CN113887562A - 一种基于船位数据提取毛虾网船捕捞行为特征的方法 - Google Patents

一种基于船位数据提取毛虾网船捕捞行为特征的方法 Download PDF

Info

Publication number
CN113887562A
CN113887562A CN202111037202.XA CN202111037202A CN113887562A CN 113887562 A CN113887562 A CN 113887562A CN 202111037202 A CN202111037202 A CN 202111037202A CN 113887562 A CN113887562 A CN 113887562A
Authority
CN
China
Prior art keywords
net
fishing
ship
boat
position data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111037202.XA
Other languages
English (en)
Other versions
CN113887562B (zh
Inventor
熊瑛
李国东
仲霞铭
李冬佳
宋大德
杨帆
康中杰
吴晓睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU MARINE FISHERIES RESEARCH INSTITUTE
Original Assignee
JIANGSU MARINE FISHERIES RESEARCH INSTITUTE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU MARINE FISHERIES RESEARCH INSTITUTE filed Critical JIANGSU MARINE FISHERIES RESEARCH INSTITUTE
Priority to CN202111037202.XA priority Critical patent/CN113887562B/zh
Publication of CN113887562A publication Critical patent/CN113887562A/zh
Application granted granted Critical
Publication of CN113887562B publication Critical patent/CN113887562B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Business, Economics & Management (AREA)
  • Databases & Information Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Agronomy & Crop Science (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Remote Sensing (AREA)
  • Biomedical Technology (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Mining & Mineral Resources (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Mechanical Means For Catching Fish (AREA)

Abstract

本发明涉及一种基于船位数据提取毛虾网船捕捞行为特征的方法,包括以下步骤:提取毛虾网船的船位数据;对所述毛虾网船的船位数据进行预处理;基于预处理后的毛虾网船的船位数据以及捕捞日志中抛锚布网和起网收渔获状态的始末时间,通过运用人工神经网络方法对所述毛虾网船各个轨迹点的渔船状态进行判断及验证,得到训练好的毛虾网船船位点捕捞状态人工神经网络模型;采用所述毛虾网船船位点捕捞状态人工神经网络模型对新的毛虾网船的船位数据进行处理,得到所述新的毛虾网船轨迹点的渔船状态;通过得到的渔船状态运用频数占比法以及地理空间可视化方法探究毛虾网船的捕捞行为特征。本发明实现了对渔船在进行毛虾捕捞活动时行为特征的挖掘。

Description

一种基于船位数据提取毛虾网船捕捞行为特征的方法
技术领域
本发明涉及渔船船位数据应用技术领域,特别是涉及一种基于船位数据提取毛虾网船捕捞行为特征的方法。
背景技术
船位数据是通过渔船监测系统(VMS,Vessel Monitoring System)基于卫星所获取的渔船轨迹点数据,其包含定位时间、渔船位置的经纬度信息、航速及航向信息。基于北斗卫星船位监控系统等技术的发展,我国对渔船位置数据信息获取精度越来越高,船位数据在海洋渔业中的应用前景十分广阔。
随着海洋生态文明的推进,限额捕捞制度成为我国渔业资源可持续发展的必要手段。2020年我国首次实行毛虾限额捕捞,于江苏省成功试点。2021年我国毛虾限额捕捞项目已推广至辽宁、山东等省份。因此,毛虾网船捕捞活动的管控以及毛虾资源时空分布探究成为了毛虾限额捕捞制度深入推广的关键。
渔船捕捞行为特征是指渔船在进行渔业捕捞活动所产生的行为特征,包含航速航向特征、空间特征以及时间特征等信息,捕捞行为特征的研究对于渔业捕捞效率提升和捕捞活动管控等具有重要意义。迄今为止,尚未涉及有基于船位数据提取毛虾网船捕捞行为特征的研究。因此,亟需一种基于船位数据提取毛虾网船捕捞行为特征的方法,为我国毛虾资源精细化管理提供科学依据。
发明内容
本发明所要解决的技术问题是提供一种基于船位数据提取毛虾网船捕捞行为特征的方法,实现对渔船在进行毛虾捕捞活动时行为特征的挖掘,为毛虾限额捕捞管理提供科学依据。
本发明解决其技术问题所采用的技术方案是:提供一种基于船位数据提取毛虾网船捕捞行为特征的方法,包括以下步骤:
(1)提取毛虾网船的船位数据,所述船位数据包括航速、航向和定位时间;
(2)对所述毛虾网船的船位数据进行预处理,即对所述毛虾网船的船位数据按所述定位时间的顺序每N条数据进行航速、航向及定位时间的平均值提取;
(3)基于预处理后的毛虾网船的船位数据以及捕捞日志中抛锚布网和起网收渔获状态的始末时间,通过运用人工神经网络方法对所述毛虾网船各个轨迹点的渔船状态进行判断及验证,得到训练好的毛虾网船船位点捕捞状态人工神经网络模型;
(4)对新的毛虾网船的船位数据进行如所述步骤(2)的预处理,并将其作为所述毛虾网船船位点捕捞状态人工神经网络模型的输入,得到所述新的毛虾网船轨迹点的渔船状态.
(5)通过得到的所述新的毛虾网船轨迹点的渔船状态运用频数占比法以及地理空间可视化方法探究毛虾网船的捕捞行为特征。
所述渔船状态包括:抛锚布网、起网收渔获和快速航行。
所述步骤(2)中对所述毛虾网船的船位数据进行预处理时,还包括剔除航速小于0.2节的毛虾网船位数据的操作。
所述步骤(2)中对所述毛虾网船的船位数据按所述定位时间的顺序每3条或每5条数据进行航速、航向及定位时间的平均值提取。
所述步骤(3)中所述人工神经网络的节点的传输函数采用logsig和purelin函数,训练函数采用traingdx,从所述预处理后的毛虾网船的船位数据中随机分配80%训练样本和20%测试样本,设置所述人工神经网络训练的最大迭代次数为1000,学习率为0.02,最大误差给定0.001,最大失败验证为6次。
所述步骤(5)具体为:统计抛锚布网、起网收渔获和快速航行下的航速和频数占比,得到捕捞行为航速特征;根据起网收渔获处于毛虾捕捞阶段抛锚布网和等待渔获状态之后,以及单网次捕捞时长为抛锚布网和起网收渔获频数占比较高时刻的时间差,统计抛锚布网、起网收渔获和快速航行下的定位时刻和频数占比,得到捕捞行为时间特征;通过对起网收渔获点集进行地理空间可视化,并提取每一网次起网收渔获点集的始末点连接成线得到布网方位角,统计各方位角的频数占比,得到捕捞行为空间特征。
有益效果
由于采用了上述的技术方案,本发明与现有技术相比,具有以下的优点和积极效果:本发明充分考虑渔船船位大数据的特征,在保证数据特征前提下进行减少数据冗余操作,更是提出了一种能够自动化识别毛虾网船捕捞状态的高准确率人工神经网络模型,为挖掘捕捞行为背后机制,如毛虾生物学特性、海洋环境影响及渔业捕捞实行精细化管理提供科学依据,也可作为成功模式推广至其它捕捞方式行为特征及其机制的挖掘。
附图说明
图1是本发明实施方式的流程图;
图2是本发明实施例中毛虾捕捞样本船轨迹点数据空间分布图;
图3是本发明实施例中毛虾网船不同状态下航速分布图;
图4是本发明实施例中毛虾网船不同状态轨迹点定位时刻分布图;
图5是本发明实施例中毛虾捕捞样本船布网方位角分布图;
图6是本发明实施例中海州湾6月潮流及起网收渔获点集空间分布图;
图7是本发明实施例中海州湾7月潮流及起网收渔获点集空间分布图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
本发明的实施方式涉及一种基于船位数据提取毛虾网船捕捞行为特征的方法,如图1所示,包括以下步骤:
(1)提取毛虾网船的船位数据,所述船位数据包括航速、航向和定位时间;
(2)对所述毛虾网船的船位数据进行预处理,即对所述毛虾网船的船位数据按所述定位时间的顺序每N条数据进行航速、航向及定位时间的平均值提取;本步骤中还包括剔除航速小于预设速度的毛虾网船位数据的操作,以确保毛虾网船船位数据是处于抛锚布网、起网收渔获或快速航行状态。
(3)基于预处理后的毛虾网船的船位数据以及捕捞日志中抛锚布网和起网收渔获状态的始末时间,通过运用人工神经网络方法对所述毛虾网船各个轨迹点的渔船状态进行判断及验证,得到训练好的毛虾网船船位点捕捞状态人工神经网络模型;其中,渔船状态包括:抛锚布网、起网收渔获和快速航行。
(4)对新的毛虾网船的船位数据进行如所述步骤(2)的预处理,并将其作为所述毛虾网船船位点捕捞状态人工神经网络模型的输入,得到所述新的毛虾网船轨迹点的渔船状态;
(5)通过得到的所述新的毛虾网船轨迹点的渔船状态运用频数占比法以及地理空间可视化方法探究毛虾网船的捕捞行为特征。具体为:统计抛锚布网、起网收渔获和快速航行下的航速和频数占比,得到捕捞行为航速特征;根据起网收渔获处于毛虾捕捞阶段抛锚布网和等待渔获状态之后,以及单网次捕捞时长为抛锚布网和起网收渔获频数占比较高时刻的时间差,统计抛锚布网、起网收渔获和快速航行下的定位时刻和频数占比,得到捕捞行为时间特征;通过对起网收渔获点集进行地理空间可视化,并提取每一网次起网收渔获点集的始末点连接成线得到布网方位角,统计各方位角的频数占比,得到捕捞行为空间特征。
下面以具体的实施例来进一步说明本发明,3艘毛虾网样本船在2021年6月15日-2021年7月15日船位点的空间分布如图2,按照定位时间组成空间轨迹。
1、毛虾网船关键捕捞状态的定义;毛虾网船捕捞活动过程一般为:毛虾网船从港口出发,以快速航行状态抵达毛虾渔场,随即进行抛锚布网、等待渔获和起网收渔获;当该渔场不满足捕捞需求时,渔船再以快速航行状态寻找下一个渔场或者返航回港。因此,关键的渔船捕捞活动状态主要为:抛锚布网、起网收渔获和快速航行状态。
2、为减弱因海况及其它因素而产生对船位数据正常特征的干扰和减少数据量并保持原始船位数据特征,需要对毛虾网船的船位数据进行预处理,即对32艘毛虾网船(包括3艘毛虾网样本船,29艘为毛虾网非样本船)在限额捕捞期间的航速、航向及定位时间数据按时间顺序每3条数据进行平均值提取。同时剔除航速小于0.2节的轨迹点数据,以确保毛虾网船是处于捕捞或快速航行阶段,最后得到28956条VMS轨迹点数据。同时设置保留了没有经过数据预处理的轨迹原始数据作为此数据预处理对测试效果的对比组。值得一提的是,本步骤中在进行平均值提取时还可以每5条数据进行平均值提取,具体取平均值选择的数据条数可以根据原始船位数据的数量以及VMS船位数据信息发送的时间频率进行选择。
3、基于毛虾网样本船船位数据的经纬度、航速、航向以及捕捞日志中抛锚布网和起网收渔获状态的始末时间等信息,通过运用人工神经网络方法对其轨迹点渔船状态进行判断及验证,从而得到具有高准确率的毛虾网船船位点捕捞状态人工神经网络模型。具体操作是首先分别利用航速和定位时间、航向和定位时间建立2组网络模型。输入层节点数为2个,分别为渔船的航速或者航向、以及定位时间,输出层节点数3个,分别代表抛锚布网、起网收渔获和快速航行这3种状态。根据
Figure BDA0003247686960000041
确认隐含层节点数,其中,J为隐含层节点数,n为输入神经元数,m为输出神经元数,a为1-10间的常数,本实施例最后当隐含层节点数为9时识别率最高,且训练速度较快。
4、结合3艘毛虾捕捞样本船捕捞日志中抛锚布网、起网收渔获的起始和结束时间,提取出抛锚布网、起网收渔获以及快速航行状态对应的轨迹点集合。最后随机选取这3种渔船状态已经经过数据预处理和未经过数据预处理的各300条VMS轨迹点数据作为研究BP神经网络模型的训练集及测试集样本。在MATLAB中对包含了抛锚布网、起网收渔获以及快速航行3种状态的300组样本数据进行归一化处理,数值控制在-1~1。建立对应的布尔变量,分类目标的值对应1,其余为零即[1,0,0]为抛锚布网,[0,1,0]为起网收渔获,[0,0,1]为快速航行状态。
5、本实施例使用MATLAB建立神经网络模型,节点的传输函数采用logsig和purelin函数,训练函数采用traingdx,为梯度下降自适应学习率训练函数,随机分配80%训练样本和20%测试样本,设置网络训练最大迭代次数为1000,学习率为0.02,最大误差给定0.001,最大失败验证为6次。
6、神经网络模型训练测试效果如下:对于经过数据预处理的轨迹点数据,基于航速和定位时间的人工神经网络模型能更好识别轨迹点数据所对应毛虾网船状态,抛锚布网、起网收渔获和快速航行状态识别准确率分别为98.33%、100%和97.33%(表1);而基于航向和定位时间的人工神经网络模型识别轨迹点数据所对应毛虾网船状态准确率明显较低,抛锚布网、起网收渔获和快速航行状态识别准确率分别为67.00%、41.00%和46.33%(表2)。但对于未经过数据预处理的轨迹点数据,无论是基于航速和定位时间的人工神经网络模型还是基于航向和定位时间的人工神经网络模型,它们识别渔船轨迹数据的准确率都明显降低,其中基于航速和定位时间的人工神经网络模型识别毛虾网船抛锚布网、起网收渔获和快速航行状态的准确率分别为77.33%、92.67%和74.33%(表3);基于航向和定位时间的人工神经网络模型识别毛虾网船抛锚布网、起网收渔获和快速航行状态的准确率分别为68.00%、25.33%和44.33%(表4)。可见本实施例中所提出的数据预处理方法能够有效提高轨迹点数据对应的渔船状态识别准确率。所以最终选取的是已经过数据预处理的基于航速和定位时间人工神经网络作为识别未知轨迹点数据渔船状态模型。
表1经过数据预处理的基于航速和定位时间的神经网络模型渔船状态识别结果
Figure BDA0003247686960000051
表2经过数据预处理的基于航向和定位时间的神经网络模型渔船状态识别结果
Figure BDA0003247686960000061
表3未经数据预处理的基于航速和定位时间的神经网络模型渔船状态识别结果
Figure BDA0003247686960000062
表4未经数据预处理的基于航向和定位时间的神经网络模型渔船状态识别结果
Figure BDA0003247686960000063
7、采用步骤6最终选取的高准确率人工神经网络模型对已经过数据预处理的2021年连云港所有毛虾网船在限额捕捞期间VMS数据进行渔船状态识别,运用频数占比法以及地理空间可视化方法挖掘这3种渔船状态的捕捞行为特征,结果如下:
(1)渔船状态航速特征:毛虾网船在不同状态下的航速存在明显差异(图3),其中抛锚布网状态渔船航速基本为4.5-7.5节,起网收渔获状态航速为0.5-2.5节,快速航行状态基本为8-12节。
(2)捕捞行为时间特征:毛虾网船抛锚布网点集主要分布在每日凌晨4点开始出现,至下午17点(图4),起网收渔获处于毛虾捕捞阶段抛锚布网和等待渔获状态之后,主要分布在每日早上6点,至夜晚22点。单网次捕捞时长为抛锚放网、起网收渔获频数较高时刻的时间差,因此可得到毛虾单网次捕捞时长基本为1.5-2.5h。
(3)捕捞行为空间特征:由于铁锚在海流中具有网具固定作用,因此起网收渔获点集代表了毛虾网船每一网次布网空间位置。对3艘毛虾捕捞样本船的起网收渔获点集进行可视化,提取每一网次起网收渔获点集的始末点连接成线,从而得到该网次布网的方位角。结果表明,海州湾毛虾捕捞样本船布网方位角基本为60-90或240-270度(图5),捕捞阶段轨迹点呈直线分布,再通过对样本船6月和7月起网收渔获点集叠加海州湾相应月份的潮流数据,可见毛虾网船布网方位角与该海域潮流流向呈垂直状态(图6-7)。
不难发现,本发明充分考虑渔船船位大数据的特征,在保证数据特征前提下进行减少数据冗余操作,更是提出了一种能够自动化识别毛虾网船捕捞状态的高准确率人工神经网络模型,为挖掘捕捞行为背后机制,如毛虾生物学特性、海洋环境影响及渔业捕捞实行精细化管理提供科学依据,也可作为成功模式推广至其它捕捞方式行为特征及其机制的挖掘。

Claims (6)

1.一种基于船位数据提取毛虾网船捕捞行为特征的方法,其特征在于,包括以下步骤:
(1)提取毛虾网船的船位数据,所述船位数据包括航速、航向和定位时间;
(2)对所述毛虾网船的船位数据进行预处理,即对所述毛虾网船的船位数据按所述定位时间的顺序每N条数据进行航速、航向及定位时间的平均值提取;
(3)基于预处理后的毛虾网船的船位数据以及捕捞日志中抛锚布网和起网收渔获状态的始末时间,通过运用人工神经网络方法对所述毛虾网船各个轨迹点的渔船状态进行判断及验证,得到训练好的毛虾网船船位点捕捞状态人工神经网络模型;
(4)对新的毛虾网船的船位数据进行如所述步骤(2)的预处理,并将其作为所述毛虾网船船位点捕捞状态人工神经网络模型的输入,得到所述新的毛虾网船轨迹点的渔船状态;
(5)通过得到的所述新的毛虾网船轨迹点的渔船状态运用频数占比法以及地理空间可视化方法探究毛虾网船的捕捞行为特征。
2.根据权利要求1所述的基于船位数据提取毛虾网船捕捞行为特征的方法,其特征在于,所述渔船状态包括:抛锚布网、起网收渔获和快速航行。
3.根据权利要求1所述的基于船位数据提取毛虾网船捕捞行为特征的方法,其特征在于,所述步骤(2)中对所述毛虾网船的船位数据进行预处理时,还包括剔除航速小于0.2节的毛虾网船位数据的操作。
4.根据权利要求1所述的基于船位数据提取毛虾网船捕捞行为特征的方法,其特征在于,所述步骤(2)中对所述毛虾网船的船位数据按所述定位时间的顺序每3条或每5条数据进行航速、航向及定位时间的平均值提取。
5.根据权利要求1所述的基于船位数据提取毛虾网船捕捞行为特征的方法,其特征在于,所述步骤(3)中所述人工神经网络的节点的传输函数采用logsig和purelin函数,训练函数采用traingdx,从所述预处理后的毛虾网船的船位数据中随机分配80%训练样本和20%测试样本,设置所述人工神经网络训练的最大迭代次数为1000,学习率为0.02,最大误差给定0.001,最大失败验证为6次。
6.根据权利要求1所述的基于船位数据提取毛虾网船捕捞行为特征的方法,其特征在于,所述步骤(5)具体为:统计抛锚布网、起网收渔获和快速航行下的航速和频数占比,得到捕捞行为航速特征;根据起网收渔获处于毛虾捕捞阶段抛锚布网和等待渔获状态之后,以及单网次捕捞时长为抛锚布网和起网收渔获频数占比较高时刻的时间差,统计抛锚布网、起网收渔获和快速航行下的定位时刻和频数占比,得到捕捞行为时间特征;通过对起网收渔获点集进行地理空间可视化,并提取每一网次起网收渔获点集的始末点连接成线得到布网方位角,统计各方位角的频数占比,得到捕捞行为空间特征。
CN202111037202.XA 2021-09-06 2021-09-06 一种基于船位数据提取毛虾网船捕捞行为特征的方法 Active CN113887562B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111037202.XA CN113887562B (zh) 2021-09-06 2021-09-06 一种基于船位数据提取毛虾网船捕捞行为特征的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111037202.XA CN113887562B (zh) 2021-09-06 2021-09-06 一种基于船位数据提取毛虾网船捕捞行为特征的方法

Publications (2)

Publication Number Publication Date
CN113887562A true CN113887562A (zh) 2022-01-04
CN113887562B CN113887562B (zh) 2022-09-30

Family

ID=79008231

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111037202.XA Active CN113887562B (zh) 2021-09-06 2021-09-06 一种基于船位数据提取毛虾网船捕捞行为特征的方法

Country Status (1)

Country Link
CN (1) CN113887562B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109685086A (zh) * 2017-10-18 2019-04-26 中电科海洋信息技术研究院有限公司 海上船舶作业状态识别方法、装置、设备及存储介质
CN110135559A (zh) * 2019-04-28 2019-08-16 中国水产科学研究院东海水产研究所 一种基于船位数据获取张网网位和捕捞努力量的方法
CN111222526A (zh) * 2018-11-27 2020-06-02 中电科海洋信息技术研究院有限公司 一种渔船实时捕捞行为识别方法、装置、设备及存储介质
CN112434465A (zh) * 2020-11-19 2021-03-02 江苏省海洋水产研究所 基于船位数据提取毛虾网有效布网网长的方法
CN112784180A (zh) * 2021-02-03 2021-05-11 中国水产科学研究院东海水产研究所 一种金枪鱼围网渔船捕捞强度空间信息提取方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109685086A (zh) * 2017-10-18 2019-04-26 中电科海洋信息技术研究院有限公司 海上船舶作业状态识别方法、装置、设备及存储介质
CN111222526A (zh) * 2018-11-27 2020-06-02 中电科海洋信息技术研究院有限公司 一种渔船实时捕捞行为识别方法、装置、设备及存储介质
CN110135559A (zh) * 2019-04-28 2019-08-16 中国水产科学研究院东海水产研究所 一种基于船位数据获取张网网位和捕捞努力量的方法
CN112434465A (zh) * 2020-11-19 2021-03-02 江苏省海洋水产研究所 基于船位数据提取毛虾网有效布网网长的方法
CN112784180A (zh) * 2021-02-03 2021-05-11 中国水产科学研究院东海水产研究所 一种金枪鱼围网渔船捕捞强度空间信息提取方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李国东 等: ""基于北斗船位数据的渔业信息解译与应用研究——以中国毛虾限额捕捞管理为例"", 《海洋与湖沼》 *
裴凯洋 等: ""基于VMS的张网渔船捕捞努力量与网位坐标提取方法"", 《上海海洋大学学报》 *

Also Published As

Publication number Publication date
CN113887562B (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
CN111652149A (zh) 基于深度卷积神经网络的沉底油声呐探测图像识别方法
CN110135559A (zh) 一种基于船位数据获取张网网位和捕捞努力量的方法
Gaertner et al. Influence of fishers’ behaviour on the catchability of surface tuna schools in the Venezuelan purse-seiner fishery in the Caribbean Sea
CN112434465B (zh) 基于船位数据提取毛虾网有效布网网长的方法
Trygonis et al. Spatiotemporal distribution of fish schools around drifting fish aggregating devices
KR20220025537A (ko) 항적 데이타를 이용한 어선 조업 판별 방법
CN114444819A (zh) 一种渔业资源预测方法、装置、存储介质以及电子设备
Langton et al. Distribution, behavior and abundance of sea pens, Pennatula aculeata, in the Gulf of Maine
Stokesbury et al. Impact of limited short-term sea scallop fishery on epibenthic community of Georges Bank closed areas
CN112784180A (zh) 一种金枪鱼围网渔船捕捞强度空间信息提取方法
CN116150618A (zh) 一种基于深度学习神经网络的渔船作业类型识别方法
CN114139608A (zh) 一种基于ais轨迹数据的多步聚类的渔船行为识别方法
Gastauer et al. Towards acoustic monitoring of a mixed demersal fishery based on commercial data: the case of the Northern Demersal Scalefish Fishery (Western Australia)
CN113887562B (zh) 一种基于船位数据提取毛虾网船捕捞行为特征的方法
Fonteneau et al. An overview of problems in the CPUE-abundance relationship for the tropical purse seine fisheries
Feng et al. The study of identification of fishing vessel behavior based on VMS data
CN105279702A (zh) 一种基于北斗卫星数据拖网捕捞累计值获取方法
CN115996365B (zh) 一种深远海养殖环境的数据采集方法及系统
Pei et al. Spatial distribution of fishing intensity of canvas stow net fishing vessels in the East China Sea and the Yellow Sea
Walker Abundance and size of the sea scallop population in the Mid-Atlantic Bight
Chen et al. Real-time detection and classification for targeted marine mammals
Zhang et al. Fishing vessel type recognition based on ship position data
CN117475387B (zh) 一种利用Hive离线分析技术及伴随思想进行渔船双拖分析的方法
Taylor et al. Assessing trends in abundance for vaquita using acoustic monitoring: within refuge plan and outside refuge research needs
Fox et al. Hydrographic circulation and the dispersal of yolk-sac herring (Clupea harengus) larvae in the Blackwater Estuary

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant