CN113885044A - 一种挖掘机复杂环境下slam建图定位方法、系统及装置 - Google Patents

一种挖掘机复杂环境下slam建图定位方法、系统及装置 Download PDF

Info

Publication number
CN113885044A
CN113885044A CN202111145604.1A CN202111145604A CN113885044A CN 113885044 A CN113885044 A CN 113885044A CN 202111145604 A CN202111145604 A CN 202111145604A CN 113885044 A CN113885044 A CN 113885044A
Authority
CN
China
Prior art keywords
laser radar
excavator
data
point cloud
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111145604.1A
Other languages
English (en)
Inventor
张成梁
张文斌
付帅帅
牛晓晓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN202111145604.1A priority Critical patent/CN113885044A/zh
Publication of CN113885044A publication Critical patent/CN113885044A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3811Point data, e.g. Point of Interest [POI]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本公开提供了一种挖掘机复杂环境下SLAM建图定位方法,包括以下步骤:利用激光雷达对挖掘对象进行检测,获取挖掘对象的激光雷达数据;利用深度相机对挖掘对象进行检测,获取挖掘对象的深度图像;在激光雷达与深度相机的重合区域内,将激光雷达采集的激光雷达数据与深度相机采集的深度图像进行坐标系转换,并将激光雷达数据和深度图像进行数据融合,得到挖掘对象的地图。优化了传统ICP的目标函数,从而增加了挖掘机在复杂烟尘环境下的定位准确性,精简了运算量,可以降低驾驶员的作业风险,提高挖掘效率。

Description

一种挖掘机复杂环境下SLAM建图定位方法、系统及装置
技术领域
本公开涉及图像识别技术领域,尤其涉及一种挖掘机复杂环境下SLAM建图定位方法、系统及装置。
背景技术
本部分的陈述仅仅是提供了与本公开相关的背景技术信息,不必然构成在先技术。
SLAM(Simultaneous localization and mapping)是即时定位与地图构建的英文简称,也称为CML(Concurrent Mapping and Localization),并发建图与定位。SLAM要解决的问题是:将一个机器人放入未知环境中的未知位置,是否有办法让机器人一边逐步描绘出此环境完全的地图,同时一边决定机器人应该往哪个方向行进。
机器人SLAM技术是机器人领域的基础核心技术,基于激光雷达的SLAM技术是被广泛应用的一种方案,其中基于2D激光雷达的SLAM技术被广泛应用在家庭服务机器人领域。目前挖掘机一般工作在高度粉尘、地形复杂等场所,对操作者的生命健康和身体安全形成了极大的隐患,另外,矿场长时间作业要求会导致工人劳动强度大,用工成本高。
现有基于2D激光雷达的SLAM技术的一个缺点是只能探测2D平面的物体,而且对被测物体的要求较高,一些特殊的物体,如挖掘机挖掘对象则不能通过现有2D激光雷达有效探测出来。这样,基于2D激光雷达所建立的全局地图有可能无法满足挖掘机自主挖掘需求,这极大地限制了SLAM技术在挖掘机领域的应用。
发明内容
本公开为了解决上述问题,提出了一种挖掘机复杂环境下SLAM建图定位方法、系统及装置,本公开能够提高挖掘机在复杂烟尘环境下的定位准确性。
根据一些实施例,本公开采用如下技术方案:
一种挖掘机复杂环境下SLAM建图定位方法,包括以下步骤:
获取挖掘对象的激光雷达数据;
获取挖掘对象的深度图像;
在激光雷达数据和深度图像所在的重合区域内,将激光雷达数据与深度图像进行坐标系转换,并将激光雷达数据和深度图像进行数据融合,得到挖掘对象的地图。
进一步地,所述激光雷达数据为带有运动畸变的点云数据,获取点云数据后进行数据预处理。
进一步地,所述数据预处理包括,根据激光雷达匀速运动模型消除畸变,得到无畸变点云。
进一步地,对无畸变点云采用顾及点云强度的主成分分析方法从关键点中提取特征点云,得到无畸变特征点云。
进一步地,利用精简顾及点云强度的SMCGICP算法对无畸变特征点云和无畸变点云进行配准,推估当前时刻下的激光雷达的位姿。
进一步地,利用SMCGICP算法得到优化后的激光雷达位姿。
进一步地,所述获取挖掘对象的深度图像,包括图像预处理,对深度图像中的彩色图像进行特征提取,并将有深度值对应的特征角点存储为3D特征点,将无深度值对应的特征角点存储为2D特征点。
进一步地,通过特征匹配和2D/3D联合运动估计法得到深度相机的运动状态,得到当前时刻的深度相机位姿,确定关键帧。
进一步地,将关键帧对应的深度相机位姿进行整体优化,并建立挖局对象的三维地图。
一种挖掘机复杂环境下SLAM建图定位系统,包括:
雷达数据模块,被配置为,获取挖掘对象的激光雷达数据;
深度图像模块,被配置为,获取挖掘对象的深度图像;
数据融合模块,被配置为,在激光雷达数据和深度图像所在的重合区域内,将激光雷达数据与深度图像进行坐标系转换,并将激光雷达数据和深度图像进行数据融合,得到挖掘对象的地图。
一种挖掘机复杂环境下SLAM建图定位装置,包括:
服务器,用于对挖掘对象的激光雷达与深度相机相同采集区域内,根据激光雷达和深度相机采集数据进行数据融合,根据数据融合结果,对挖掘对象进行实时建图;
激光雷达,用于对挖掘机挖掘对象进行探测,从而获取到激光雷达的点云数据;
深度相机,用于对挖掘机挖掘对象进行探测,从而获取到深度相机的深度图像;
交换机,用于各设备间高速网络通信。
与现有技术相比,本公开的有益效果为:
本公开优化了传统ICP的目标函数,从而增加了挖掘机在复杂烟尘环境下的定位准确性,精简了运算量,可以降低驾驶员的作业风险,提高挖掘效率,降低施工成本,弥补了传统SLAM技术在挖掘机上应用不足的情况,加快挖掘机无人化、自主化挖掘作业发展进程。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1是本实施例的激光雷达与深度相机在挖掘机上的安装布局图;
图2是本实施例的流程图;
图3是本实施例的步骤S1的具体框图;
图4是本实施例的步骤S2的具体框图;
图5是本实施例的步骤S3的具体框图;
图6是本实施例的SMCGICP算法与传统MCGICP算法运行效率对比图;
图7是本实施例的传统MCGICP算法SLAM建图效果图;
图8是本实施例的SMCGICP算法SLAM建图效果图。
其中,1、激光雷达;2、深度相机。
具体实施方式:
下面结合附图与实施例对本公开作进一步说明。
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
实施例1.
如图2所示,一种挖掘机复杂环境下SLAM建图定位方法,包括以下步骤:
S1.利用激光雷达对挖掘对象进行检测,获取挖掘对象的激光雷达数据;
S2.利用深度相机对挖掘对象进行检测,获取挖掘对象的深度图像;
S3.在激光雷达与深度相机的重合区域内,将激光雷达采集的激光雷达数据与深度相机采集的深度图像进行坐标系转换,并将激光雷达数据和深度图像进行数据融合,得到挖掘对象的地图。
具体的,
如图3所示,所述步骤S1具体包括以下步骤:
S11.利用3D激光雷达获取的点云数据是带有运动畸变的点云,需要进行点云预处理,根据激光雷达匀速运动模型消除畸变,而后采用顾及点云强度的主成分分析方法从关键点中提取特征点云;
S12.采用精简顾及点云强度的SMCGICP算法对上一时刻的无畸变特征点云和当前时刻初步消除畸变的点云进行配准,估计激光雷达在这段时间的相对运动,进而推估当前时刻下雷达的位姿;
S13.采用SMCGICP算法,将局部点云与全局地图进行配准,在更新地图同时得到优化后的雷达位姿。
进一步作为优选的实施方式,如图4所示,所述步骤S2具体包括以下步骤:
S21.图像预处理,服务器收到深度相机输出的彩色图像和深度图像,对彩色图像进行特征提取,并将有深度值对应的特征角点存储为3D特征点,将无深度值对应的特征角点对出为2D特征点;
S22.将k时刻的2D特征和3D特征与k-1时刻的进行匹配,并根据匹配的特征点采用2D/3D联合运动估计方法粗略估计相机在[k-1,k]时刻内的运动状态,得到k时刻下的相机位姿,最后确定当前帧是否为关键帧;
S23.将创建的关键帧插入优化器中,对所有关键帧所对应的相机位姿进行整体优化,而后以优化后的相机位姿为参考,将各关键帧的全部点云信息附上颜色后建立挖掘对象的三维地图。
进一步作为优选的实施方式,如图5所示,所述步骤S3具体包括以下步骤:
S31.前期工作,采用张正友标定法快速标定相机内参。采用ArUco标志实现激光雷达与深度相机安置参数的标定;
S32.数据预处理,服务器收到的彩色图像和深度图像,对彩色图像进行特征提取,并将有深度值对应的特征角点存储为3D特征点,将无深度值对应的特征角点对出为2D特征点。服务器低频接收点云,并根据高频图像的帧间VO消除点云畸变;
S33.运动估计,运动估计分为高频的深度相机帧间运动估计和低频激光雷达点云配准。相机帧间运动估计采用S22中的运动估计方法,并为点云的畸变消除提供初值。点云配准采用S12中的点云配准方法,优化位姿估计结果并为进一步消除点云的畸变提供初值。最后确定当前帧是否为关键帧;
S34.地图构建与优化,通过估计点云颜色信息的SMCGICP算法将局部点云与全局地图配准,在更新地图的同时获取优化后的激光雷达位姿。
S35.回环检测,采用基于ORB词典和点云相似性的环境识别方法进行闭环检测,若产生闭环则利用BA对闭环内所有载体轨迹和地图点进行整体优化,保证地图的一致性,并降低位姿漂移。
进一步作为优选的实施方式,所述步骤S34主要包括以下算法:
优化ICP概率框架,其目标函数为:
Figure BDA0003285324620000071
上式中,将前后两帧点云进行顾及点云强度运算,将运算结果乘未优化的目标函数,当点云强度较弱时,匹配后的点云在全局地图中权重将减少,从而达到精简运算和增加挖掘机在烟尘环境下SLAM建图鲁棒性的目的。
进一步作为优选的实施方式,将点云A,B中的某一点i表示为
Figure BDA0003285324620000072
其中
Figure BDA0003285324620000073
表示位置信息,
Figure BDA0003285324620000074
表示附加的点云强度信息。设q=[qp,qd]T为索引点,q与其k邻域点
Figure BDA0003285324620000075
的局部协方差阵为
Figure BDA0003285324620000076
将所有的
Figure BDA0003285324620000077
沿法向投影至q的表面上,得到
Figure BDA0003285324620000078
Figure BDA0003285324620000079
其中U1、U1是局部协方差阵SVD分解的U矩阵的前两列。将点云强度量测值表示为一维高斯分布
Figure BDA00032853246200000710
并定义权值λi为:
Figure BDA00032853246200000711
而后加权计算投影点的均值μp和方差Σd,通过这种方法将点云强度信息融入平面方向的点位信息中:
Figure BDA00032853246200000712
Figure BDA00032853246200000713
μp和Σd描述了点云强度不确定度沿平面方向的分布,反映了邻域点li与索引点q的相似性。为避免采样偏差引起的协方差矩阵的估计偏差,将Σd归一化得:
Figure BDA0003285324620000081
最后,将融入点云强度信息的协方差矩阵Ω融入ICP框架中:
Figure BDA0003285324620000082
将Σi代入目标函数中,利用非线性优化算法即可求解点云的相对变换
Figure BDA0003285324620000083
进一步作为优选的实施方式,如图6为本发明SMCGICP算法与传统MCGICP算法运行效率对比图,可以看出,本发明算法对比传统算法在CPU占用率上约有2~10%的领先。
进一步作为优选的实施方式,如图7为传统MCGICP算法SLAM建图效果图。如图8为本发明SMCGICP算法SLAM建图效果图,可以看出,本发明算法对比传统算法在效果上有明显提升,点云数量更加精简,地图更加准确。
实施例2.
一种挖掘机复杂环境下SLAM建图定位系统,其特征在于,
雷达数据模块,被配置为,获取挖掘对象的激光雷达数据;
深度图像模块,被配置为,获取挖掘对象的深度图像;
数据融合模块,被配置为,在激光雷达数据和深度图像所在的重合区域内,将激光雷达数据与深度图像进行坐标系转换,并将激光雷达数据和深度图像进行数据融合,得到挖掘对象的地图。
实施例3.
一种挖掘机复杂环境下SLAM建图定位装置,包括:
服务器,用于对挖掘对象的激光雷达与深度相机相同采集区域内,根据激光雷达和深度相机采集数据进行数据融合,根据数据融合结果,对挖掘对象进行实时建图;
激光雷达,用于对挖掘机挖掘对象进行探测,从而获取到激光雷达的点云数据;
深度相机,用于对挖掘机挖掘对象进行探测,从而获取到深度相机的深度图像;
交换机,用于各设备间高速网络通信。
具体的,
如图1所示,一种挖掘机复杂环境下SLAM建图定位装置,包括服务器、激光雷达、深度相机和千兆交换机,所述服务器与千兆交换机通过六类双绞屏蔽网线连接,所述激光雷达和深度相机分别通过六类双绞屏蔽网线连接到千兆交换机上;
所述服务器用于对挖掘机同一挖掘对象的激光雷达与深度相机相同采集区域内,根据激光雷达和深度相机采集数据进行数据融合,根据数据融合结果,对挖掘对象进行实时建图;
所述激光雷达用于对挖掘机挖掘对象进行探测,从而获取到激光雷达的点云数据;
所述深度相机用于对挖掘机挖掘对象进行探测,从而获取到深度相机的深度图像;
所述千兆交换机用于各设备间高速网络通信;
如图1,3D激光雷达安装在挖掘机驾驶室的顶部,深度相机安装在挖掘机驾驶室的前部。
进一步作为优选的实施方式,所述激光雷达为3D激光雷达,线数为16线,所述3D激光雷达的视角为360°,所述3D激光雷达测量距离最长为100m,保证挖掘机的有效可检测范围。
进一步作为优选的实施方式,所述深度相机的类型为双目TOF深度相机,所述深度相机的像素为400万像素,所述深度相机的深度范围为0.2m-20m,保证挖掘机的有效检测精度。
由图1可知3D激光雷达与深度相机的安装关系,二者的视野区域存在重叠部分,优选地可以调整深度相机的方向,使二者的视野所形成的控件具有对称性。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
上述虽然结合附图对本公开的具体实施方式进行了描述,但并非对本公开保护范围的限制,所属领域技术人员应该明白,在本公开的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本公开的保护范围以内。

Claims (10)

1.一种挖掘机复杂环境下SLAM建图定位方法,其特征在于,包括以下步骤:
获取挖掘对象的激光雷达数据;
获取挖掘对象的深度图像;
在激光雷达数据和深度图像所在的重合区域内,将激光雷达数据与深度图像进行坐标系转换,并将激光雷达数据和深度图像进行数据融合,得到挖掘对象的地图。
2.如权利要求1所述的一种挖掘机复杂环境下SLAM建图定位方法,其特征在于,所述激光雷达数据为带有运动畸变的点云数据,获取点云数据后进行数据预处理。
3.如权利要求2所述的一种挖掘机复杂环境下SLAM建图定位方法,其特征在于,所述数据预处理包括,根据激光雷达匀速运动模型消除畸变,得到无畸变点云。
4.如权利要求3所述的一种挖掘机复杂环境下SLAM建图定位方法,其特征在于,对无畸变点云采用顾及点云强度的主成分分析方法从关键点中提取特征点云,得到无畸变特征点云。
5.如权利要求4所述的一种挖掘机复杂环境下SLAM建图定位方法,其特征在于,利用精简顾及点云强度的SMCGICP算法对无畸变特征点云和无畸变点云进行配准,推估当前时刻下的激光雷达的位姿,利用SMCGICP算法得到优化后的激光雷达位姿。
6.如权利要求5所述的一种挖掘机复杂环境下SLAM建图定位方法,其特征在于,所述获取挖掘对象的深度图像,包括图像预处理,对深度相机获取的彩色图像进行特征提取,并将有深度值对应的特征角点存储为3D特征点,将无深度值对应的特征角点存储为2D特征点。
7.如权利要求6所述的一种挖掘机复杂环境下SLAM建图定位方法,其特征在于,通过特征匹配和2D/3D联合运动估计法得到深度相机的运动状态,得到当前时刻的深度相机位姿,确定关键帧。
8.如权利要求7所述的一种挖掘机复杂环境下SLAM建图定位方法,其特征在于,将关键帧对应的深度相机位姿进行整体优化,并建立挖局对象的三维地图。
9.如权利要求7所述的一种挖掘机复杂环境下SLAM建图定位系统,其特征在于,
雷达数据模块,被配置为,获取挖掘对象的激光雷达数据;
深度图像模块,被配置为,获取挖掘对象的深度图像;
数据融合模块,被配置为,在激光雷达数据和深度图像所在的重合区域内,将激光雷达数据与深度图像进行坐标系转换,并将激光雷达数据和深度图像进行数据融合,得到挖掘对象的地图。
10.一种挖掘机复杂环境下SLAM建图定位装置,其特征在于,包括:
服务器,用于对挖掘对象的激光雷达与深度相机相同采集区域内,根据激光雷达和深度相机采集数据进行数据融合,根据数据融合结果,对挖掘对象进行实时建图;
激光雷达,用于对挖掘机挖掘对象进行探测,从而获取到激光雷达的点云数据;
深度相机,用于对挖掘机挖掘对象进行探测,从而获取到深度相机的深度图像;
交换机,用于各设备间高速网络通信。
CN202111145604.1A 2021-09-28 2021-09-28 一种挖掘机复杂环境下slam建图定位方法、系统及装置 Pending CN113885044A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111145604.1A CN113885044A (zh) 2021-09-28 2021-09-28 一种挖掘机复杂环境下slam建图定位方法、系统及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111145604.1A CN113885044A (zh) 2021-09-28 2021-09-28 一种挖掘机复杂环境下slam建图定位方法、系统及装置

Publications (1)

Publication Number Publication Date
CN113885044A true CN113885044A (zh) 2022-01-04

Family

ID=79007452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111145604.1A Pending CN113885044A (zh) 2021-09-28 2021-09-28 一种挖掘机复杂环境下slam建图定位方法、系统及装置

Country Status (1)

Country Link
CN (1) CN113885044A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116663761A (zh) * 2023-06-25 2023-08-29 昆明理工大学 一种三七中药材低损挖掘系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李帅鑫: "激光雷达/相机组合的3D SLAM技术研究", 《中国优秀硕士学位论文全文数据库信息科技辑》, 15 December 2018 (2018-12-15), pages 24 - 29 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116663761A (zh) * 2023-06-25 2023-08-29 昆明理工大学 一种三七中药材低损挖掘系统
CN116663761B (zh) * 2023-06-25 2024-04-23 昆明理工大学 一种三七中药材低损挖掘系统

Similar Documents

Publication Publication Date Title
CN109270534B (zh) 一种智能车激光传感器与相机在线标定方法
US11579623B2 (en) Mobile robot system and method for generating map data using straight lines extracted from visual images
CN110125928B (zh) 一种基于前后帧进行特征匹配的双目惯导slam系统
CN110849374B (zh) 地下环境定位方法、装置、设备及存储介质
WO2021022615A1 (zh) 机器人探索路径生成方法、计算机设备和存储介质
US8588471B2 (en) Method and device of mapping and localization method using the same
CN107967473B (zh) 基于图文识别和语义的机器人自主定位和导航
Tardif et al. A new approach to vision-aided inertial navigation
JP5109294B2 (ja) 3次元位置補正装置
CN108868268A (zh) 基于点到面距离和互相关熵配准的无人车位姿估计方法
KR20140009737A (ko) 하이브리드 맵 기반 로봇의 위치인식방법
CN109737968B (zh) 基于二维LiDAR和智能手机的室内融合定位方法
CN112805766A (zh) 用于更新详细地图的装置和方法
CN113885044A (zh) 一种挖掘机复杂环境下slam建图定位方法、系统及装置
CN116188417A (zh) 基于slam和图像处理的裂缝检测及其三维定位方法
Tao et al. Automated processing of mobile mapping image sequences
CN113971697A (zh) 一种空地协同车辆定位定向方法
CN117470259A (zh) 一种子母式空地协同多传感器融合三维建图系统
Deng et al. Research on target recognition and path planning for EOD robot
Hu et al. PALoc: Advancing SLAM Benchmarking With Prior-Assisted 6-DoF Trajectory Generation and Uncertainty Estimation
CN115937449A (zh) 高精地图生成方法、装置、电子设备和存储介质
Chen et al. 3d map building based on stereo vision
CN111239761B (zh) 一种用于室内实时建立二维地图的方法
CN108090961B (zh) 一种三维激光点云成像中的快速平差方法
Song et al. Floorplan-based localization and map update using lidar sensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination