CN113887677B - Classification method, apparatus, apparatus and medium for images of intrapapillary capillaries - Google Patents
Classification method, apparatus, apparatus and medium for images of intrapapillary capillaries Download PDFInfo
- Publication number
- CN113887677B CN113887677B CN202111479461.8A CN202111479461A CN113887677B CN 113887677 B CN113887677 B CN 113887677B CN 202111479461 A CN202111479461 A CN 202111479461A CN 113887677 B CN113887677 B CN 113887677B
- Authority
- CN
- China
- Prior art keywords
- blood vessel
- characteristic
- area
- diameter
- target blood
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 210000004204 blood vessel Anatomy 0.000 claims abstract description 210
- 238000003062 neural network model Methods 0.000 claims abstract description 38
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 20
- 238000013145 classification model Methods 0.000 claims abstract description 12
- 238000011002 quantification Methods 0.000 claims description 50
- 238000012216 screening Methods 0.000 claims description 21
- 238000012549 training Methods 0.000 claims description 18
- 238000004590 computer program Methods 0.000 claims description 16
- 238000004364 calculation method Methods 0.000 claims description 14
- 238000009826 distribution Methods 0.000 claims description 9
- 238000013139 quantization Methods 0.000 claims description 9
- 238000000605 extraction Methods 0.000 claims description 2
- 208000000461 Esophageal Neoplasms Diseases 0.000 abstract description 15
- 206010030155 Oesophageal carcinoma Diseases 0.000 abstract description 15
- 201000004101 esophageal cancer Diseases 0.000 abstract description 15
- 238000013528 artificial neural network Methods 0.000 abstract description 12
- 230000008595 infiltration Effects 0.000 abstract description 8
- 238000001764 infiltration Methods 0.000 abstract description 8
- 238000005516 engineering process Methods 0.000 abstract description 6
- 239000000284 extract Substances 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 14
- 230000002159 abnormal effect Effects 0.000 description 12
- 230000005856 abnormality Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 8
- 230000009400 cancer invasion Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 241001292396 Cirrhitidae Species 0.000 description 4
- 210000000981 epithelium Anatomy 0.000 description 4
- 238000002372 labelling Methods 0.000 description 4
- 230000011218 segmentation Effects 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 210000004088 microvessel Anatomy 0.000 description 3
- 238000002046 chromoendoscopy Methods 0.000 description 2
- 238000001839 endoscopy Methods 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 210000004877 mucosa Anatomy 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 210000004876 tela submucosa Anatomy 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 206010061534 Oesophageal squamous cell carcinoma Diseases 0.000 description 1
- 206010054826 Pharyngeal lesion Diseases 0.000 description 1
- 208000036765 Squamous cell carcinoma of the esophagus Diseases 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 208000007276 esophageal squamous cell carcinoma Diseases 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000005747 tumor angiogenesis Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Image Analysis (AREA)
- Endoscopes (AREA)
Abstract
Description
技术领域technical field
本发明涉及医疗辅助技术领域,尤其涉及一种上皮乳头内毛细血管图像的分类方法、装置、设备及介质。The invention relates to the technical field of medical assistance, in particular to a method, device, equipment and medium for classifying capillary images in epithelial papillae.
背景技术Background technique
上皮乳头内毛细血管袢(IntraaPillaryCapillary Loops,IPCL)是垂直于鳞状上皮下的分支血管而形成的微血管。其中,上皮乳头内毛细血管袢的形态改变程度是在内镜下诊断食管癌浸润深度的关键指标,IPCL结构的破坏随着肿瘤的浸润益增,因而识别IPCL的变化在评价食管-咽部病变中起着重要作用。当鳞状细胞癌侵袭至固有粘膜层时,不规则的微血管呈管径增粗的袢状形成;当肿瘤侵袭至粘膜肌层或浅层侵袭粘膜下层时,异常微血管袢状结构消失,呈明显的拉长变形;肿瘤深度侵及粘膜下层,IPCL结构的通常呈完全破坏状态,且血管的直径至少是浅层浸润血管直径的3倍,并伴有口径增粗、形态多样的异常肿瘤血管发生。因此,食管鳞状细胞癌的IPCL血管呈现出扩张、弯曲、口径变化和形状异常等不规则程度异常。Epithelial papillary capillary loops (IntraaPillary Capillary Loops, IPCL) are microvessels formed perpendicular to the branching vessels under the squamous epithelium. Among them, the degree of morphological changes of capillary loops in the epithelial papilla is a key indicator for the diagnosis of the depth of esophageal cancer invasion under endoscopy. The destruction of IPCL structure increases with tumor infiltration, so identifying changes in IPCL is important in evaluating esophagus-pharyngeal lesions. plays an important role in. When squamous cell carcinoma invades the mucosa propria, irregular microvessels form in the form of loops with enlarged diameters; when the tumor invades the muscularis mucosa or superficially invades the submucosa, the abnormal microvessel loops disappear, showing obvious The tumor deeply invades the submucosa, and the structure of IPCL is usually completely destroyed, and the diameter of the blood vessel is at least 3 times that of the superficial infiltrating blood vessel, accompanied by abnormal tumor angiogenesis with enlarged diameter and various shapes. . Therefore, IPCL vessels of esophageal squamous cell carcinoma exhibit abnormal degrees of irregularity such as dilation, tortuosity, caliber changes, and abnormal shapes.
目前,食管病变性质判断通常是采用窄带成像(NBI)技术来观察上皮乳头内毛细血管袢来确定,具体是将粘膜表面的血管被染成棕色以与背景组织形成高对比度来详细检查毛细血管的变化,然后根据IPCL的异常程度提出分型标准,以预测食管癌的浸润深度。但是由于染色放大下血管异型程度评估标准难以同质化,并受评估者主观性影响大,难以实现染色放大内镜下食管IPCL异常程度同质化和高精度评价,导致在通过染色内镜对食管癌浸润深度判断时,准确性较差,效率较低的技术问题。At present, the nature of esophageal lesions is usually determined by using narrow-band imaging (NBI) technology to observe the capillary loops in the epithelial papilla. Specifically, the blood vessels on the mucosal surface are stained brown to form a high contrast with the background tissue to examine the capillaries in detail. Changes, and then propose classification criteria according to the abnormal degree of IPCL to predict the depth of invasion of esophageal cancer. However, due to the difficulty of homogenization of the evaluation criteria for the degree of vascular atypia under dye magnification and the great influence of the assessor’s subjectivity, it is difficult to achieve homogenization and high-precision evaluation of the degree of esophageal IPCL abnormality under dye magnification endoscopy. The technical problems of poor accuracy and low efficiency when judging the depth of esophageal cancer invasion.
发明内容SUMMARY OF THE INVENTION
本发明实施例提供了一种上皮乳头内毛细血管图像的分类方法、装置、设备及介质,解决了现有技术中在染色内镜下无法精准识别食管癌浸润深度的技术问题。The embodiments of the present invention provide a method, device, equipment and medium for classifying intrapapillary capillary images, which solve the technical problem that the depth of esophageal cancer invasion cannot be accurately identified under chromoendoscopy in the prior art.
第一方面,本发明实施例提供了一种上皮乳头内毛细血管图像的分类方法,其包括:In a first aspect, an embodiment of the present invention provides a method for classifying intrapapillary capillary images, which includes:
将上皮乳头内毛细血管的内镜图像输入至预先训练的神经网络模型中,得到所述内镜图像的有效区域;Input the endoscopic image of the capillaries in the epithelial papilla into the pre-trained neural network model to obtain the effective area of the endoscopic image;
根据连通域算法从所述有效区域中获取所述内镜图像中的目标血管区域;Obtain the target blood vessel region in the endoscopic image from the effective region according to a connected domain algorithm;
获取所述目标血管区域中目标血管的特征性直径、特征性扭曲性量化值、特征性面积占比量、质心偏心距以及整图密度;obtaining the characteristic diameter, characteristic distortion quantification value, characteristic area ratio, centroid eccentricity, and whole image density of the target blood vessel in the target blood vessel region;
将所述特征性直径、所述特征性扭曲性量化值、所述特征性面积占比量、所述质心偏心距以及所述整图密度输入至预先训练的分类模型中,得到所述内镜图像的分类结果。Inputting the characteristic diameter, the characteristic distortion quantification value, the characteristic area ratio, the centroid eccentricity and the whole image density into a pre-trained classification model to obtain the endoscope Image classification results.
第二方面,本发明实施例提供了一种上皮乳头内毛细血管图像的分类装置,其包括:In a second aspect, an embodiment of the present invention provides an apparatus for classifying intrapapillary capillary images, which includes:
第一输入单元,用于将上皮乳头内毛细血管的内镜图像输入至预先训练的神经网络模型中,得到所述内镜图像的有效区域;a first input unit, configured to input the endoscopic image of the capillaries in the epithelial papilla into a pre-trained neural network model to obtain an effective area of the endoscopic image;
第一获取单元,用于根据连通域算法从所述有效区域中获取所述内镜图像中的目标血管区域;a first acquiring unit, configured to acquire a target blood vessel region in the endoscopic image from the effective region according to a connected domain algorithm;
第二获取单元,用于获取所述目标血管区域中目标血管的特征性直径、特征性扭曲性量化值、特征性面积占比量、质心偏心距以及整图密度;a second acquiring unit, configured to acquire the characteristic diameter, characteristic distortion quantification value, characteristic area ratio, centroid eccentricity, and whole image density of the target blood vessel in the target blood vessel region;
第二输入单元,用于将所述特征性直径、所述特征性扭曲性量化值、所述特征性面积占比量、所述质心偏心距以及所述整图密度输入至预先训练的分类模型中,得到所述内镜图像的分类结果。The second input unit is used for inputting the characteristic diameter, the characteristic distortion quantization value, the characteristic area ratio, the centroid eccentricity and the whole image density to the pre-trained classification model , the classification result of the endoscopic image is obtained.
第三方面,本发明实施例又提供了一种计算机设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如上述第一方面所述的上皮乳头内毛细血管图像的分类方法。In a third aspect, an embodiment of the present invention further provides a computer device, including a memory, a processor, and a computer program stored on the memory and executable on the processor, wherein the processor executes The computer program implements the method for classifying epithelial intrapapillary capillary images according to the first aspect.
第四方面,本发明实施例还提供了一种计算机可读存储介质,其中所述计算机可读存储介质存储有计算机程序,所述计算机程序当被处理器执行时使所述处理器执行上述第一方面所述的上皮乳头内毛细血管图像的分类方法。In a fourth aspect, an embodiment of the present invention further provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program, and when executed by a processor, the computer program causes the processor to execute the above-mentioned first step. In one aspect, the method for classifying intrapapillary capillary images of the epithelium.
本发明实施例提供了一种上皮乳头内毛细血管图像的分类方法、装置、设备及介质,该方法采用神经网络技术从内镜图像中提取目标血管以获取评价目标血管的特征性直径、特征性扭曲性量化值、特征性面积占比量、质心偏心距以及整图密度的五个指标,然后根据该五个指标对目标血管进行分类,根据目标血管的分类结果便可确定上皮乳头内毛细血管袢的当前形态,进而实现对食管癌浸润深度进行精准的判断,提高了食管癌浸润深度判断的效率以及准确率。Embodiments of the present invention provide a method, device, equipment and medium for classifying intrapapillary capillary images. The method uses neural network technology to extract target blood vessels from endoscopic images to obtain characteristic diameters, characteristic diameters, and characteristics of target blood vessels for evaluation. Five indicators of distortion quantification value, characteristic area ratio, centroid eccentricity, and whole image density, and then classify the target blood vessels according to the five indicators, and determine the intrapapillary capillaries according to the classification results of the target blood vessels The current shape of the loop can be used to accurately judge the depth of esophageal cancer invasion and improve the efficiency and accuracy of esophageal cancer invasion depth judgment.
附图说明Description of drawings
为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the technical solutions of the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the drawings in the following description are some embodiments of the present invention, which are of great significance to the art For those of ordinary skill, other drawings can also be obtained from these drawings without any creative effort.
图1为本发明实施例提供的上皮乳头内毛细血管图像的分类方法的流程示意图;1 is a schematic flowchart of a method for classifying intrapapillary capillary images according to an embodiment of the present invention;
图2为本发明实施例提供的上皮乳头内毛细血管图像的分类方法的子流程示意图;2 is a schematic diagram of a sub-flow of a method for classifying intrapapillary capillary images according to an embodiment of the present invention;
图3为本发明实施例提供的上皮乳头内毛细血管图像的分类方法的另一流程示意图;3 is another schematic flowchart of a method for classifying intrapapillary capillary images according to an embodiment of the present invention;
图4为本发明实施例提供的上皮乳头内毛细血管图像的分类方法的另一流程示意图;4 is another schematic flowchart of a method for classifying intrapapillary capillary images according to an embodiment of the present invention;
图5为本发明实施例提供的上皮乳头内毛细血管图像的分类方法的另一流程示意图;5 is another schematic flowchart of a method for classifying intrapapillary capillary images according to an embodiment of the present invention;
图6为本发明实施例提供的上皮乳头内毛细血管图像的分类方法的另一流程示意图;6 is another schematic flowchart of a method for classifying intrapapillary capillary images according to an embodiment of the present invention;
图7为本发明实施例提供的上皮乳头内毛细血管图像的分类方法的另一流程示意图;7 is another schematic flowchart of a method for classifying intrapapillary capillary images according to an embodiment of the present invention;
图8为本发明实施例提供的上皮乳头内毛细血管图像的分类装置的示意性框图;8 is a schematic block diagram of an apparatus for classifying intrapapillary capillary images according to an embodiment of the present invention;
图9为本发明实施例提供的计算机设备的示意性框图;9 is a schematic block diagram of a computer device provided by an embodiment of the present invention;
图10为本发明实施例提供的具体应用流程图;10 is a specific application flowchart provided by an embodiment of the present invention;
图11为本发明实施例提供的获取内镜图像中有效区域的流程图;11 is a flowchart of obtaining an effective area in an endoscopic image according to an embodiment of the present invention;
图12为本发明实施例提供的采用面积法判断目标血管的每个像素点是否位于目标血管区域内的坐标图;12 is a coordinate diagram for judging whether each pixel of a target blood vessel is located in a target blood vessel area by using an area method according to an embodiment of the present invention;
图13为本发明实施例提供的获取内镜图像中目标血管的效果图;13 is an effect diagram of acquiring a target blood vessel in an endoscopic image according to an embodiment of the present invention;
图14为本发明实施例提供的采用Halcon测量内镜图像的目标血管的直径的示意图;14 is a schematic diagram of measuring the diameter of a target blood vessel in an endoscopic image by using Halcon according to an embodiment of the present invention;
图15为本发明实施例提供的内镜图像中目标血管的扭曲性量化的示意图;15 is a schematic diagram of the distortion quantification of a target blood vessel in an endoscopic image according to an embodiment of the present invention;
图16为本发明实施例提供的内镜图像的几何中心以及有效区域的等效质心的示意图。FIG. 16 is a schematic diagram of a geometric center of an endoscopic image and an equivalent centroid of an effective area according to an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。It is to be understood that, when used in this specification and the appended claims, the terms "comprising" and "comprising" indicate the presence of the described features, integers, steps, operations, elements and/or components, but do not exclude one or The presence or addition of a number of other features, integers, steps, operations, elements, components, and/or sets thereof.
还应当理解,在此本发明说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本发明。如在本发明说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。It is also to be understood that the terminology used in this specification of the present invention is for the purpose of describing particular embodiments only and is not intended to limit the present invention. As used in this specification and the appended claims, the singular forms "a," "an," and "the" are intended to include the plural unless the context clearly dictates otherwise.
还应当进一步理解,在本发明说明书和所附权利要求书中使用的术语“和/ 或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。It should also be further understood that, as used in this specification and the appended claims, the term "and/or" refers to and including any and all possible combinations of one or more of the associated listed items .
请参阅图1,图1为本发明实施例提供的上皮乳头内毛细血管图像的分类方法的流程示意图。本发明实施例的所述的上皮乳头内毛细血管图像的分类方法应用于终端设备中,该方法通过安装于终端设备中的应用软件进行执行。其中,终端设备为具备接入互联网功能的终端设备,例如台式电脑、笔记本电脑、平板电脑或手机等终端设备。Please refer to FIG. 1 . FIG. 1 is a schematic flowchart of a method for classifying intrapapillary capillary images according to an embodiment of the present invention. The method for classifying epithelial capillary images in the embodiment of the present invention is applied to a terminal device, and the method is executed by application software installed in the terminal device. The terminal device is a terminal device capable of accessing the Internet, such as a desktop computer, a notebook computer, a tablet computer, or a mobile phone and other terminal devices.
下面对所述的上皮乳头内毛细血管图像的分类方法进行详细说明。The classification method of the epithelial intrapapillary capillary images will be described in detail below.
如图1所示,该方法包括以下步骤S110~S140。As shown in FIG. 1, the method includes the following steps S110-S140.
S110、将上皮乳头内毛细血管的内镜图像输入至预先训练的神经网络模型中,得到所述内镜图像的有效区域。S110. Input the endoscopic image of the capillaries in the epithelial papilla into a pre-trained neural network model to obtain an effective area of the endoscopic image.
其中,所述内镜图像通过NBI技术得到且所述内镜图像中存在有上皮乳头内毛细血管,所述神经网络模型为预先训练好且用于从所述内镜图像中提取含有上皮乳头内毛细血管的特征信息,即所述有效区域。Wherein, the endoscopic image is obtained by NBI technology and there are capillaries within the epithelial papillary in the endoscopic image, and the neural network model is pre-trained and is used for extracting from the endoscopic image the intramapillary capillaries containing the epithelium The characteristic information of capillaries, that is, the effective area.
具体的,所述神经网络模型为具有图像分割功能的神经网络构建得到,该神经网络既可以为Unet神经网络,也可以为Mask-RCNN神经网络。Specifically, the neural network model is constructed by a neural network with an image segmentation function, and the neural network can be either a Unet neural network or a Mask-RCNN neural network.
需要说明的是,在构建所述神经网络模型的过程中,具体所述神经网络模型具体采用的神经网络可根据实际情况进行选择,本发明不做具体限定。It should be noted that, in the process of constructing the neural network model, the neural network specifically adopted by the neural network model can be selected according to the actual situation, which is not specifically limited in the present invention.
在其他发明实施例中,如图2所示,步骤S110之前,还包括:S210和S220。In other inventive embodiments, as shown in FIG. 2 , before step S110 , the steps further include: S210 and S220 .
S210、将训练样本输入至所述神经网络模型中,得到所述神经网络模型的均方误差损失;S210, input the training sample into the neural network model to obtain the mean square error loss of the neural network model;
S220、根据所述均方误差损失更新所述神经网络模型的网络参数。S220. Update the network parameters of the neural network model according to the mean square error loss.
在本实施例中,如图11所示,图11为本发明实施例提供的获取内镜图像中有效区域的流程图。所述神经网络模型通过Unet神经网络构建得到,其中Unet神经网络根据全卷积神经网络上进行改进得到,Unet神经网络通过加强层与层之间的联系,加上上采样和下卷积,实现特征的充分提取,进而在较少的训练样本的情况下实现准确的分割。所述神经网络模型采用Unet神经网络可有效地从所述内镜图像中提取含有上皮乳头内毛细血管的特征信息。In this embodiment, as shown in FIG. 11 , FIG. 11 is a flowchart of acquiring an effective area in an endoscopic image according to an embodiment of the present invention. The neural network model is constructed by the Unet neural network, wherein the Unet neural network is obtained by improving the fully convolutional neural network, and the Unet neural network is achieved by strengthening the connection between layers, plus upsampling and downconvolution. Sufficient extraction of features to achieve accurate segmentation with fewer training samples. The neural network model adopts the Unet neural network, which can effectively extract the feature information containing the capillaries in the epithelial papilla from the endoscopic image.
具体的,所述训练样本同样通过NBI技术得到且所述训练样本中存在有上皮乳头内毛细血管的特征信息,所述训练样本输入至所述神经网络模型中后,通过所述神经网络模型输出的均方误差损失便可对所述神经网络模型的网络参数进行更新,进而实现对所述神经网络模型的训练。Specifically, the training sample is also obtained by NBI technology, and the training sample contains characteristic information of capillaries in the epithelial papilla. After the training sample is input into the neural network model, it is output through the neural network model. The network parameters of the neural network model can be updated, thereby realizing the training of the neural network model.
生成所述均方误差损失的函数为:The function that generates the mean squared error loss is:
其中,m为输入的训练样本数,神经网络模型的预测值为,真实值为。 Among them, m is the number of input training samples, and the predicted value of the neural network model is , the real value is .
在其他发明实施例中,如图3所示,步骤S210之前,还包括:S310和S320。In other inventive embodiments, as shown in FIG. 3 , before step S210 , the steps further include: S310 and S320 .
S310、对所述上皮乳头内毛细血管的内镜视频进行视频解码,得到视频解码图像;S310, performing video decoding on the endoscopic video of the capillaries in the epithelial papilla to obtain a decoded video image;
S320、对所述视频解码图像进行标注,得到所述训练样本。S320. Label the video decoded image to obtain the training sample.
在本实施例中,所述训练样本通过NBI技术拍摄的食管内镜视频中得到,终端设备在获取到所述内镜图像的视频后,对该视频进行解码处理以得到所述视频解码图像,然后对所述视频解码图像进行标注以勾勒出所述视频解码图像中的血管轮廓以形成用于训练所述神经网络模型的训练样本,进而使得所述训练样本输入至所述神经网络模型中后,便可得到所述神经网络模型的均方误差损失,从而实现对所述神经网络模型的训练。In this embodiment, the training sample is obtained from an esophageal endoscopic video captured by NBI technology, and after acquiring the video of the endoscopic image, the terminal device performs decoding processing on the video to obtain the video decoded image, Then, the video decoded image is marked to outline the outline of blood vessels in the video decoded image to form a training sample for training the neural network model, so that after the training sample is input into the neural network model , the mean square error loss of the neural network model can be obtained, so as to realize the training of the neural network model.
S120、根据连通域算法从所述有效区域中获取所述内镜图像中的目标血管区域。S120. Acquire a target blood vessel region in the endoscopic image from the effective region according to a connected domain algorithm.
具体的,所述连通域算法又称连通域标记算法,即在所述有效区域中完成所述内镜图像中的目标血管的标记,通过所述连通域算法从所述有效区域中获取所述目标血管区域后,便可得到用于判断所述内镜图像中食管癌浸润深度的五个指标,然后根据该五个指标进行线性加权计算,便可分类出所述内镜图像中的上皮乳头内毛细血管袢的当前形态,进而实现对所述内镜图像中食管癌浸润深度的判断。Specifically, the connected domain algorithm is also called a connected domain labeling algorithm, that is, the target blood vessel in the endoscopic image is marked in the effective area, and the connected domain algorithm is used to obtain the target blood vessel from the effective area. After the target blood vessel area, five indicators for judging the depth of esophageal cancer infiltration in the endoscopic image can be obtained, and then a linear weighted calculation can be performed according to the five indicators, and the epithelial papilla in the endoscopic image can be classified. The current shape of the inner capillary loop, thereby realizing the judgment of the infiltration depth of the esophageal cancer in the endoscopic image.
在其他发明实施例中,如图4所示,步骤S120包括子步骤S121和S122。In other inventive embodiments, as shown in FIG. 4 , step S120 includes sub-steps S121 and S122.
S121、遍历所述有效区域,得到所述目标血管的连通域面积和最小外接水平矩形;S121, traversing the effective area to obtain the connected domain area and the minimum circumscribed horizontal rectangle of the target blood vessel;
S122、根据所述连通域面积、所述最小外接水平矩形确定所述目标血管区域。S122. Determine the target blood vessel region according to the area of the connected domain and the minimum circumscribed horizontal rectangle.
具体的,通过遍历所述有效区域以得到所述有效区域中所有血管的连通域面积和最小外接水平矩形,然后从中确定所述目标血管的连通域面积和最小外接水平矩形。其中,在确定所述目标血管的连通域面积和最小外接水平矩形时,将所有血管的连通域面积中除背景外面积外的最大的连通域所在的血管作为所述目标血管,该血管的最小外接水平矩形即为所述目标血管的最小外接水平矩形。Specifically, by traversing the effective area, the connected domain area and the minimum circumscribed horizontal rectangle of all blood vessels in the effective area are obtained, and then the connected domain area and the minimum circumscribed horizontal rectangle of the target blood vessel are determined therefrom. Wherein, when determining the connected domain area of the target blood vessel and the minimum circumscribed horizontal rectangle, the blood vessel where the largest connected domain except the background area is located among the connected domain areas of all blood vessels is used as the target blood vessel, and the minimum value of the blood vessel is The circumscribed horizontal rectangle is the smallest circumscribed horizontal rectangle of the target blood vessel.
另外,在确定所述目标血管的位置后,需进一步确定所述目标血管区域。具体通过遍 历所述目标血管的最小外接水平矩形中所有像素点,然后采用如图12所示的面积法判断每个 像素点是否在所述目标血管的连通域内,进而便可确定如图13所示的目标血管区域。其具体 过程为:假设所述目标血管的连通域的顶点坐标为, 所述目标血管的最小外接水平矩形内某一像素点坐标为,若该像素点在所述目标 血管的连通域内部,则其与连通域所有相邻顶点组成的三角形面积和为多边形面积,则需 满足如下等式: In addition, after the position of the target blood vessel is determined, the target blood vessel region needs to be further determined. Specifically, by traversing all the pixels in the minimum circumscribed horizontal rectangle of the target blood vessel, and then using the area method as shown in Figure 12 to determine whether each pixel is in the connected domain of the target blood vessel, and then determining whether the pixel is in the connected domain of the target blood vessel, as shown in Figure 13 target vessel area shown. The specific process is: assuming that the vertex coordinates of the connected domain of the target blood vessel are , the coordinates of a certain pixel in the minimum circumscribed horizontal rectangle of the target blood vessel are , if the pixel is inside the connected domain of the target blood vessel, the sum of the triangle area formed by it and all the adjacent vertices of the connected domain is the polygonal area, and the following equation must be satisfied:
若所述目标血管的最小外接水平矩形内部不满足上述等式的像素点,则将其像素值设置为所述内镜图像的背景像素。If the interior of the minimum circumscribed horizontal rectangle of the target blood vessel does not satisfy the above equation, the pixel value thereof is set as the background pixel of the endoscopic image.
S130、获取所述目标血管区域中目标血管的特征性直径、特征性扭曲性量化值、特征性面积占比量、质心偏心距以及整图密度。S130. Obtain the characteristic diameter, characteristic distortion quantification value, characteristic area ratio, centroid eccentricity, and whole image density of the target blood vessel in the target blood vessel region.
具体的,所述特征性直径、所述特征性扭曲性量化值、所述特征性面积占比量、所述质心偏心距以及所述整图密度均为用于评判所述内镜图像中的上皮乳头内毛细血管袢的当前形态的指标,通过该五个指标便可识别出所述内镜图像中的上皮乳头内毛细血管袢的当前形态,进而实现对所述内镜图像中食管癌浸润深度的判断。Specifically, the characteristic diameter, the characteristic distortion quantification value, the characteristic area ratio, the centroid eccentricity, and the entire image density are all used to judge the endoscopic image. The index of the current shape of the capillary loop in the epithelial papillary, through these five indicators, the current shape of the capillary loop in the epithelial papillary can be identified in the endoscopic image, and then the esophageal cancer infiltration in the endoscopic image can be realized. in-depth judgment.
在其他发明实施例中,如图5所示,步骤S130包括子步骤S131、S132、S133、S134和S135。In other inventive embodiments, as shown in FIG. 5 , step S130 includes sub-steps S131 , S132 , S133 , S134 and S135 .
S131、根据所述目标血管的最大类平均直径、最小类平均直径生成所述特征性直径。S131. Generate the characteristic diameter according to the largest class average diameter and the smallest class average diameter of the target blood vessel.
具体的,所述最大类平均直径为所述目标血管中属于最大类别部位处的直径的平均值,所述最小类平均直径为所述目标血管中属于最小类别部位处的直径的平均值,通过所述最大类平均直径、所述最小类平均直径便可计算出所述特征性直径。Specifically, the maximum class average diameter is the average value of diameters at the target blood vessel at the position belonging to the largest class, and the minimum class average diameter is the average value of the diameters at the target blood vessel at the position belonging to the smallest class. The characteristic diameter can be calculated from the largest class average diameter and the smallest class average diameter.
在本实施例中,如图14所示,图14为本发明实施例提供的采用Halcon测量内镜图像的目标血管的直径的示意图。通过调用Halcon中的直径测量工具包测量所述目标血管上多个部位处的直径,然后从中获取所有最大类直径以及所有最小类直径并计算出所述最大类平均直径和所述最小类平均直径,最后根据所述最大类平均直径、所述最小类平均直径便可计算出所述特征性直径。具体计算公式如下:In this embodiment, as shown in FIG. 14 , FIG. 14 is a schematic diagram of using Halcon to measure the diameter of a target blood vessel in an endoscopic image according to an embodiment of the present invention. Measure diameters at multiple locations on the target vessel by invoking the diameter measurement toolkit in Halcon , then obtain all the largest class diameters and all smallest class diameters and calculate the largest class average diameter and the smallest class average diameter, and finally calculate the largest class average diameter and the smallest class average diameter according to the largest class average diameter and the smallest class average diameter. Describe the characteristic diameter. The specific calculation formula is as follows:
其中,为最大类平均直径,为最小类平均直径,D为特征性直径。in, is the largest class mean diameter, is the smallest class mean diameter, and D is the characteristic diameter.
另外,由于Halcon受所述目标血管和背景颜色的色差影响、曲线拟合能力的影响,因此需将形态较为复杂的血管分成若干段,再针对每段进行血管直径测量,便可测量出所述目标血管上多个部位处的直径。In addition, because Halcon is affected by the color difference between the target blood vessel and the background color, and the curve fitting ability, it is necessary to divide the blood vessels with complex shapes into several segments, and then measure the blood vessel diameter for each segment. Diameters at multiple sites on the target vessel.
S132、分别获取所述目标血管的多个扭曲性量化值和多个面积占比量。S132 , respectively acquiring multiple quantification values of tortuosity and multiple area ratios of the target blood vessel.
具体的,所述目标血管的多个扭曲性量化值和多个面积占比量分别为所述目标血管中不同部位处的扭曲性量化值和面积占比量,所述扭曲性量化用于表征血管的扭曲性,所述面积占比为用于表征血管在其最小外接水平矩形中的面积占比。Specifically, the plurality of distortion quantification values and the plurality of area ratios of the target blood vessel are respectively the distortion quantification values and area ratios at different parts of the target blood vessel, and the distortion quantification is used to represent The tortuosity of the blood vessel, the area fraction is used to characterize the area fraction of the blood vessel in its smallest circumscribed horizontal rectangle.
S133、从对所述多个扭曲性量化值、所述多个面积占比量中获取所述特征性扭曲性量化值和所述特征性面积占比量。S133. Obtain the characteristic distortion quantization value and the characteristic area proportion from the plurality of distortion quantization values and the plurality of area proportions.
在本实施例中,在获取所述多个扭曲性量化值、所述多个面积占比量之后,便可通 过预设的血管扭曲性量化公式来计算出所述特征性扭曲性量化值,同时通过预设的面积占 比公式来计算出所述目标血管中各个部位处的面积占比量,然后采用几何平 均数计算公式来得到所述特征性面积占比量。 In this embodiment, after obtaining the plurality of quantification values of tortuosity and the plurality of area ratios, the quantified value of characteristic tortuosity can be calculated by using a preset quantification formula of blood vessel tortuosity, At the same time, the area proportion of each part in the target blood vessel is calculated through the preset area proportion formula , and then use the geometric mean calculation formula to obtain the characteristic area proportion.
图15为本发明实施例提供的内镜图像中目标血管的扭曲性量化的示意图。如图15所示,其中目标血管的扭曲性量化的原理为:平行于目标血管最小外接矩形的宽和高做平新线与目标血管相交,越复杂的目标血管,平行线与目标血管本身的交代会越多。根据该原理,越复杂的目标血管,将目标血管上的像素点向目标血管最小外接矩形的宽高进行投影,则落在线上的点密度就越大。其中,血管扭曲性量化公式为:FIG. 15 is a schematic diagram of the distortion quantification of a target blood vessel in an endoscopic image according to an embodiment of the present invention. As shown in Figure 15, the principle of quantifying the distortion of the target blood vessel is as follows: parallel to the width and height of the minimum circumscribed rectangle of the target blood vessel, a new line intersects the target blood vessel. More will be explained. According to this principle, the more complex the target blood vessel is, the greater the density of points falling on the line will be when the pixels on the target blood vessel are projected to the width and height of the minimum circumscribed rectangle of the target blood vessel. Among them, the quantification formula of vascular tortuosity is:
其中,为血管扭曲性量化值,n为微血管管壁内外两侧像素点总个数,和分 布别为血管的最小外接矩形的长和宽。 in, is the quantification value of the tortuosity of the blood vessel, n is the total number of pixels on the inner and outer sides of the microvascular wall, and The distributions are the length and width of the smallest circumscribed rectangle of the blood vessel, respectively.
面积占比公式为:The area ratio formula is:
其中,为血管中心线上每个像素点处的血管直径,和分布别为血管的最 小外接矩形的长和宽。 in, is the blood vessel diameter at each pixel on the blood vessel centerline, and The distributions are the length and width of the smallest circumscribed rectangle of the blood vessel, respectively.
几何平均数计算公式为:The formula for calculating the geometric mean is:
另外,在通过上述血管扭曲性量化公式、面积占比公式分别计算出所述特征性扭曲性量化值和所述特征性面积占比量之前,还需对所述多个扭曲性量化值以及所述多个面积占比量进行筛选,进而使得最终生成的所述特征性扭曲性量化值和所述特征性面积占比量更加精准,从而提高了食管癌浸润深度判断的精确度。其中,在筛选的过程可以参照步骤S131b进行,在此不做具体限制。In addition, before calculating the characteristic tortuosity quantification value and the characteristic area ratio by using the above-mentioned blood vessel tortuosity quantification formula and area ratio formula, respectively, it is necessary to quantify the plurality of tortuosity quantification values and all the tortuosity quantification values. The multiple area proportions are screened, so that the finally generated characteristic distortion quantification value and the characteristic area proportions are more accurate, thereby improving the accuracy of judging the depth of esophageal cancer invasion. Wherein, the screening process can be performed with reference to step S131b, which is not specifically limited here.
S134、根据所述有效区域的等效质心、所述内镜图像的几何中心生成所述质心偏心距。S134. Generate the centroid eccentricity according to the equivalent centroid of the effective area and the geometric center of the endoscopic image.
在本实施例中,所述等效质心为所述有效区域中血管的质点的质量等于质点系的总质量,所述几何中心为所述内镜图像的正中心位置。如图16所示,图16为本发明实施例提供的内镜图像的几何中心以及有效区域的等效质心的示意图。在获取到所述有效区域后,理论上若所述内镜图像中的上皮乳头内毛细血管未出现异常,其分布会在整个视野中比较均匀,所有血管的等效质心应该在整个视野的几何中心,或者靠近几何中心;而所述内镜图像中的上皮乳头内毛细血管存在异常时,其视野中的血管会消失、或者被病灶挤压从而使血管分布产生变化,那么其所有有效区域中血管的等效质心大概率会偏离几何中心较远。在获取到所述有效区域的等效质心、所述内镜图像的几何中心后,便可通过预设的质心偏心距计算公式来计算出所述目标血管的质心偏心距。其中,质心偏心距计算公式为:In this embodiment, the equivalent centroid is that the mass of the blood vessel particle in the effective region is equal to the total mass of the particle system, and the geometric center is the exact center position of the endoscopic image. As shown in FIG. 16 , FIG. 16 is a schematic diagram of a geometric center of an endoscopic image and an equivalent centroid of an effective area according to an embodiment of the present invention. After the effective area is acquired, theoretically, if the capillaries in the endoscopic image are not abnormal, their distribution will be relatively uniform in the entire field of view, and the equivalent centroids of all blood vessels should be within the geometrical geometry of the entire field of view. center, or close to the geometric center; and when the capillaries in the epithelial papilla are abnormal in the endoscopic image, the blood vessels in the field of view will disappear, or be squeezed by the lesion to change the distribution of blood vessels, then all the effective areas in the There is a high probability that the equivalent centroid of the blood vessel will deviate far from the geometric center. After the equivalent centroid of the effective area and the geometric center of the endoscopic image are obtained, the centroid eccentricity of the target blood vessel can be calculated by using a preset centroid eccentricity calculation formula. Among them, the calculation formula of centroid eccentricity is:
其中,e为质心偏心距,为有效区域的等效质心,为内镜图像中 每根血管的质心,为内镜图像中每根血管面积,和均可在连通域的基础 上获得,为内镜图像的几何中心,。 Among them, e is the eccentricity of the center of mass, is the equivalent centroid of the effective area, is the centroid of each vessel in the endoscopic image, is the area of each vessel in the endoscopic image, and can be obtained on the basis of connected domains, is the geometric center of the endoscopic image, .
S135、根据预设的血管整图密度公式获取所述整图密度。S135. Obtain the whole image density according to a preset blood vessel whole image density formula.
在本实施例中,所述血管整图密度公式为根据所述内镜图像中血管的结构预先构建的密度公式,所述血管整图密度公式为:In this embodiment, the blood vessel whole image density formula is a density formula pre-built according to the structure of the blood vessel in the endoscopic image, and the blood vessel whole image density formula is:
其中,为血管整图中每根血管面积,可通过连通域获得,W、H分别为内镜图 像的宽和高。 in, is the area of each blood vessel in the whole image of blood vessels, which can be obtained by the connected domain, where W and H are the width and height of the endoscopic image, respectively.
在其他发明实施例中,如图6所示,步骤S131之前,还包括:S131a、S131b、S131c和S131d。In other inventive embodiments, as shown in FIG. 6 , before step S131 , the steps further include: S131a , S131b , S131c and S131d .
S131a、获取所述目标血管中每根血管的多个直径;S131a, obtaining multiple diameters of each blood vessel in the target blood vessel;
S131b、对所述每个分支的多个直径进行筛选,得到筛选后直径;S131b, screening the multiple diameters of each branch to obtain the diameter after screening;
S131c、根据K-means算法对所述筛选后直径进行聚类,得到筛选后的每个直径的聚类结果;S131c, according to the K-means algorithm, the diameters after the screening are clustered to obtain the clustering result of each diameter after the screening;
S131d、根据所述聚类结果生成所述最大类平均直径和所述最小类平均直径。S131d. Generate the largest class average diameter and the smallest class average diameter according to the clustering result.
具体的,所述内镜图像中的目标血管是由一根主干血管和多个分支血管构成,通过对所述目标血管中每根血管进行多次测量,便可得到所述目标血管中每根血管的多个直径,然后从中筛选出正常数值并采用K-means算法进行聚类成3类后,便可完成对筛选后的每个直径的分类,筛选后的每个直径完成聚类后,计算每个类别的平均直径,然后从中便可获取所述最大类平均直径和所述最小类平均直径。Specifically, the target blood vessel in the endoscopic image is composed of a main blood vessel and a plurality of branch blood vessels. By measuring each blood vessel in the target blood vessel multiple times, each blood vessel in the target blood vessel can be obtained. Multiple diameters of blood vessels, and then screen out the normal values and use the K-means algorithm to cluster them into three categories, then the classification of each diameter after screening can be completed. The average diameter of each class is calculated, from which the largest class average diameter and the smallest class average diameter can be obtained.
其中,K-means算法又称快速聚类法,其原理为:在数据集中根据一定策略选择K个点作为每个簇的初始中心,然后观察剩余的数据,将数据划分到距离这K个点最近的簇中,即将数据划分成K个簇以完成一次划分,其中形成的新簇并非最优划分,因此生成的新簇中,重新计算每个簇的中心点,然后再重新进行划分,直至每次划分的结果保持不变。Among them, the K-means algorithm is also called the fast clustering method. In the nearest cluster, the data is divided into K clusters to complete a division, and the new cluster formed is not the optimal division. Therefore, in the new cluster generated, the center point of each cluster is recalculated, and then the division is performed again until The result of each division remains the same.
在其他发明实施例中,如图7所示,步骤S131b包括子步骤S131b1和S131b2。In other inventive embodiments, as shown in FIG. 7 , step S131b includes sub-steps S131b1 and S131b2.
S131b1、获取所述每根血管的平均直径、所述每根血管的直径的方差;S131b1, obtaining the average diameter of each blood vessel and the variance of the diameter of each blood vessel;
S131b2、根据所述每根血管的平均直径、所述每根血管的直径的方差对所述每根血管的多个直径进行筛选,得到所述筛选后直径。S131b2 , screening multiple diameters of each blood vessel according to the average diameter of each blood vessel and the variance of the diameters of each blood vessel to obtain the screened diameter.
在本实施例中,通过计算所述目标血管中每根血管的平均直径以及每根血管直径的方差,然后根据该平均直径和方差便可完成对每根血管的多个直径的筛选。In this embodiment, the average diameter of each blood vessel in the target blood vessel and the variance of each blood vessel diameter are calculated, and then the screening of multiple diameters of each blood vessel can be completed according to the average diameter and variance.
平均直径的计算公式为:The formula for calculating the average diameter is:
每根血管直径的方差的计算公式为:The formula for calculating the variance of each vessel diameter is:
当或时,剔除直径为所述的数值,便可完成对所述目标血管中每根血管的多个直径的筛选。when or , the removal diameter is With the value, the screening of multiple diameters of each blood vessel in the target blood vessel can be completed.
S140、将所述特征性直径、所述特征性扭曲性量化值、所述特征性面积占比量、所述质心偏心距以及所述整图密度输入至预先训练的分类模型中以完成对所述内镜图像中目标血管的分类,进而得到所述内镜图像的分类结果。S140. Input the characteristic diameter, the characteristic distortion quantization value, the characteristic area ratio, the centroid eccentricity, and the whole image density into the pre-trained classification model to complete the classification of all The classification of target blood vessels in the endoscopic image is performed, and then the classification result of the endoscopic image is obtained.
其中,所述分类模型为预先训练好且用于对所述内镜图像中的目标血管进行分 类,所述分类模型可以为Logistic回归、支持向量机、极端梯度提升、决策树、随机森林、BP 神经网络中的任意一种构建得到,其线性加权拟合的计算公式为:,其中,,,,,分别为 所述特征性直径、所述特征性扭曲性量化值、所述特征性面积占比量、所述质心偏心距以及 所述整图密度,ζ为血管异常程度系数,λ1、λ2、λ3、λ4、λ5分别为各自的权重。其中,λ1、λ2、λ3、 λ4、λ5可采用网格搜索法、贪婪搜索法等确定,在此不做具体限制。 Wherein, the classification model is pre-trained and used to classify the target blood vessels in the endoscopic image, and the classification model can be Logistic regression, support vector machine, extreme gradient boosting, decision tree, random forest, BP Any one of the neural networks is constructed, and the calculation formula of its linear weighted fitting is: ,in, , , , , are the characteristic diameter, the characteristic distortion quantification value, the characteristic area ratio, the centroid eccentricity, and the whole image density, respectively, ζ is the degree coefficient of abnormality of blood vessels, λ 1 , λ 2 , λ 3 , λ 4 , and λ 5 are their respective weights. Among them, λ 1 , λ 2 , λ 3 , λ 4 , and λ 5 can be determined by grid search method, greedy search method, etc., and no specific limitation is made here.
具体的,所述内镜图像中目标血管的五个指标数值输入至所述分类模型中后,便可得到所述目标血管的异常程度系数,然后根据所述目标血管的异常程度系数所处的数值范围来判定所述目标血管的异常等级,进而便可完成对所述内镜图像的分类。Specifically, after the five index values of the target blood vessel in the endoscopic image are input into the classification model, the abnormality degree coefficient of the target blood vessel can be obtained, and then according to the position of the abnormality degree coefficient of the target blood vessel The abnormal level of the target blood vessel is determined by the numerical range, and then the classification of the endoscopic image can be completed.
例如,当所述目标血管的异常程度系数≤0.35时,则可判定所述内镜图像中的目标血管正常;当所述目标血管的异常程度系数处于0.35至0.89之间时,则可判定所述内镜图像中的目标血管呈一般异常;当所述目标血管的异常程度系数处于0.89至1.25之间时,则可判定所述内镜图像中的目标血管较异常;当所述目标血管的异常程度系数大于1.25时,则可判定所述内镜图像中的目标血管十分异常。For example, when the abnormality degree coefficient of the target blood vessel is less than or equal to 0.35, it can be determined that the target blood vessel in the endoscopic image is normal; when the abnormality degree coefficient of the target blood vessel is between 0.35 and 0.89, it can be determined that the target blood vessel is normal. The target blood vessel in the endoscopic image is generally abnormal; when the abnormality degree coefficient of the target blood vessel is between 0.89 and 1.25, it can be determined that the target blood vessel in the endoscopic image is relatively abnormal; When the abnormality degree coefficient is greater than 1.25, it can be determined that the target blood vessel in the endoscopic image is very abnormal.
在本发明实施例所提供的上皮乳头内毛细血管图像的分类方法中,通过将上皮乳头内毛细血管的内镜图像输入至预先训练的神经网络模型中,得到所述内镜图像的有效区域;根据连通域算法从所述有效区域中获取所述内镜图像中的目标血管区域;获取所述目标血管区域中目标血管的特征性直径、特征性扭曲性量化值、特征性面积占比量、质心偏心距以及整图密度;将所述特征性直径、所述特征性扭曲性量化值、所述特征性面积占比量、所述质心偏心距以及所述整图密度输入至预先训练的分类模型中,得到所述内镜图像的分类结果。本发明通过食管上皮乳头内毛细血管异常程度量化评价,实现准确的食管癌浸润深度判断,提高了食管癌浸润深度判断的效率以及准确率,同时为食管癌患者临床治疗决策提供可靠依据。In the method for classifying intrapapillary capillary images provided by the embodiment of the present invention, the effective area of the endoscopic image is obtained by inputting the endoscopic image of the intrapapillary capillary into a pre-trained neural network model; Obtain the target blood vessel area in the endoscopic image from the effective area according to the connected domain algorithm; obtain the characteristic diameter, characteristic distortion quantification value, characteristic area ratio, characteristic diameter of the target blood vessel in the target blood vessel area, The centroid eccentricity and the whole image density; the characteristic diameter, the characteristic distortion quantification value, the characteristic area ratio, the centroid eccentricity and the whole image density are input to the pre-trained classification In the model, the classification result of the endoscopic image is obtained. The invention realizes accurate esophageal cancer infiltration depth judgment through quantitative evaluation of the abnormal degree of capillaries in the esophageal epithelial papilla, improves the efficiency and accuracy of esophageal cancer infiltration depth judgment, and provides a reliable basis for clinical treatment decisions of esophageal cancer patients.
本发明实施例提供的上皮乳头内毛细血管图像的分类方法的具体应用可参考图10,图10是本发明实施例提供的具体应用流程图。从图10中可以看出,通过电子染色内镜获取食管上皮乳头内毛细血管的食管染色放大图像,即所述内镜图像,然后将在所述内镜图像中进行血管分割处理,以得到血管分割图,即所述内镜图像的有效区域,然后从有效区域中提取单根血管,即所述目标血管,同时从血管分割图中获取血管整图分布量化和血管整图密度量化,即所述目标血管的质心偏心距和整图密度的两个指标,然后对目标血管进行血管直径量化、血管扭曲性量化以及血管面积占比量化,并剔除不符合要求的奇异值,进而得到所述目标血管的特征性直径、特征性扭曲性量化值、特征性面积占比量,最后将评价目标血管的五个指标采用机器学习方法进行拟合分类以得到上皮乳头内毛细血管图像的分类,进而便可判断出上皮乳头内毛细血管的异常程度。For a specific application of the method for classifying intrapapillary capillary images provided by the embodiment of the present invention, reference may be made to FIG. 10 , and FIG. 10 is a flowchart of a specific application provided by the embodiment of the present invention. As can be seen from FIG. 10 , the esophagus stained enlarged image of the capillaries in the esophageal epithelial papilla is obtained by electronic chromoendoscopy, that is, the endoscopic image, and then blood vessel segmentation processing will be performed in the endoscopic image to obtain blood vessels The segmentation map, that is, the effective area of the endoscopic image, and then extract a single blood vessel from the effective area, that is, the target blood vessel, and obtain the quantification of the whole image distribution of the blood vessel and the quantification of the whole image density of the blood vessel from the blood vessel segmentation map, that is, the The two indicators of the target blood vessel’s centroid eccentricity and the density of the whole image are described, and then the target blood vessel is quantified by blood vessel diameter, blood vessel distortion, and blood vessel area ratio, and the singular values that do not meet the requirements are eliminated to obtain the target. The characteristic diameter of the blood vessel, the characteristic distortion quantification value, and the characteristic area ratio. Finally, the five indicators for evaluating the target blood vessel are fitted and classified by the machine learning method to obtain the classification of the intrapapillary capillary images of the epithelium. The abnormality of the capillaries in the epithelial papilla can be judged.
本发明实施例还提供了一种上皮乳头内毛细血管图像的分类装置100,该装置用于执行前述上皮乳头内毛细血管图像的分类方法的任一实施例。An embodiment of the present invention further provides an
具体地,请参阅图8,图8是本发明实施例提供的上皮乳头内毛细血管图像的分类装置100的示意性框图。Specifically, please refer to FIG. 8 . FIG. 8 is a schematic block diagram of an
如图8所示,所述的上皮乳头内毛细血管图像的分类装置100,该装置包括:第一输入单元110、第一获取单元120、第二获取单元130和第二输入单元140。As shown in FIG. 8 , the
第一输入单元110,用于将上皮乳头内毛细血管的内镜图像输入至预先训练的神经网络模型中,得到所述内镜图像的有效区域。The
在另一实施例中,所述的上皮乳头内毛细血管图像的分类装置100还包括:第三输入单元和更新单元。In another embodiment, the
第三输入单元,用于将训练样本输入至所述神经网络模型中,得到所述神经网络模型的均方误差损失;更新单元,用于根据所述均方误差损失更新所述神经网络模型的网络参数。The third input unit is used for inputting the training samples into the neural network model to obtain the mean square error loss of the neural network model; the updating unit is used for updating the average square error loss of the neural network model according to the mean square error loss. Network parameters.
在另一实施例中,所述的上皮乳头内毛细血管图像的分类装置100还包括:解码单元和标注单元。In another embodiment, the
解码单元,用于对所述上皮乳头内毛细血管的内镜视频进行视频解码,得到视频解码图像;标注单元,用于对所述视频解码图像进行标注,得到所述训练样本。The decoding unit is used for performing video decoding on the endoscopic video of the capillaries in the epithelial papilla to obtain a decoded video image; the labeling unit is used for labeling the decoded video image to obtain the training sample.
第一获取单元120,用于根据连通域算法从所述有效区域中获取所述内镜图像中的目标血管区域。The first acquiring
在另一实施例中,所述第一获取单元120包括:遍历单元和确定单元。In another embodiment, the first obtaining
遍历单元,用于遍历所述有效区域,得到所述目标血管的连通域面积和最小外接水平矩形;确定单元,用于根据所述连通域面积、所述最小外接水平矩形确定所述目标血管区域。a traversing unit, configured to traverse the effective area to obtain the connected domain area and the minimum circumscribed horizontal rectangle of the target blood vessel; a determination unit, configured to determine the target blood vessel area according to the connected domain area and the minimum circumscribed horizontal rectangle .
第二获取单元130,用于获取所述目标血管区域中目标血管的特征性直径、特征性扭曲性量化值、特征性面积占比量、质心偏心距以及整图密度。The second acquiring
在另一实施例中,所述第二获取单元130包括:第一生成单元、第三获取单元、第四获取单元、第二生成单元和第五获取单元。In another embodiment, the second obtaining
第一生成单元,用于根据所述目标血管的最大类平均直径、最小类平均直径生成所述特征性直径;第三获取单元,用于分别获取所述目标血管的多个扭曲性量化值和多个面积占比量;第四获取单元,用于从对所述多个扭曲性量化值、所述多个面积占比量中获取所述特征性扭曲性量化值和所述特征性面积占比量;第二生成单元,用于根据所述有效区域的等效质心、所述内镜图像的几何中心生成所述质心偏心距;第五获取单元,用于根据预设的血管整图密度公式获取所述整图密度。The first generating unit is configured to generate the characteristic diameter according to the largest class average diameter and the smallest class average diameter of the target blood vessel; the third acquiring unit is configured to separately obtain a plurality of tortuosity quantification values of the target blood vessel and A plurality of area proportions; a fourth acquisition unit, configured to obtain the characteristic distortion quantization value and the characteristic area proportion from the plurality of distortion quantization values and the plurality of area proportions ratio; a second generating unit for generating the centroid eccentricity according to the equivalent centroid of the effective area and the geometric center of the endoscopic image; a fifth acquiring unit for generating the eccentricity according to a preset blood vessel overall image density The formula obtains the whole image density.
在另一实施例中,所述的上皮乳头内毛细血管图像的分类装置100还包括:第六获取单元、第一筛选单元、聚类单元和第三生成单元。In another embodiment, the
第六获取单元,用于获取所述目标血管中每根血管的多个直径;第一筛选单元,用于对所述每个分支的多个直径进行筛选,得到筛选后直径;聚类单元,用于根据K-means算法对所述筛选后直径进行聚类,得到筛选后的每个直径的聚类结果;第三生成单元,用于根据所述聚类结果生成所述最大类平均直径和所述最小类平均直径。a sixth obtaining unit, used to obtain multiple diameters of each blood vessel in the target blood vessel; a first screening unit, used to screen the multiple diameters of each branch to obtain the diameter after screening; a clustering unit, For clustering the diameters after the screening according to the K-means algorithm, to obtain the clustering result of each diameter after screening; the third generating unit, for generating the maximum class average diameter and The smallest class mean diameter.
在另一实施例中,所述第一筛选单元包括:第七获取单元和第二筛选单元。In another embodiment, the first screening unit includes: a seventh obtaining unit and a second screening unit.
第七获取单元,用于获取所述每根血管的平均直径、所述每根血管的直径的方差;第二筛选单元,用于根据所述每根血管的平均直径、所述每根血管的直径的方差对所述每根血管的多个直径进行筛选,得到所述筛选后直径。The seventh obtaining unit is used to obtain the average diameter of each blood vessel and the variance of the diameter of each blood vessel; the second screening unit is used to obtain the average diameter of each blood vessel and the variance of each blood vessel according to the Variance of diameters Screen the diameters of each blood vessel to obtain the screened diameters.
第二输入单元140,用于将所述特征性直径、所述特征性扭曲性量化值、所述特征性面积占比量、所述质心偏心距以及所述整图密度输入至预先训练的分类模型中,得到所述内镜图像的分类结果。The
本发明实施例所提供的上皮乳头内毛细血管图像的分类装置100用于执行上述将上皮乳头内毛细血管的内镜图像输入至预先训练的神经网络模型中,得到所述内镜图像的有效区域;根据连通域算法从所述有效区域中获取所述内镜图像中的目标血管区域;获取所述目标血管区域中目标血管的特征性直径、特征性扭曲性量化值、特征性面积占比量、质心偏心距以及整图密度;将所述特征性直径、所述特征性扭曲性量化值、所述特征性面积占比量、所述质心偏心距以及所述整图密度输入至预先训练的分类模型中,得到所述内镜图像的分类结果。The
请参阅图9,图9是本发明实施例提供的计算机设备的示意性框图。Please refer to FIG. 9. FIG. 9 is a schematic block diagram of a computer device provided by an embodiment of the present invention.
参阅图9,该设备500包括通过系统总线501连接的处理器502、存储器和网络接口505,其中,存储器可以包括存储介质503和内存储器504。Referring to FIG. 9 , the
该存储介质503可存储操作系统5031和计算机程序5032。该计算机程序5032被执行时,可使得处理器502执行上皮乳头内毛细血管图像的分类方法。The
该处理器502用于提供计算和控制能力,支撑整个设备500的运行。The
该内存储器504为非易失性存储介质503中的计算机程序5032的运行提供环境,该计算机程序5032被处理器502执行时,可使得处理器502执行上皮乳头内毛细血管图像的分类方法。The
该网络接口505用于进行网络通信,如提供数据信息的传输等。本领域技术人员可以理解,图9中示出的结构,仅仅是与本发明方案相关的部分结构的框图,并不构成对本发明方案所应用于其上的设备500的限定,具体的设备500可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。The
其中,所述处理器502用于运行存储在存储器中的计算机程序5032,以实现如下功能:将上皮乳头内毛细血管的内镜图像输入至预先训练的神经网络模型中,得到所述内镜图像的有效区域;根据连通域算法从所述有效区域中获取所述内镜图像中的目标血管区域;获取所述目标血管区域中目标血管的特征性直径、特征性扭曲性量化值、特征性面积占比量、质心偏心距以及整图密度;将所述特征性直径、所述特征性扭曲性量化值、所述特征性面积占比量、所述质心偏心距以及所述整图密度输入至预先训练的分类模型中,得到所述内镜图像的分类结果。Wherein, the
本领域技术人员可以理解,图9中示出的设备500的实施例并不构成对设备500具体构成的限定,在其他实施例中,设备500可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。例如,在一些实施例中,设备500可以仅包括存储器及处理器502,在这样的实施例中,存储器及处理器502的结构及功能与图8所示实施例一致,在此不再赘述。Those skilled in the art can understand that the embodiment of the
应当理解,在本发明实施例中,处理器502可以是中央处理单元 (CentralProcessing Unit,CPU),该处理器502还可以是其他通用处理器502、数字信号处理器502(Digital Signal Processor,DSP)、专用集成电路 (Application Specific IntegratedCircuit,ASIC)、现成可编程门阵列 (Field-Programmable Gate Array,FPGA) 或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。其中,通用处理器502可以是微处理器502或者该处理器502也可以是任何常规的处理器502等。It should be understood that, in this embodiment of the present invention, the
在本发明的另一实施例中提供计算机存储介质。该存储介质可以为非易失性的计算机可读存储介质,也可以是易失性的存储介质。该存储介质存储有计算机程序5032,其中计算机程序5032被处理器502执行时实现以下步骤:将上皮乳头内毛细血管的内镜图像输入至预先训练的神经网络模型中,得到所述内镜图像的有效区域;根据连通域算法从所述有效区域中获取所述内镜图像中的目标血管区域;获取所述目标血管区域中目标血管的特征性直径、特征性扭曲性量化值、特征性面积占比量、质心偏心距以及整图密度;将所述特征性直径、所述特征性扭曲性量化值、所述特征性面积占比量、所述质心偏心距以及所述整图密度输入至预先训练的分类模型中,得到所述内镜图像的分类结果。In another embodiment of the present invention, a computer storage medium is provided. The storage medium may be a non-volatile computer-readable storage medium or a volatile storage medium. The storage medium stores a
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的设备、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。Those skilled in the art can clearly understand that, for the convenience and brevity of description, for the specific working process of the above-described devices, devices and units, reference may be made to the corresponding processes in the foregoing method embodiments, which will not be repeated here. Those of ordinary skill in the art can realize that the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein can be implemented in electronic hardware, computer software, or a combination of the two. Interchangeability, the above description has generally described the components and steps of each example in terms of function. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of the present invention.
在本发明所提供的几个实施例中,应该理解到,所揭露的设备、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为逻辑功能划分,实际实现时可以有另外的划分方式,也可以将具有相同功能的单元集合成一个单元,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。In the several embodiments provided by the present invention, it should be understood that the disclosed apparatus, apparatus and method may be implemented in other manners. For example, the apparatus embodiments described above are only illustrative. For example, the division of the units is only logical function division. In actual implementation, there may be other division methods, or units with the same function may be grouped into one Units, such as multiple units or components, may be combined or may be integrated into another system, or some features may be omitted, or not implemented. In addition, the shown or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。The units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solutions in the embodiments of the present invention.
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit. The above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台设备500 ( 可以是个人计算机,服务器,或者网络设备等) 执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U 盘、移动硬盘、只读存储器 (ROM,Read-Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。If the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a storage medium. Based on such understanding, the technical solution of the present invention is essentially or a part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a device 500 (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present invention. The aforementioned storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM, Read-Only Memory), a magnetic disk or an optical disk and other media that can store program codes.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited to this. Any person skilled in the art can easily think of various equivalents within the technical scope disclosed by the present invention. Modifications or substitutions should be included within the protection scope of the present invention. Therefore, the protection scope of the present invention should be subject to the protection scope of the claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111479461.8A CN113887677B (en) | 2021-12-07 | 2021-12-07 | Classification method, apparatus, apparatus and medium for images of intrapapillary capillaries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111479461.8A CN113887677B (en) | 2021-12-07 | 2021-12-07 | Classification method, apparatus, apparatus and medium for images of intrapapillary capillaries |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113887677A CN113887677A (en) | 2022-01-04 |
CN113887677B true CN113887677B (en) | 2022-03-01 |
Family
ID=79015690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111479461.8A Active CN113887677B (en) | 2021-12-07 | 2021-12-07 | Classification method, apparatus, apparatus and medium for images of intrapapillary capillaries |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113887677B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114078128B (en) * | 2022-01-20 | 2022-04-12 | 武汉大学 | Medical image processing method, device, terminal and storage medium |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017099804A1 (en) * | 2015-12-11 | 2017-06-15 | Hewlett-Packard Development Company, L.P. | Density classifiers based on plane regions |
CN109616195A (en) * | 2018-11-28 | 2019-04-12 | 武汉大学人民医院(湖北省人民医院) | Real-time auxiliary diagnosis system and method for mediastinal endoscopic ultrasound images based on deep learning |
CN113192064A (en) * | 2021-05-27 | 2021-07-30 | 武汉楚精灵医疗科技有限公司 | Esophageal cancer B3 type blood vessel identification method based on coefficient of variation method |
CN113205492A (en) * | 2021-04-26 | 2021-08-03 | 武汉大学 | Microvessel distortion degree quantification method for gastric mucosa staining amplification imaging |
CN113344859A (en) * | 2021-05-17 | 2021-09-03 | 武汉大学 | Method for quantifying capillary surrounding degree of gastric mucosa staining amplification imaging |
CN113706533A (en) * | 2021-10-28 | 2021-11-26 | 武汉大学 | Image processing method, image processing device, computer equipment and storage medium |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190388060A1 (en) * | 2018-06-22 | 2019-12-26 | General Electric Company | Imaging system and method with live examination completeness monitor |
-
2021
- 2021-12-07 CN CN202111479461.8A patent/CN113887677B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017099804A1 (en) * | 2015-12-11 | 2017-06-15 | Hewlett-Packard Development Company, L.P. | Density classifiers based on plane regions |
CN109616195A (en) * | 2018-11-28 | 2019-04-12 | 武汉大学人民医院(湖北省人民医院) | Real-time auxiliary diagnosis system and method for mediastinal endoscopic ultrasound images based on deep learning |
CN113205492A (en) * | 2021-04-26 | 2021-08-03 | 武汉大学 | Microvessel distortion degree quantification method for gastric mucosa staining amplification imaging |
CN113344859A (en) * | 2021-05-17 | 2021-09-03 | 武汉大学 | Method for quantifying capillary surrounding degree of gastric mucosa staining amplification imaging |
CN113192064A (en) * | 2021-05-27 | 2021-07-30 | 武汉楚精灵医疗科技有限公司 | Esophageal cancer B3 type blood vessel identification method based on coefficient of variation method |
CN113706533A (en) * | 2021-10-28 | 2021-11-26 | 武汉大学 | Image processing method, image processing device, computer equipment and storage medium |
Non-Patent Citations (2)
Title |
---|
"EFFECTUAL HUMAN AUTHENTICATION FOR CRITICAL SECURITY";L. Latha.et al;《ICTACT JOURNAL ON IMAGE AND VIDEO PROCESSING》;20101130;全文 * |
"肠梗阻患者并发急性肾损伤的临床特点及影响因素分析";邓庆铃等;《胃肠病和肝病学杂志》;20210831;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113887677A (en) | 2022-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111340789B (en) | Fundus retina blood vessel identification and quantification method, device, equipment and storage medium | |
CN112567378B (en) | Methods and systems utilizing quantitative imaging | |
Lee et al. | Detection of neovascularization based on fractal and texture analysis with interaction effects in diabetic retinopathy | |
Tanabe et al. | Fractal analysis of lung structure in chronic obstructive pulmonary disease | |
WO2014109708A1 (en) | A method and system for assessing fibrosis in a tissue | |
CN101996329B (en) | Device and method for detecting blood vessel deformation area | |
CN109767448B (en) | Segmentation model training method and device | |
CN114096993B (en) | Image segmentation confidence determination | |
CN112102351B (en) | Medical image analysis method, device, electronic equipment and readable storage medium | |
KR20180082817A (en) | Automated prostate cancer detection and localization in the peripheral zone of the prostate in multi-parametric mr images | |
Prinzi et al. | Explainable machine-learning models for COVID-19 prognosis prediction using clinical, laboratory and radiomic features | |
CN110163872A (en) | A kind of method and electronic equipment of HRMR image segmentation and three-dimensional reconstruction | |
WO2024001747A1 (en) | Pulmonary blood vessel model establishment method and apparatus, and server | |
Yadav et al. | [Retracted] FVC‐NET: An Automated Diagnosis of Pulmonary Fibrosis Progression Prediction Using Honeycombing and Deep Learning | |
CN115423819A (en) | Pulmonary vessel segmentation method and device, electronic equipment and storage medium | |
CN113887677B (en) | Classification method, apparatus, apparatus and medium for images of intrapapillary capillaries | |
KR20210158682A (en) | Method to display lesion readings result | |
CN117476232A (en) | Prognosis prediction method based on convolutional recurrent neural network | |
Gao et al. | Automatic optic disc segmentation based on modified local image fitting model with shape prior information | |
Ibrahim et al. | Volumetric quantification of choroid and Haller's sublayer using OCT scans: An accurate and unified approach based on stratified smoothing | |
CN115565666A (en) | Cerebral infarction assessment method and device, electronic equipment and storage medium | |
CN113192067B (en) | Intelligent prediction method, device, equipment and medium based on image detection | |
CN111292309B (en) | A method and device for judging the degree of alienation of lung tissue | |
CN116681701B (en) | A method for processing ultrasound images of children's lungs | |
CN115631194B (en) | Method, device, equipment and medium for identifying and detecting intracranial aneurysm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |