施例14Example 14

本实施例提供一种卤化物固态电解质材料的制备方法,其与实施例1相比区别仅在于步骤1)中在氩气气氛保护下,称取1.499克LiCl、4.344克InCl3、1.071克ZnCl2、2.746克ZrCl4和0.341克LiBr;将上述物料置于玛瑙研钵中进行研磨10min,得到混合料。本实施例制备的卤化物固态电解质材料为玻璃-陶瓷相,化学通式为LiIn0.5Zn0.2Zr0.3Cl4Br0.1This example provides a method for preparing a halide solid-state electrolyte material. Compared with Example 1, the only difference is that in step 1) under the protection of an argon atmosphere, 1.499 grams of LiCl, 4.344 grams of InCl 3 , and 1.071 grams of ZnCl were weighed. 2. 2.746 grams of ZrCl 4 and 0.341 grams of LiBr; the above materials were placed in an agate mortar and ground for 10 minutes to obtain a mixture. The halide solid electrolyte material prepared in this example is a glass-ceramic phase, and its general chemical formula is LiIn 0.5 Zn 0.2 Zr 0.3 Cl 4 Br 0.1 .

实施例15Example 15

本实施例提供一种卤化物固态电解质材料的制备方法,其与实施例1相比区别仅在于步骤1)中在氩气气氛保护下,称取3.441克LiCl、3.590克InCl3、0.369克ZnCl2和2.600克HfCl4;将上述物料置于玛瑙研钵中进行研磨10min,得到混合料。本实施例制备的卤化物固态电解质材料为玻璃-陶瓷相,化学通式为Li3In0.6Zn0.1Hf0.3Cl6.2This example provides a method for preparing a halide solid-state electrolyte material. Compared with Example 1, the only difference is that in step 1) under the protection of an argon atmosphere, 3.441 grams of LiCl, 3.590 grams of InCl 3 , and 0.369 grams of ZnCl were weighed. 2 and 2.600 g of HfCl 4 ; the above materials were ground in an agate mortar for 10 min to obtain a mixture. The halide solid electrolyte material prepared in this example is a glass-ceramic phase with a general chemical formula of Li 3 In 0.6 Zn 0.1 Hf 0.3 Cl 6.2 .

实施例16Example 16

本实施例提供一种卤化物固态电解质材料的制备方法,其与实施例1相比区别仅在于步骤1)中在氩气气氛保护下,称取4.255克LiCl、2.337克ScCl3、1.838克MgCl2、0.900克ZrCl4和0.671克LiBr;将上述物料置于玛瑙研钵中进行研磨10min,得到混合料。本实施例制备的卤化物固态电解质材料为玻璃-陶瓷相,化学通式为Li2.8Sc0.4Mg0.5Zr0.1Cl5.2Br0.2This example provides a method for preparing a halide solid-state electrolyte material. Compared with Example 1, the only difference is that in step 1) under the protection of an argon atmosphere, 4.255 grams of LiCl, 2.337 grams of ScCl 3 , and 1.838 grams of MgCl were weighed. 2. 0.900 g of ZrCl 4 and 0.671 g of LiBr; the above materials were ground in an agate mortar for 10 min to obtain a mixture. The halide solid electrolyte material prepared in this example is a glass-ceramic phase with a general chemical formula of Li 2.8 Sc 0.4 Mg 0.5 Zr 0.1 Cl 5.2 Br 0.2 .

实施例17Example 17

本实施例提供一种卤化物固态电解质材料的制备方法,其与实施例1相比区别仅在于步骤1)中在氩气气氛保护下,称取3.199克LiCl、0.266克GaCl3、0.206克ZnCl2和6.330克ZrCl4;将上述物料置于玛瑙研钵中进行研磨10min,得到混合料。本实施例制备的卤化物固态电解质材料为玻璃-陶瓷相,化学通式为Li2.5Ga0.05Zn0.05Zr0.9Cl6.35This example provides a method for preparing a halide solid electrolyte material, which differs from Example 1 only in that in step 1) under the protection of an argon atmosphere, 3.199 grams of LiCl, 0.266 grams of GaCl 3 , and 0.206 grams of ZnCl are weighed. 2 and 6.330 g of ZrCl 4 ; the above materials were ground in an agate mortar for 10 min to obtain a mixture. The halide solid electrolyte material prepared in this example is a glass-ceramic phase with a general chemical formula of Li 2.5 Ga 0.05 Zn 0.05 Zr 0.9 Cl 6.35 .

实施例18Example 18

本实施例提供一种卤化物固态电解质材料的制备方法,其与实施例1相比区别仅在于步骤1)中在氩气气氛保护下,称取2.368克LiCl、0.650克ErCl3、3.644克ZnCl2、0.190克HfCl4和3.147克LiBr;将上述物料置于玛瑙研钵中进行研磨10min,得到混合料。本实施例制备的卤化物固态电解质材料为玻璃-陶瓷相,化学通式为Li3.1Er0.08Zn0.9Hf0.02Cl4Br1.22This example provides a method for preparing a halide solid-state electrolyte material. Compared with Example 1, the only difference is that in step 1) under the protection of an argon atmosphere, 2.368 grams of LiCl, 0.650 grams of ErCl 3 , and 3.644 grams of ZnCl were weighed. 2. 0.190 g of HfCl 4 and 3.147 g of LiBr; the above materials were ground in an agate mortar for 10 min to obtain a mixture. The halide solid electrolyte material prepared in this example is a glass-ceramic phase with a general chemical formula of Li 3.1 Er 0.08 Zn 0.9 Hf 0.02 Cl 4 Br 1.22 .

实施例19Example 19

本实施例提供一种卤化物固态电解质材料的制备方法,其与实施例1相比区别仅在于步骤1)中在氩气气氛保护下,称取3.897克LiCl、1.992克LaCl3、1.083克MgCl2、3.028克ZrCl4;将上述物料置于玛瑙研钵中进行研磨10min,得到混合料。本实施例制备的卤化物固态电解质材料为玻璃-陶瓷相,化学通式为Li2.83La0.25Mg0.35Zr0.4Cl5.88This example provides a method for preparing a halide solid-state electrolyte material. Compared with Example 1, the only difference is that in step 1) under the protection of an argon atmosphere, 3.897 grams of LiCl, 1.992 grams of LaCl 3 , and 1.083 grams of MgCl were weighed. 2. 3.028 grams of ZrCl 4 ; the above materials were ground in an agate mortar for 10 minutes to obtain a mixture. The halide solid electrolyte material prepared in this example is a glass-ceramic phase with a general chemical formula of Li 2.83 La 0.25 Mg 0.35 Zr 0.4 Cl 5.88 .

实施例20Example 20

本实施例提供一种卤化物固态电解质材料的制备方法,其与实施例1相比区别仅在于步骤1)中在氩气气氛保护下,称取2.113克LiCl、3.942克GdCl3、0.680克ZnCl2、1.597克HfCl4和1.668克LiI;将上述物料置于玛瑙研钵中进行研磨10min,得到混合料。本实施例制备的卤化物固态电解质材料为玻璃-陶瓷相,化学通式为Li2.5Gd0.6Zn0.2Hf0.2Cl5I0.5This example provides a method for preparing a halide solid electrolyte material, which differs from Example 1 only in that in step 1) under the protection of an argon atmosphere, 2.113 grams of LiCl, 3.942 grams of GdCl 3 , and 0.680 grams of ZnCl are weighed. 2. 1.597 grams of HfCl 4 and 1.668 grams of LiI; the above materials were placed in an agate mortar and ground for 10 minutes to obtain a mixture. The halide solid electrolyte material prepared in this example is a glass-ceramic phase, and its general chemical formula is Li 2.5 Gd 0.6 Zn 0.2 Hf 0.2 Cl 5 I 0.5 .

对比例1Comparative example 1

本对比例提供一种卤化物固态电解质材料的制备方法,其与实施例1相比区别仅在于步骤1)中在氩气气氛保护下,称取3.944克LiCl和6.056克YCl3;将上述物料置于玛瑙研钵中进行研磨10min,得到混合料。本对比例制备的卤化物固态电解质材料为玻璃-陶瓷相,化学通式为Li3YCl6This comparative example provides a kind of preparation method of halide solid electrolyte material, and its difference compared with embodiment 1 is that in step 1) under the protection of argon atmosphere, weigh 3.944 grams of LiCl and 6.056 grams of YCl 3 ; Place in an agate mortar and grind for 10 minutes to obtain a mixture. The halide solid electrolyte material prepared in this comparative example is a glass-ceramic phase with a general chemical formula of Li 3 YCl 6 .

测试例test case

对上述实施例和对比例制备的电解质材料的离子电导率进行测试,具体如下:称取100mg电解质粉末,放在绝缘外筒中,将其以300MPa的压力进行加压成型,进行交流阻抗谱测试,根据阻抗值计算出电解质材料的离子电导率,测试结果如表1所示。The ionic conductivity of the electrolyte materials prepared in the above examples and comparative examples is tested as follows: Weigh 100 mg of electrolyte powder, place it in an insulating outer cylinder, pressurize it with a pressure of 300 MPa, and perform an AC impedance spectrum test. The ionic conductivity of the electrolyte material was calculated according to the impedance value, and the test results are shown in Table 1.

表1电解质材料的性能Table 1 Properties of electrolyte materials

Figure BDA0003288024670000091
Figure BDA0003288024670000091

Figure BDA0003288024670000101
Figure BDA0003288024670000101

由表1可以看出,本发明通过在电解质组分中同时引入二价和四价离子,灵活调节卤化物微观结构、优化Li/空穴配比,促进锂离子在晶格中之间的快速穿梭,可以实现大幅提升卤化物离子电导率的效果,并减少稀缺昂贵的三价离子使用,降低卤化物制备成本,为卤化物材料的实际应用提供了新的技术路线与解决方案,丰富卤化物固态电解质材料的种类以及实际的应用价值。It can be seen from Table 1 that the present invention introduces divalent and tetravalent ions simultaneously into the electrolyte components, flexibly adjusts the halide microstructure, optimizes the Li/hole ratio, and promotes the rapid exchange of lithium ions in the lattice. Shuttle can achieve the effect of greatly improving the conductivity of halide ions, reduce the use of scarce and expensive trivalent ions, reduce the cost of halide preparation, provide a new technical route and solution for the practical application of halide materials, and enrich halides Types of solid electrolyte materials and their practical application value.

显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。Apparently, the above-mentioned embodiments are only examples for clear description, rather than limiting the implementation. For those of ordinary skill in the art, other changes or changes in different forms can be made on the basis of the above description. It is not necessary and impossible to exhaustively list all the implementation manners here. And the obvious changes or changes derived therefrom are still within the scope of protection of the present invention.

Claims (10)

1.一种卤化物固态电解质材料,其特征在于,所述电解质材料的化学通式为LiaA1-x- yMxNyX3+a-x+y,其中1≤a≤6;0.02≤x≤0.9;0.02≤y≤0.9;A选自Ga3+、In3+、Fe3+、Y3+、Sc3+、+3价La系金属中的一种或多种;M选自Cu2+、Zn2+、Cd2+、Mg2+、Ca2+、Sr2+、Ba2+中的一种或多种;N选自Zr4+、Hf4+、Ti4+中的一种或多种;X选自F-、Cl-、Br-、I-中的一种或多种;1. A halide solid electrolyte material, characterized in that, the general chemical formula of the electrolyte material is LiaA 1-x- y M x N y X 3+a-x+y , wherein 1≤a≤6; 0.02 ≤x≤0.9; 0.02≤y≤0.9; A is selected from one or more of Ga 3+ , In 3+ , Fe 3+ , Y 3+ , Sc 3+ , and +3-valent La metals; M is selected from One or more of Cu 2+ , Zn 2+ , Cd 2+ , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ ; N is selected from Zr 4+ , Hf 4+ , Ti 4+ One or more of; X is selected from one or more of F - , Cl - , Br - , I - ; M代表的二价离子取代A代表的三价离子会增加锂离子、减少空穴,N代表的四价离子取代A代表的三价离子会增加空穴、减少锂离子,二价离子、四价离子、三价离子在晶格中混合排列,产生电子云排布的局域差异化。Substituting the divalent ions represented by M for the trivalent ions represented by A will increase lithium ions and reduce holes, and the substitution of tetravalent ions represented by N for trivalent ions represented by A will increase holes and reduce lithium ions, divalent ions, tetravalent ions Ions and trivalent ions are mixed and arranged in the crystal lattice, resulting in local differences in electron cloud arrangement. 2.根据权利要求1所述的卤化物固态电解质材料,其特征在于,A选自Ga3+、In3+、Fe3+、Y3 +、Sc3+、Ho3+、Er3+、Lu3+、Yb3+中的一种或多种;和/或,M选自Mg2+、Zn2+、Cu2+中的一种或多种;和/或,N选自Zr4+和/或Hf4+2. The halide solid electrolyte material according to claim 1, wherein A is selected from Ga 3+ , In 3+ , Fe 3+ , Y 3+ , Sc 3+ , Ho 3+ , Er 3+ , One or more of Lu 3+ , Yb 3+ ; and/or, M is selected from one or more of Mg 2+ , Zn 2+ , Cu 2+ ; and/or, N is selected from Zr 4 + and/or Hf 4+ ; 和/或,2.2≤a≤3.8;和/或,0.1≤x≤0.5;和/或,0.1≤y≤0.7。And/or, 2.2≤a≤3.8; and/or, 0.1≤x≤0.5; and/or, 0.1≤y≤0.7. 3.根据权利要求2所述的卤化物固态电解质材料,其特征在于,A选自Fe3+,N选自Hf4+3. The halide solid electrolyte material according to claim 2, wherein A is selected from Fe 3+ , and N is selected from Hf 4+ . 4.根据权利要求1-3任一项所述的卤化物固态电解质材料,其特征在于,所述卤化物固态电解质材料为玻璃相、玻璃-陶瓷相或结晶相中的任意一种形式。4. The halide solid electrolyte material according to any one of claims 1-3, characterized in that, the halide solid electrolyte material is in any form of a glass phase, a glass-ceramic phase or a crystalline phase. 5.权利要求1-4任一项所述卤化物固态电解质材料的制备方法,其特征在于,包括如下步骤:5. The preparation method of the halide solid-state electrolyte material according to any one of claims 1-4, characterized in that, comprising the steps of: 1)将配方比例的原料进行混合,得到混合料;1) mixing the raw materials in the formula ratio to obtain the mixture; 2)将混合料进行研磨、烧结,得到所述卤化物固态电解质材料。2) Grinding and sintering the mixture to obtain the halide solid electrolyte material. 6.根据权利要求5所述卤化物固态电解质材料的制备方法,其特征在于,步骤2)中采用球磨方式对混合料进行研磨,球磨转速为100-500转/分钟,球磨时间为1-50h;6. The preparation method of the halide solid electrolyte material according to claim 5, characterized in that, in step 2), the mixture is ground by ball milling, the ball milling speed is 100-500 rpm, and the ball milling time is 1-50h ; 研磨步骤在惰性气氛下进行;The grinding step is carried out under an inert atmosphere; 烧结温度为200-600℃,保温时间为1-40h。The sintering temperature is 200-600°C, and the holding time is 1-40h. 7.根据权利要求5或6所述卤化物固态电解质材料的制备方法,其特征在于,步骤2)中烧结结束后还包括对烧结后的物料进行研磨的步骤。7. The preparation method of the halide solid electrolyte material according to claim 5 or 6, characterized in that, after the sintering in step 2), the step of grinding the sintered material is also included. 8.根据权利要求5所述卤化物固态电解质材料的制备方法,其特征在于,8. the preparation method of halide solid electrolyte material according to claim 5, is characterized in that, 步骤1)中所述原料为锂源、A源、M源和N源,其中锂源为卤化锂,A源选自Ga 的卤化物、In的卤化物、Fe的卤化物、Y的卤化物、Sc的卤化物和La系金属的卤化物中的一种或多种;The raw materials described in step 1) are lithium source, A source, M source and N source, wherein the lithium source is lithium halide, and the A source is selected from Ga halide, In halide, Fe halide, Y halide , one or more of Sc halides and La-series metal halides; M源选自Cu的卤化物、Zn的卤化物、Cd的卤化物、Mg的卤化物、Ca的卤化物、Sr的卤化物和Ba的卤化物中的一种或多种;The M source is selected from one or more of Cu halides, Zn halides, Cd halides, Mg halides, Ca halides, Sr halides and Ba halides; N源选自Zr的卤化物、Hf的卤化物和Ti的卤化物中的一种或多种。The N source is selected from one or more of Zr halides, Hf halides and Ti halides. 9.一种锂二次电池,包括正极层、电解质层和负极层,其特征在于,所述正极层、电解质层和负极层的至少一层中含有权利要求1-4任一项所述的卤化物固态电解质材料或权利要求5-8任一项所述制备方法制备得到的卤化物固态电解质材料。9. A lithium secondary battery, comprising positive electrode layer, electrolyte layer and negative electrode layer, characterized in that at least one layer of said positive electrode layer, electrolyte layer and negative electrode layer contains any one of claims 1-4 The halide solid electrolyte material or the halide solid electrolyte material prepared by the preparation method described in any one of claims 5-8. 10.根据权利要求9所述的锂二次电池,其特征在于,所述锂二次电池包括液相锂二次电池、半固态锂二次电池以及全固态锂二次电池。10. The lithium secondary battery according to claim 9, wherein the lithium secondary battery comprises a liquid phase lithium secondary battery, a semi-solid lithium secondary battery and an all-solid lithium secondary battery.
CN202111153803.7A 2021-09-29 2021-09-29 Halide solid electrolyte material and preparation method and application thereof Active CN113889662B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111153803.7A CN113889662B (en) 2021-09-29 2021-09-29 Halide solid electrolyte material and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111153803.7A CN113889662B (en) 2021-09-29 2021-09-29 Halide solid electrolyte material and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN113889662A CN113889662A (en) 2022-01-04
CN113889662B true CN113889662B (en) 2022-11-29

Family

ID=79008391

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111153803.7A Active CN113889662B (en) 2021-09-29 2021-09-29 Halide solid electrolyte material and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN113889662B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115528298A (en) * 2022-08-12 2022-12-27 中山大学 Sodium ion halide solid electrolyte material and preparation method and application thereof
CN115275331B (en) * 2022-08-16 2024-07-05 中国科学技术大学 Halide all-solid-state battery material, and preparation method and application thereof
CN115799621B (en) * 2022-09-09 2024-01-16 南开大学 Composite halide solid electrolyte membrane and solid battery prepared from same
CN115732751A (en) * 2022-11-28 2023-03-03 蜂巢能源科技(无锡)有限公司 Halide solid electrolyte material, preparation method thereof and lithium ion battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3407412A1 (en) * 2017-05-24 2018-11-28 Basf Se Ionically conductive compounds and related uses
CN111316485A (en) * 2018-01-05 2020-06-19 松下知识产权经营株式会社 Positive electrode material and battery
CN111509222A (en) * 2020-04-15 2020-08-07 国联汽车动力电池研究院有限责任公司 Halide solid electrolyte material and preparation method and application thereof
CN111566853A (en) * 2018-01-26 2020-08-21 松下知识产权经营株式会社 Positive electrode material and battery using same
CN111566756A (en) * 2018-01-26 2020-08-21 松下知识产权经营株式会社 Solid Electrolyte Materials and Batteries
WO2020188915A1 (en) * 2019-03-15 2020-09-24 パナソニックIpマネジメント株式会社 Solid electrolyte material and battery using same
WO2021186833A1 (en) * 2020-03-18 2021-09-23 パナソニックIpマネジメント株式会社 Solid electrolyte material and battery in which same is used
CN113454735A (en) * 2019-02-28 2021-09-28 松下知识产权经营株式会社 Electrolyte material and battery using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019094359A1 (en) * 2017-11-07 2019-05-16 The Regents Of The University Of Michigan Solid-state battery electrolyte having increased stability towards cathode materials
CN112216863A (en) * 2020-09-03 2021-01-12 北京当升材料科技股份有限公司 Halogenated solid electrolyte material, flexible solid electrolyte membrane, lithium battery and preparation method of flexible solid electrolyte membrane

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3407412A1 (en) * 2017-05-24 2018-11-28 Basf Se Ionically conductive compounds and related uses
CN111316485A (en) * 2018-01-05 2020-06-19 松下知识产权经营株式会社 Positive electrode material and battery
CN111566853A (en) * 2018-01-26 2020-08-21 松下知识产权经营株式会社 Positive electrode material and battery using same
CN111566756A (en) * 2018-01-26 2020-08-21 松下知识产权经营株式会社 Solid Electrolyte Materials and Batteries
CN113454735A (en) * 2019-02-28 2021-09-28 松下知识产权经营株式会社 Electrolyte material and battery using the same
WO2020188915A1 (en) * 2019-03-15 2020-09-24 パナソニックIpマネジメント株式会社 Solid electrolyte material and battery using same
WO2021186833A1 (en) * 2020-03-18 2021-09-23 パナソニックIpマネジメント株式会社 Solid electrolyte material and battery in which same is used
CN111509222A (en) * 2020-04-15 2020-08-07 国联汽车动力电池研究院有限责任公司 Halide solid electrolyte material and preparation method and application thereof

Also Published As

Publication number Publication date
CN113889662A (en) 2022-01-04

Similar Documents

Publication Publication Date Title
CN113889662B (en) Halide solid electrolyte material and preparation method and application thereof
Li et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries
CN108493479B (en) A kind of sulfide solid electrolyte based on oxygen doping and preparation method thereof
Chen et al. Microstructural and electrochemical properties of Al-and Ga-doped Li7La3Zr2O12 garnet solid electrolytes
Jiang et al. Investigation of Mg2+, Sc3+ and Zn2+ doping effects on densification and ionic conductivity of low-temperature sintered Li7La3Zr2O12 garnets
JP2019102460A (en) Lithium ion conductive composite material containing at least one polymer and lithium ion conductive particle, and manufacturing method of lithium ion conductive body from composite material
AU2015287769B2 (en) Producing lithium
CN107078341B (en) Solid electrolyte for Li battery and method for preparing same
Zhang et al. Enhanced densification and ionic conductivity of Li-garnet electrolyte: efficient Li2CO3 elimination and fast grain-boundary transport construction
nan Guo et al. Iron trifluoride as a high voltage cathode material for thermal batteries
JP2022531271A (en) Lithium secondary batteries Solid electrolyte materials, electrodes and batteries
Zhang et al. Lithium halide coating as an effective intergrain engineering for garnet-type solid electrolytes avoiding high temperature sintering
CN106232526A (en) The manufacture method of garnet type compound and garnet type compound, and all solid lithium secondary battery containing this garnet type compound
CN113258130B (en) Amorphous halide solid electrolyte, preparation and application in all-solid-state battery
CN101740753A (en) Lithium battery cathode pole piece
Zhang et al. Effect of lithium borate addition on the physical and electrochemical properties of the lithium ion conductor Li3. 4Si0. 4P0. 6O4
CN114335681A (en) Inorganic halide solid electrolyte, preparation method thereof, lithium ion battery and application
CN115528298A (en) Sodium ion halide solid electrolyte material and preparation method and application thereof
JP2016213178A (en) Lithium ion conductor and lithium ion battery arranged by use thereof
Wang et al. Accelerating the Development of LLZO in Solid‐State Batteries Toward Commercialization: A Comprehensive Review
CN114230342B (en) Rare earth oxide doped modified Ga-LLZO solid electrolyte and preparation method thereof
TW201938489A (en) Ion conductor containing Li2B12H12 and LiBH4, method for producing same, and solid electrolyte for all-solid-state batteries, which contains said ion conductor
CN110911738B (en) Artificial solid electrolyte intermediate phase, preparation method thereof and solid lithium ion battery
JP2021150140A (en) Method for manufacturing garnet type solid electrolyte sintered compact for all-solid lithium ion battery, and method for manufacturing all-solid lithium ion battery
CN115911531A (en) Halide glass ceramic phase solid electrolyte universal for lithium and sodium and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: No.8899 Xincheng Avenue, Jintan District, Changzhou City, Jiangsu Province

Patentee after: SVOLT Energy Technology Co.,Ltd.

Country or region after: China

Address before: No.8899 Xincheng Avenue, Jintan District, Changzhou City, Jiangsu Province

Patentee before: SVOLT Energy Technology Co.,Ltd.

Country or region before: China

CP03 Change of name, title or address