CN113875286A - 用于基于双连接的切换的用户设备能力 - Google Patents

用于基于双连接的切换的用户设备能力 Download PDF

Info

Publication number
CN113875286A
CN113875286A CN202080040194.1A CN202080040194A CN113875286A CN 113875286 A CN113875286 A CN 113875286A CN 202080040194 A CN202080040194 A CN 202080040194A CN 113875286 A CN113875286 A CN 113875286A
Authority
CN
China
Prior art keywords
target cell
source cell
cell
handover
simultaneous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080040194.1A
Other languages
English (en)
Inventor
李启明
崔杰
唐扬
李华
黄睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Publication of CN113875286A publication Critical patent/CN113875286A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0016Hand-off preparation specially adapted for end-to-end data sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0027Control or signalling for completing the hand-off for data sessions of end-to-end connection for a plurality of data sessions of end-to-end connections, e.g. multi-call or multi-bearer end-to-end data connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00692Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using simultaneous multiple data streams, e.g. cooperative multipoint [CoMP], carrier aggregation [CA] or multiple input multiple output [MIMO]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00695Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using split of the control plane or user plane
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/085Reselecting an access point involving beams of access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了用于实现双连接切换的方法、系统、装置和计算机程序。在一个方面,一种方法包括:由用户设备(UE)确定该UE是否能够与源小区和目标小区同时通信;由该UE生成切换标志,该切换标志具有将数据结构化的一个或多个字段,该一个或多个字段指示该UE能够与该源小区和该目标小区同时通信;由该UE向接入节点传输该切换标志;以及基于该接入节点接收到该切换标志,由该UE从该接入节点接收用于执行切换的命令。

Description

用于基于双连接的切换的用户设备能力
相关申请的交叉引用
本专利申请要求2019年4月4日提交的美国临时专利申请62/829,453的权益,该专利申请全文以引用方式并入本文。
背景技术
各种具体实施整体可涉及无线通信领域。
发明内容
根据本公开的创新方面,公开了一种用于实现双连接切换的方法。在一个方面,该方法可包括以下动作:由用户设备(UE)确定该UE是否能够与源小区和目标小区同时通信;由该UE生成切换标志,该切换标志具有指示该UE能够与该源小区和该目标小区同时通信的一个或多个字段;由该UE向接入节点传输该切换标志;以及基于该接入节点接收到该切换标志,由该UE从该接入节点接收用于执行切换的命令。
其他版本包括用于执行由编码在计算机可读存储设备上的指令定义的方法的动作的对应系统、装置和计算机程序。
这些版本和其他版本可任选地包括以下特征中的一个或多个特征。例如,在一些具体实施中,指示UE能够与源小区和目标小区同时通信的一个或多个字段可包括:第一字段,该第一字段指示UE能够同时进行在源小区和目标小区中的接收;第二字段,该第二字段指示UE能够同时进行在源小区和目标小区中的传输;第三字段,该第三字段指示UE能够同时进行在源小区中的传输和在目标小区中的接收;或第四字段,该第四字段指示UE在切换期间能够同时进行在源小区中的接收和在目标小区中的传输。
在一些具体实施中,指示UE能够与源小区和目标小区同时通信的一个或多个字段可包括:第一字段,该第一字段指示UE能够同时进行在源小区和目标小区中的接收;第二字段,该第二字段指示UE能够同时进行在源小区和目标小区中的传输;第三字段,该第三字段指示UE能够同时进行在源小区中的传输和在目标小区中的接收;以及第四字段,该第四字段指示UE在切换期间能够同时进行在源小区中的接收和在目标小区中的传输。
在一些具体实施中,指示UE能够与源小区和目标小区同时通信的一个或多个字段可包括表示布尔标志的字段,该布尔标志具有:第一值,该第一值指示UE在切换期间既能够同时进行在源小区和目标小区中的接收,也能够同时进行在源小区和目标小区中的传输;或第二值,该第二值指示UE既不能够同时进行在源小区和目标小区中的接收,也不能够同时进行在源小区和目标小区中的传输。
在一些具体实施中,布尔标志的第一值还指示UE既能够同时进行在源小区中的传输和在目标小区中的接收,也能够同时进行在源小区中的接收和在目标小区中的传输;并且布尔标志的第二值还指示UE既不能够同时进行在源小区中的传输和在目标小区中的接收,也不能够同时进行在源小区中的接收和在目标小区中的传输。
在一些具体实施中,切换标志可对应于源小区和目标小区的频带组合。
在一些具体实施中,切换标志或频带适用于具有不同子载波间距的源小区和目标小区。
在一些具体实施中,切换标志是第一切换标志。在此类具体实施中,该方法还可包括由UE传输多个切换标志,该多个切换标志包括:该第一切换标志和第二切换标志,其中该第一切换标志和该第二切换标志各自对应于不同的相应频带组合。
根据本公开的另一创新方面,公开了一种用于实现双连接切换的方法。在一个方面,该方法可包括以下动作:由接入节点获取切换标志,该切换标志具有指示发起该切换标志的用户设备(UE)能够与源小区和目标小区同时通信的一个或多个字段;由该接入节点并基于所获取的标志生成切换命令,该切换命令包括:将数据结构化的一个或多个字段,该数据在被该UE处理时,使得该UE执行切换至该目标小区;由该接入节点对该切换命令进行编码以传输到该UE;以及由该接入节点使一个或多个天线向该UE传输该切换命令。
其他版本包括用于执行由编码在计算机可读存储设备上的指令定义的方法的动作的对应系统、装置和计算机程序。
这些版本和其他版本可任选地包括以下特征中的一个或多个特征。例如,在一些具体实施中,指示发起切换标志的UE能够与源小区和目标小区同时通信的一个或多个字段可包括:第一字段,该第一字段指示UE能够同时进行在源小区和目标小区中的接收;第二字段,该第二字段指示UE能够同时进行在源小区和目标小区中的传输;第三字段,该第三字段指示UE能够同时进行在源小区中的传输和在目标小区中的接收;或第四字段,该第四字段指示UE在切换期间能够同时进行在源小区中的接收和在目标小区中的传输。
在一些具体实施中,指示发起切换标志的UE能够与源小区和目标小区同时通信的一个或多个字段可包括:第一字段,该第一字段指示UE能够同时进行在源小区和目标小区中的接收;第二字段,该第二字段指示UE能够同时进行在源小区和目标小区中的传输;第三字段,该第三字段指示UE能够同时进行在源小区中的传输和在目标小区中的接收;和第四字段,该第四字段指示UE在切换期间能够同时进行在源小区中的接收和在目标小区中的传输。
在一些具体实施中,指示发起切换标志的UE能够与源小区和目标小区同时通信的一个或多个字段可包括表示布尔标志的字段,该布尔标志具有:第一值,该第一值指示UE在切换期间既能够同时进行在源小区和目标小区中的接收,也能够同时进行在源小区和目标小区中的传输;或第二值,该第二值指示UE既不能够同时进行在源小区和目标小区中的接收,也不能够同时进行在源小区和目标小区中的传输。
在一些具体实施中,布尔标志的第一值还指示UE既能够同时进行在源小区中的传输和在目标小区中的接收,也能够同时进行在源小区中的接收和在目标小区中的传输;并且布尔标志的第二值还指示UE既不能够同时进行在源小区中的传输和在目标小区中的接收,也不能够同时进行在源小区中的接收和在目标小区中的传输。
在一些具体实施中,切换标志对应于源小区和目标小区的频带组合。
在一些具体实施中,切换标志或频带适用于具有不同子载波间距的源小区和目标小区。
在下文参考附图的详细描述中更详细地讨论了本公开的这些方面和其他方面。
附图说明
图1是用于启用双连接切换能力的系统的上下文图。
图2是用于使用UE来通知无线网络UE准备好进行双连接切换的过程的流程图。
图3是使用无线网络来触发双连接切换的过程的流程图。
图4示出了网络的系统的示例性架构。
图5示出了包括第一CN的系统的示例性架构。
图6示出了包括第二CN的系统的架构。
图7示出了基础设施设备的示例。
图8示出了平台的示例。
图9示出了基带电路和无线电前端模块(REFM)的示例性部件。
图10示出了可在无线通信设备中实现的各种协议功能。
图11示出了核心网的部件。
图12是示出支持NFV的系统的部件的框图。
图13是示出能够从机器可读或计算机可读介质(例如,非暂态机器可读存储介质)读取指令并执行本文讨论的方法中的任一种或多种的部件的框图。
具体实施方式
本公开涉及用于在用户设备(UE)中启用双连接切换能力的方法、系统和计算机程序。双连接切换能力包括:在由接入节点(诸如,eNodeB)发出切换命令之前,等待直到UE已建立向源小区和目标小区两者的同时传输能力、从源小区和目标小区两者的同时接收能力或两者的过程。在一些具体实施中,UE可负责检测同时传输能力、同时接收能力或两者,并且向eNodeB(诸如,源eNodeB)传输切换指示消息。切换指示消息可向源eNodeB指示UE已建立双连接并且准备好进行切换。在此类实例中,eNodeB(诸如,源eNodeB)可以向UE发出触发切换至目标eNodeB的过程的切换命令。由于在切换时的现有双连接,本公开提供了减少由于切换而出现的中断时间的益处。
图1是用于启用双连接切换能力的系统100的上下文图。系统100可包括:UE 105、第一接入节点A 110和第二接入节点B 120。在图1的示例中,UE 105可开始第一状态A,其中UE 105在由接入节点A 110提供的源小区112中。然后,UE 105可从状态A移动至状态B,其中状态B处于在由接入节点A 110提供的源小区112和由接入节点B 120提供的目标小区122之间具有覆盖范围重叠的位置。
在状态A中,由于UE 105在源小区112内与由接入节点A 110提供的无线网络连接,该UE可具有经由接入节点A 110提供的无线网络向一个或多个设备传输数据并经由接入节点B 120提供的无线网络从一个或多个设备接收数据的能力。这可分别称为传输能力和接收能力。然而,在状态A下,因为UE 105尚未进入由接入节点B 120提供的目标小区122,所以UE 105不具有使用由接入节点B 120提供的无线网络的传输能力或接收能力。
当UE 105从状态A转换至状态B时,UE 105可通过一个或多个接入节点(诸如,接入节点A 110和接入节点B 120)监测传输能力和接收能力的可用性。当UE 105转换至状态B时,UE 105可检测UE 105何时实现在源小区112和目标小区122之间双连接。出于本公开的目的,双连接可包括:UE 105实现源小区112和目标小区122之间的同时传输能力、源小区112和目标小区122之间的同时接收能力或两者的组合。在本文中,术语“同时”意味着UE105能够执行特定任务,诸如使用由源小区112提供的无线网络或由目标小区122提供的无线网络传输数据或接收数据。此类使用源小区112或目标小区122的特定任务的执行可同时发生或连续发生,尽管是快速连续发生。
一旦UE 105实现在源小区112和目标小区122之间双连接,UE 105就有资格切换至目标小区122。在检测到传输区域、接收区域、传输-接收区域(诸如,在源小区112中的传输以及在目标小区122中的接收)、接收-传输区域(诸如,在源小区112中的接收以及在目标小区122中的传输)或它们的一些组合中的任一者中的双连接时,UE 105可生成并传输切换标志消息(诸如,双连接切换标志130)。
双连接切换标志130(可简称为切换标志130)可向源小区112接入节点A 110提供UE 105准备好切换至目标小区122的指示。切换标志130包括一个或多个字段,该一个或多个字段包括向源小区112的接入节点A 110指示UE 105准备好切换至目标小区122的数据。在一些具体实施中,一个或多个字段可指示由UE 105实现在源小区112和目标小区122之间双连接的水平。例如,在一些具体实施中,一个或多个字段可包括:第一字段,该第一字段指示UE能够同时进行在源小区和目标小区中的接收;第二字段,该第二字段指示UE能够同时进行在源小区和目标小区中的传输;第三字段,该第三字段指示UE能够同时进行在源小区中的传输和在目标小区中的接收;第四字段,该第四字段指示UE在切换期间能够同时进行在源小区中的接收和在目标小区中的传输,或它们的任何组合。
然而,不存在切换标志130使用多个字段来指示UE 105与源小区112和目标小区122之间双连接的特定水平的要求。例如,在一些具体实施中,切换标志130可以是具有TRUTH值(诸如,1)的布尔变量,该TRUTH值指示UE可支持向源小区112和目标小区122的同时传输,从源小区112和目标小区122的同时接收,或它们的任何组合。又如,切换标志130可以是具有FALSE值(诸如,0)的布尔变量,该FALSE值指示UE 105不能支持向源小区112和目标小区122的同时传输、从源小区112和目标小区122的同时接收、或它们的任何组合。在一些具体实施中,切换标志130按每个频带传输。也就是说,在一些具体实施中,UE 105可生成多个切换标志130,其中每个切换标志在不同频带组合上传输。
因此,在一些利用布尔变量的具体实施中,如果UE已实现了:(1)在源小区112中的接收以及在目标小区122中的接收;(2)在源小区112中的接收以及在目标小区122中的传输;(3)在源小区112中的传输以及在目标小区122中的接收;以及(4)在源小区112中的传输以及在目标小区122中的传输,则可由具有被设置为TRUTH的切换标志的UE 105广播切换标志130。在此类具体实施中,如果不满足选项(1)至(4)中的一者,则切换标志可具有设置为FALSE的字段。
可生成切换标志130的示例,其包括使用由TS38.306针对NR或由TS36.306针对LTE描述的并在下表1中阐述的字段中的一个或多个字段:
Figure BDA0003382056570000061
-表1-
在一些具体实施中,如上所述,在每个频带组合的基础上还可存在单独的切换标志,以通知无线网络UE可支持以上选项(1)至(4)中列举的传输或接收能力的子集。例如,可使用每个频带的单独切换标志,如下表2所述:
Figure BDA0003382056570000071
-表2-
在一些具体实施中,如果UE 105可支持以不同的子载波间距(SCS)向源小区112和目标小区122的同时传输、从源小区112和目标小区122的同时接收或它们的组合,则可使用每频带组合能力。在此类具体实施中,切换标志可以是每频带组合布尔变量,该每频带组合布尔变量具有TRUTH值(诸如,1),该TRUTH值指示UE 105可支持向具有不同SCS的源小区112和目标小区122的同时传输、从具有不同SCS的源小区112和目标小区122的同时接收或它们的组合。另选地,在此类具体实施中,切换标志可具有FALSE值(诸如,0),该FALSE值指示UE105不能支持向具有不同SCS的源小区112和目标小区122的同时传输、从具有不同SCS的源小区112和目标小区122的同时接收或它们的组合。
例如,在此类具体实施中,如果切换标志具有TRUTH值,则网络知道UE可支持(1)在源小区112中的接收和在具有不同SCS的目标小区122中的接收,以及(2)在源小区112中的传输和在具有不同SCS的目标小区122中的传输。
此类切换标志的示例可包括:由TS38.306针对NR或由TS36.306针对LTE描述的一个或多个字段,如下表3所示:
Figure BDA0003382056570000081
-表3-
存在切换标志还可使用单独的(每个频带组合)标志来通知网络UE可支持在上述选项(1)和(2)中列举的传输或接收能力的子集。例如,本具体实施的每个频带的单独标志在下文中相对于表4示出:
Figure BDA0003382056570000082
-表4-
接入节点A 110可接收切换标志130。接入节点A 110可基于切换标志130确定UE105已实现在源小区112和目标小区122之间双连接的水平。在作出此确定时,接入节点A110可以生成、编码以及向UE 105传输切换命令140。UE 105接收切换命令140并启动从源小区112到目标小区122的切换。在实现源小区112和目标小区122之间双连接之后通过执行切换,与常规方法相比,可减少UE中断时间。
图2是用于使用UE来通知无线网络UE准备好进行双连接切换的过程200的流程图。一般来讲,过程200可包括:由用户设备(UE)确定该UE是否能够与源小区和目标小区同时通信(210);由该UE生成切换标志,该切换标志具有指示该UE能够与该源小区和该目标小区同时通信的一个或多个字段(220);由该UE向接入节点传输该切换标志(230);以及基于该接入节点接收到该切换标志,由该UE从该接入节点接收用于执行切换的命令。为了方便起见,由UE(如图1的UE 105或如图4的UE 401)执行的过程200可在下文更详细地描述。
UE可通过确定该UE是否能够与源小区和目标小区同时通信来开始执行过程200(210)。例如,UE可通过传输寻呼消息、测试下载连接等来确定该UE是否能够向一个或多个不同的小区传输数据或从一个或多个不同的小区接收数据。在其他具体实施中,UE可通过评估由该UE执行的操作来确定该UE是否正在与一个或多个小区通信。例如,在UE当前状态操作中,UE可正在使用一个或多个网络。UE可基于这些操作来确定该UE的连接水平。
UE可生成切换标志(220)。在一些具体实施中,切换标志具有指示UE能够与源小区和目标小区同时通信的一个或多个字段。在一些具体实施中,指示UE能够与源小区和目标小区同时通信的一个或多个字段可包括:第一字段,该第一字段指示UE能够同时进行在源小区和目标小区中的接收;第二字段,该第二字段指示UE能够同时进行在源小区和目标小区中的传输;第三字段,该第三字段指示UE能够同时进行在源小区中的传输和在目标小区中的接收;或第四字段,该第四字段指示UE在切换期间能够同时进行在源小区中的接收和在目标小区中的传输。
在一些具体实施中,指示UE能够与源小区和目标小区同时通信的一个或多个字段包括表示布尔标志的字段。在此类具体实施中,布尔标志可包括:第一值,该第一值指示UE在切换期间既能够同时进行在源小区和目标小区中的接收,也能够同时进行在源小区和目标小区中的传输;或第二值,该第二值指示UE既不能够同时进行在源小区和目标小区中的接收,也不能够同时进行在源小区和目标小区中的传输。在一些具体实施中,布尔标志的第一值还指示UE既能够同时进行在源小区中的传输和在目标小区中的接收,也能够同时进行在源小区中的接收和在目标小区中的传输;并且布尔标志的第二值还指示UE既不能够同时进行在源小区中的传输和在目标小区中的接收,也不能够同时进行在源小区中的接收和在目标小区中的传输。
在一些具体实施中,切换标志对应于源小区和目标小区的频带组合。在此类具体实施中,切换标志或频带适用于具有不同子载波间距的源小区和目标小区。在一些具体实施中,UE可传输多个切换标志,该多个切换标志包括第一切换标志和第二切换标志。在此类具体实施中,第一切换标志和第二切换标志各自对应于不同的相应频带组合。
图3是使用无线网络来触发双连接切换的过程300的流程图。一般来讲,方法300可包括:由接入节点获取切换标志,所述切换标志具有指示发起所述切换标志的用户设备(UE)能够与源小区和目标小区同时通信的一个或多个字段(310);由该接入节点并基于所获取的标志生成切换命令,该切换命令包括:将数据结构化的一个或多个字段,该数据在被该UE处理时,使得该UE执行切换至该目标小区(320);由该接入节点对该切换命令进行编码以传输到该UE(330);以及由该接入节点使一个或多个天线向该UE传输该切换命令(340)。由接入节点(诸如,eNodeB)对消息进行编码和传输的类型的示例,如下文所述,至少参考,例如,图4和图9。
图4示出了根据各种具体实施的网络的系统400的示例性架构。以下描述是针对结合3GPP技术规范提供的LTE系统标准和5G或NR系统标准操作的示例系统400提供的。然而,就这一点而言示例性具体实施不受限制,并且所述具体实施可应用于受益于本文所述原理的其他网络,诸如未来3GPP系统(例如,第六代(6G))系统、IEEE 802.16协议(例如,WMAN、WiMAX等)等。
如图4所示,系统400包括UE 401a和UE 401b(统称为“UE 401”)。在该示例中,UE401被示为智能电话(例如,可连接到一个或多个蜂窝网络的手持式触摸屏移动计算设备),但也可包括任何移动或非移动计算设备,诸如消费电子设备、移动电话、智能电话、功能手机、平板电脑、可穿戴计算机设备、个人数字助理(PDA)、寻呼机、无线手持设备、台式计算机、膝上型计算机、车载信息娱乐(IVI)、车载娱乐(ICE)设备、仪表板(IC)、平视显示器(HUD)设备、板载诊断(OBD)设备、dashtop移动设备(DME)、移动数据终端(MDT)、电子发动机管理系统(EEMS)、电子/发动机电子控制单元(ECU)、电子/发动机电子控制模块(ECM)、嵌入式系统、微控制器、控制模块、发动机管理系统(EMS)、联网或“智能”家电、MTC设备、M2M、IoT设备等。
在一些具体实施中,UE 401中的任一者可以是IoT UE,这种UE可包括被设计用于利用短期UE连接的低功率IoT应用的网络接入层。IoT UE可利用诸如M2M或MTC的技术来经由PLMN、ProSe或D2D通信、传感器网络或IoT网络与MTC服务器或设备交换数据。M2M或MTC数据交换可以是机器启动的数据交换。IoT网络描述了互连的IoT UE,这些UE可包括具有短暂连接的唯一可识别的嵌入式计算设备(在互联网基础设施内)。IoT UE可执行后台应用程序(例如,保持活动消息、状态更新等)以促进IoT网络的连接。
UE 401可被配置为与RAN 410连接,例如通信地耦接。在具体实施中,RAN 410可以是NG RAN或5G RAN、E-UTRAN或传统RAN,诸如UTRAN或GERAN。如本文所用,术语“NG RAN”等可以是指在NR或5G系统400中操作的RAN 410,而术语“E-UTRAN”等可以是指在LTE或4G系统400中操作的RAN 410。UE 401分别利用连接(或信道)403和404,每个连接包括物理通信接口或层(下文进一步详细讨论)。
在该示例中,连接403和404被示出为空中接口以实现通信耦接,并且可与蜂窝通信协议一致,诸如GSM协议、CDMA网络协议、PTT协议、POC协议、UMTS协议、3GPP LTE协议、5G协议、NR协议和/或本文所讨论的任何其他通信协议。在具体实施中,UE 401可经由ProSe接口405直接交换通信数据。ProSe接口405可另选地称为SL接口405,并且可包括一个或多个逻辑信道,包括但不限于PSCCH、PSSCH、PSDCH和PSBCH。
UE 401b被示出为被配置为经由连接407接入AP 406(也称为“WLAN节点406”、“WLAN 406”、“WLAN终端406”、“WT 406”等)。连接407可包括本地无线连接,诸如与任何IEEE802.11协议一致的连接,其中AP 406将包括无线保真
Figure BDA0003382056570000111
路由器。在该示例中,示出AP 406连接到互联网而没有连接到无线系统的核心网络(下文进一步详细描述)。在各种具体实施中,UE 401b、RAN 410和AP 406可被配置为利用LWA操作和/或LWIP操作。LWA操作可涉及由RAN节点411a-b将处于RRC_CONNECTED状态的UE 401b配置为利用LTE和WLAN的无线电资源。LWIP操作可涉及UE 401b经由IPsec协议隧道来使用WLAN无线电资源(例如,连接407)来认证和加密通过连接407发送的分组(例如,IP分组)。IPsec隧道传送可包括封装整个原始IP分组并添加新的分组头,从而保护IP分组的原始头。
RAN 410包括启用连接403和404的一个或多个AN节点或RAN节点411a和411b(统称为“RAN节点411”)。如本文所用,术语“接入节点”、“接入点”等可描述为网络与一个或多个用户之间的数据和/或语音连接提供无线电基带功能的设备。这些接入节点可被称为BS、gNB、RAN节点、eNB、NodeB、RSU、TRxP或TRP等,并且可包括在地理区域(例如,小区)内提供覆盖的地面站(例如,陆地接入点)或卫星站。如本文所用,术语“NG RAN节点”等可以指在NR或5G系统400中操作的RAN节点411(例如gNB),而术语“E-UTRAN节点”等可以指在LTE或4G系统400中操作的RAN节点411(例如eNB)。根据各种具体实施,RAN节点411可被实现为专用物理设备诸如宏小区基站和/或用于提供与宏小区相比具有较小覆盖区域、较小用户容量或较高带宽的毫微微小区、微微小区或其他类似小区的低功率(LP)基站中的一者或多者。
在具体实施中,RAN节点411的全部或部分可被实现为在服务器计算机上运行的一个或多个软件实体,作为可被称为CRAN和/或虚拟基带单元池(vBBUP)的虚拟网络的一部分。在这些具体实施中,CRAN或vBBUP可实现RAN功能划分,诸如PDCP划分,其中RRC和PDCP层由CRAN/vBBUP操作,而其他L2协议实体由各个RAN节点411操作;MAC/PHY划分,其中RRC、PDCP、RLC和MAC层由CRAN/vBBUP操作,并且PHY层由各个RAN节点411操作;或“下部PHY”划分,其中RRC、PDCP、RLC、MAC层和PHY层的上部部分由CRAN/vBBUP操作,并且PHY层的下部部分由各个RAN节点411操作。该虚拟化框架允许RAN节点411的空闲处理器核心执行其他虚拟化应用程序。在一些具体实施中,各个RAN节点411可表示经由各个F1接口(图4未示出)连接到gNB-CU的各个gNB-DU。在这些具体实施中,gNB-DU可包括一个或多个远程无线电头端或RFEM(参见例如图7),并且gNB-CU可由位于RAN 410中的服务器(未示出)或由服务器池以与CRAN/vBBUP类似的方式操作。除此之外或另选地,RAN节点411中的一个或多个RAN节点可以是下一代eNB(ng-eNB),该下一代eNB是向UE 401提供E-UTRA用户平面和控制平面协议终端并且经由NG接口(下文讨论)连接到5GC(例如,图6的CN 620)的RAN节点。
在V2X场景中,RAN节点411中的一个或多个RAN节点可以是RSU或充当RSU。术语“道路侧单元”或“RSU”可指用于V2X通信的任何交通基础设施实体。RSU可在合适的RAN节点或静止(或相对静止)的UE中实现或由其实现,其中在UE中实现或由其实现的RSU可被称为“UE型RSU”,在eNB中实现或由其实现的RSU可被称为“eNB型RSU”,在gNB中实现或由其实现的RSU可被称为“gNB型RSU”等等。在一个示例中,RSU是与位于道路侧上的射频电路耦接的计算设备,该计算设备向通过的车辆UE 401(vUE 401)提供连接性支持。RSU还可包括内部数据存储电路,其用于存储交叉路口地图几何形状、交通统计、媒体,以及用于感测和控制正在进行的车辆和行人交通的应用程序/软件。RSU可在5.9GHz直接近程通信(DSRC)频带上操作以提供高速事件所需的极低延迟通信,诸如防撞、交通警告等。除此之外或另选地,RSU可在蜂窝V2X频带上操作以提供前述低延迟通信以及其他蜂窝通信服务。除此之外或另选地,RSU可作为Wi-Fi热点(2.4GHz频带)操作和/或提供与一个或多个蜂窝网络的连接以提供上行链路和下行链路通信。计算设备和RSU的射频电路中的一些或全部可封装在适用于户外安装的耐候性封装件中,并且可包括网络接口控制器以提供与交通信号控制器和/或回程网络的有线连接(例如,以太网)。
RAN节点411中的任一个节点都可终止空中接口协议,并且可以是UE 401的第一联系点。在一些具体实施中,RAN节点411中的任一者都可执行RAN 410的各种逻辑功能,包括但不限于无线电网络控制器(RNC)的功能,诸如无线电承载管理、上行链路和下行链路动态无线电资源管理和数据分组调度以及移动性管理。
在具体实施中,UE 401可被配置为根据各种通信技术,使用OFDM通信信号在多载波通信信道上彼此或者与RAN节点411中的任一个进行通信,所述通信技术诸如但不限于OFDMA通信技术(例如,用于下行链路通信)或SC-FDMA通信技术(例如,用于上行链路和ProSe或侧链路通信),但是具体实施的范围在这方面不受限制。OFDM信号可包括多个正交子载波。
在一些具体实施中,下行链路资源网格可用于从RAN节点411中的任一个节点到UE401的下行链路传输,而上行链路传输可利用类似的技术。网格可以是时频网格,称为资源网格或时频资源网格,其是每个时隙中下行链路中的物理资源。对于OFDM系统,此类时频平面表示是常见的做法,这使得无线资源分配变得直观。资源网格的每一列和每一行分别对应一个OFDM符号和一个OFDM子载波。时域中资源网格的持续时间与无线电帧中的一个时隙对应。资源网格中最小的时频单位表示为资源元素。每个资源网格包括多个资源块,这些资源块描述了某些物理信道到资源元素的映射。每个资源块包括资源元素的集合;在频域中,这可以表示当前可以分配的最少量资源。使用此类资源块来传送几个不同的物理下行链路信道。
根据各种具体实施,UE 401和RAN节点411通过许可介质(也称为“许可频谱”和/或“许可频带”)和未许可共享介质(也称为“未许可频谱”和/或“未许可频带”)来传送数据(例如,传输数据和接收数据)。许可频谱可包括在大约400MHz至大约3.8GHz的频率范围内操作的信道,而未许可频谱可包括5GHz频带。
为了在未许可频谱中操作,UE 401和RAN节点411可使用LAA、eLAA和/或feLAA机制来操作。在这些具体实施中,UE 401和RAN节点411可执行一个或多个已知的介质感测操作和/或载波感测操作,以便确定未许可频谱中的一个或多个信道当在未授权频谱中传输之前是否不可用或以其他方式被占用。可根据先听后说(LBT)协议来执行介质/载波感测操作。
LBT是一种机制,由此设备(例如,UE 401RAN节点411等)利用该机制来感测介质(例如,信道或载波频率)并且在该介质被感测为空闲时(或者感测到该介质中的特定信道未被占用时)进行传输。介质感测操作可包括CCA,该CCA利用至少ED来确定信道上是否存在其他信号,以便确定信道是被占用还是空闲。该LBT机制允许蜂窝/LAA网络与未许可频谱中的现有系统以及与其他LAA网络共存。ED可包括感测一段时间内在预期传输频带上的RF能量,以及将所感测的RF能量与预定义或配置的阈值进行比较。
通常,5GHz频带中的现有系统是基于IEEE 802.11技术的WLAN。WLAN采用基于争用的信道接入机制,称为CSMA/CA。这里,当WLAN节点(例如,移动站(MS)诸如UE 401、AP 406等)打算传输时,WLAN节点可在传输之前首先执行CCA。另外,在多于一个WLAN节点将信道感测为空闲并且同时进行传输的情况下,使用退避机制来避免冲突。该退避机制可以是在CWS内随机引入的计数器,该计数器在发生冲突时呈指数增加,并且在传输成功时重置为最小值。被设计用于LAA的LBT机制与WLAN的CSMA/CA有点类似。在一些具体实施中,DL或UL传输突发(包括PDSCH或PUSCH传输)的LBT过程可具有在X和Y ECCA时隙之间长度可变的LAA争用窗口,其中X和Y为LAA的CWS的最小值和最大值。在一个示例中,LAA传输的最小CWS可为9微秒(μs);然而,CWS的大小和MCOT(例如,传输突发)可基于政府监管要求。
LAA机制建立在LTE-Advanced系统的CA技术上。在CA中,每个聚合载波都被称为CC。一个CC可具有1.4、3、5、10、15或20MHz的带宽,并且最多可聚合五个CC,因此最大聚合带宽为100MHz。在FDD系统中,对于DL和UL,聚合载波的数量可以不同,其中UL CC的数量等于或低于DL分量载波的数量。在一些情况下,各个CC可具有与其他CC不同的带宽。在TDD系统中,CC的数量以及每个CC的带宽通常对于DL和UL是相同的。
CA还包含各个服务小区以提供各个CC。服务小区的覆盖范围可不同,例如,因为不同频带上的CC将经历不同的路径损耗。主要服务小区或PCell可为UL和DL两者提供PCC,并且可处理与RRC和NAS相关的活动。其他服务小区被称为SCell,并且每个SCell可为UL和DL两者提供各个SCC。可以按需要添加和移除SCC,而改变PCC可能需要UE 401经历切换。在LAA、eLAA和feLAA中,SCell中的一些或全部可在未许可频谱(称为“LAA SCell”)中操作,并且LAA SCell由在许可频谱中操作的PCell协助。当UE被配置为具有多于一个LAA SCell时,UE可在配置的LAA SCell上接收UL授权,指示同一子帧内的不同PUSCH起始位置。
PDSCH将用户数据和较高层信令承载到UE 401。除其他信息外,PDCCH承载关于与PDSCH信道有关的传输格式和资源分配的信息。它还可以向UE 401通知关于与上行链路共享信道有关的传输格式、资源分配和HARQ信息。通常,可基于从UE 401中的任一个UE反馈的信道质量信息在RAN节点411中的任一个RAN节点上执行下行链路调度(向小区内的UE 401b分配控制和共享信道资源块)。可在用于(例如,分配给)多个UE 401中的每个UE的PDCCH上发送下行链路资源分配信息。
PDCCH使用CCE来传送控制信息。在被映射到资源元素之前,可以首先将PDCCH复数值符号组织为四元组,然后可以使用子块交织器对其进行排列以进行速率匹配。可以使用这些CCE中的一个或多个来传输每个PDCCH,其中每个CCE可以对应于分别具有四个物理资源元素的九个集合,称为REG。四个正交相移键控(QPSK)符号可以映射到每个REG。根据DCI的大小和信道条件,可以使用一个或多个CCE来传输PDCCH。可存在四个或更多个被定义在LTE中具有不同数量的CCE(例如,聚合级,L=1、2、4或8)的不同的PDCCH格式。
一些具体实施可将针对资源分配的概念用于控制信道信息,资源分配的概念是上述概念的扩展。例如,一些具体实施可利用将PDSCH资源用于控制信息传输的EPDCCH。可使用一个或多个ECCE来传输EPDCCH。与以上类似,每个ECCE可以对应于九个包括四个物理资源元素的集合,称为EREG。在一些情况下,ECCE可以具有其他数量的EREG。
RAN节点411可被配置为经由接口412彼此通信。在系统400是LTE系统的具体实施中(例如,当CN 420是如图5中的EPC 520时),接口412可以是X2接口412。X2接口可被限定在连接到EPC 420的两个或更多个RAN节点411(例如,两个或更多个eNB等)之间,和/或连接到EPC 420的两个eNB之间。在一些具体实施中,X2接口可包括X2用户平面接口(X2-U)和X2控制平面接口(X2-C)。X2-U可为通过X2接口传输的用户分组提供流控制机制,并且可用于传送关于eNB之间的用户数据的递送的信息。例如,X2-U可提供关于从MeNB传输到SeNB的用户数据的特定序列号信息;关于针对用户数据成功将PDCP PDU从SeNB按序递送到UE 401的信息;未递送到UE 401的PDCP PDU的信息;关于SeNB处用于向UE传输用户数据的当前最小期望缓冲器大小的信息;等等。X2-C可提供LTE内接入移动性功能,包括从源eNB到目标eNB的上下文传输、用户平面传输控制等;负载管理功能;以及小区间干扰协调功能。
在系统400是5G或NR系统(例如,当CN 420是如图6中的5GC 620时)的具体实施中,接口412可以是Xn接口412。Xn接口被限定在连接到5GC 420的两个或更多个RAN节点411(例如,两个或更多个gNB等)之间、连接到5GC 420的RAN节点411(例如,gNB)与eNB之间,和/或连接到5GC 420的两个eNB之间。在一些具体实施中,Xn接口可包括Xn用户平面(Xn-U)接口和Xn控制平面(Xn-C)接口。Xn-U可提供用户平面PDU的非保证递送并支持/提供数据转发和流量控制功能。Xn-C可提供管理和错误处理功能,用于管理Xn-C接口的功能;在连接模式(例如,CM连接)下对UE 401的移动性支持包括用于管理一个或多个RAN节点411之间的连接模式的UE移动性的功能。该移动性支持可包括从旧(源)服务RAN节点411到新(目标)服务RAN节点411的上下文传输;以及对旧(源)服务RAN节点411到新(目标)服务RAN节点411之间的用户平面隧道的控制。Xn-U的协议栈可包括建立在因特网协议(IP)传输层上的传输网络层,以及UDP和/或IP层的顶部上的用于承载用户平面PDU的GTP-U层。Xn-C协议栈可包括应用层信令协议(称为Xn应用协议(Xn-AP))和构建在SCTP上的传输网络层。SCTP可在IP层的顶部,并且可提供对应用层消息的有保证的递送。在传输IP层中,使用点对点传输来递送信令PDU。在其他具体实施中,Xn-U协议栈和/或Xn-C协议栈可与本文所示和所述的用户平面和/或控制平面协议栈相同或类似。
RAN 410被示出为通信地耦接到核心网络—在该具体实施中,通信地耦接到核心网络(CN)420。CN 420可包括多个网络元件422,其被配置为向经由RAN 410连接到CN 420的客户/订户(例如,UE 401的用户)提供各种数据和电信服务。CN 420的部件可在一个物理节点或分开的物理节点中实现,包括用于从机器可读或计算机可读介质(例如,非暂态机器可读存储介质)读取和执行指令的部件。在一些具体实施中,NFV可用于经由存储在一个或多个计算机可读存储介质中的可执行指令来将上述网络节点功能中的任一个或全部虚拟化(下文将进一步详细描述)。CN 420的逻辑实例可被称为网络切片,并且CN 420的一部分的逻辑实例可被称为网络子切片。NFV架构和基础设施可用于将一个或多个网络功能虚拟化到包含行业标准服务器硬件、存储硬件或交换机的组合的物理资源上(另选地由专有硬件执行)。换句话讲,NFV系统可用于执行一个或多个EPC部件/功能的虚拟或可重新配置的具体实施。
一般来讲,应用服务器430可以是提供与核心网络一起使用IP承载资源的应用的元件(例如,UMTS PS域、LTE PS数据服务等)。应用服务器430还可被配置为经由EPC 420支持针对UE 401的一种或多种通信服务(例如,VoIP会话、PTT会话、群组通信会话、社交网络服务等)。
在具体实施中,CN 420可以是5GC(称为“5GC 420”等),并且RAN 410可经由NG接口413与CN 420连接。在具体实施中,NG接口413可分成两部分:NG用户平面(NG-U)接口414,该接口在RAN节点411和UPF之间承载流量数据;和S1控制平面(NG-C)接口415,该接口是RAN节点411和AMF之间的信令接口。参照图6更详细地讨论CN 420是5GC 420的具体实施。
在具体实施中,CN 420可以是5G CN(称为“5GC 420”等),而在其他具体实施中,CN420可以是EPC。在CN 420是EPC(称为“EPC 420”等)的情况下,RAN 410可经由S1接口413与CN 420连接。在具体实施中,S1接口413可分成两部分:S1用户平面(S1-U)接口414,该接口在RAN节点411和S-GW之间承载流量数据;和S1-MME接口415,该接口是RAN节点411和MME之间的信令接口。
图5示出了根据各种具体实施的包括第一CN 520的系统500的示例性架构。在该示例中,系统500可实现LTE标准,其中CN 520是对应于图4的CN 420的EPC 520。另外,UE 501可与图4的UE 401相同或类似,并且E-UTRAN 510可为与图4的RAN 410相同或类似的RAN,并且其可包括先前讨论的RAN节点411。CN 520可包括MME 521、S-GW 522、P-GW 523、HSS 524和SGSN 525。
MME 521在功能上可类似于传统SGSN的控制平面,并且可实施MM功能以保持跟踪UE 501的当前位置。MME 521可执行各种MM过程以管理访问中的移动性方面,诸如网关选择和跟踪区域列表管理。MM(在E-UTRAN系统中也称为“EPS MM”或“EMM”)可以指用于维护关于UE501的当前位置的知识、向用户/订阅者提供用户身份保密性和/或执行其他类似服务的所有适用程序、方法、数据存储等。每个UE 501和MME 521可包括MM或EMM子层,并且当成功完成附接过程时,可在UE 501和MME 521中建立MM上下文。MM上下文可以是存储UE 501的MM相关信息的数据结构或数据库对象。MME 521可经由S6a参考点与HSS 524耦接,经由S3参考点与SGSN 525耦接,并且经由S11参考点与S-GW 522耦接。
SGSN 525可以是通过跟踪单独UE 501的位置并执行安全功能来服务于UE 501的节点。此外,SGSN 525可执行EPC间节点信令以用于2G/3G与E-UTRAN 3GPP接入网络之间的移动性;如由MME 521指定的PDN和S-GW选择;UE 501时区功能的处理,如由MME 521所指定的;以及用于切换到E-UTRAN 3GPP接入网络的MME选择。MME 521与SGSN 525之间的S3参考点可在空闲状态和/或活动状态下启用用于3GPP间接入网络移动性的用户和承载信息交换。
HSS 524可包括用于网络用户的数据库,该数据库包括用于支持网络实体处理通信会话的订阅相关信息。EPC 520可包括一个或若干个HSS 524,这取决于移动订阅者的数量、设备的容量、网络的组织等。例如,HSS 524可以为路由/漫游、认证、授权、命名/寻址解决方案、位置依赖性等提供支持。HSS 524和MME 521之间的S6a参考点可以启用订阅和认证数据的转移,以用于认证/授权用户访问HSS 524和MME 521之间的EPC 520。
S-GW 522可终止朝向RAN 510的S1接口413(在图5中为“S1-U”),并且在RAN 510和EPC 520之间路由数据分组。此外,S-GW 522可以是用于RAN间节点切换的本地移动锚定点,并且还可以提供用于3GPP间移动的锚。其他职责可包括合法拦截、计费和执行某些策略。S-GW 522与MME 521之间的S11参考点可在MME 521与S-GW 522之间提供控制平面。S-GW 522可经由S5参考点与P-GW 523耦接。
P-GW 523可终止朝向PDN 530的SGi接口。P-GW 523可经由IP接口425(参见例如,图4)在EPC 520与外部网络诸如包括应用服务器430(另选地称为“AF”)的网络之间路由数据分组。在具体实施中,P-GW 523可经由IP通信接口425(参见例如,图4)通信地耦接到应用服务器(图4中的应用服务器430或图5中的PDN 530)。P-GW 523与S-GW 522之间的S5参考点可在P-GW 523与S-GW 522之间提供用户平面隧穿和隧道管理。由于UE 501的移动性以及S-GW 522是否需要连接到非并置的P-GW 523以用于所需的PDN连接性,S5参考点也可用于S-GW 522重定位。P-GW 523还可包括用于策略实施和计费数据收集(例如PCEF(未示出))的节点。另外,P-GW 523与分组数据网络(PDN)530之间的SGi参考点可以是运营商外部公共、私有PDN或内部运营商分组数据网络,例如以用于提供IMS服务。P-GW 523可经由Gx参考点与PCRF 526耦接。
PCRF 526是EPC 520的策略和计费控制元素。在非漫游场景中,与UE 501的互联网协议连接访问网络(IP-CAN)会话相关联的国内公共陆地移动网络(HPLMN)中可能存在单个PCRF 526。在具有本地流量突破的漫游场景中,可能存在与UE 501的IP-CAN会话相关联的两个PCRF:HPLMN中的国内PCRF(H-PCRF)和受访公共陆地移动网络(VPLMN)中的受访PCRF(V-PCRF)。PCRF 526可经由P-GW 523通信地耦接到应用服务器530。应用服务器530可发信号通知PCRF 526以指示新服务流,并且选择适当的QoS和计费参数。PCRF 526可将该规则配置为具有适当的TFT和QCI的PCEF(未示出),该功能如由应用服务器530指定的那样开始QoS和计费。PCRF 526和P-GW 523之间的Gx参考点可允许在P-GW 523中将QoS策略和收费规则从PCRF 526传输到PCEF。Rx参考点可驻留在PDN 530(或“AF 530”)与PCRF 526之间。
图6示出了根据各种具体实施的包括第二CN 620的系统600的架构。系统600被示出为包括UE 601,其可与先前讨论的UE 401和UE 501相同或类似;(R)AN 610,其可与先前讨论的RAN 410和RAN 510相同或类似,并且其可包括先前讨论的RAN节点411;以及DN 603,其可以是例如运营商服务、互联网访问或第3方服务;和5GC 620。5GC 620可包括AUSF 622;AMF 621;SMF 624;NEF 623;PCF 626;NRF 625;UDM 627;AF 628;UPF 602;以及NSSF 629。
UPF 602可充当RAT内和RAT间移动性的锚点、与DN 603互连的外部PDU会话点,以及支持多宿主PDU会话的分支点。UPF 602还可执行分组路由和转发,执行分组检查,执行策略规则的用户平面部分,合法拦截分组(UP收集),执行流量使用情况报告,对用户平面执行QoS处理(例如,分组滤波、门控、UL/DL速率执行),执行上行链路流量验证(例如,SDF到QoS流映射),上行链路和下行链路中的传输级别分组标记以及执行下行链路分组缓冲和下行链路数据通知触发。UPF 602可包括用于支持将流量流路由到数据网络的上行链路分类器。DN 603可表示各种网络运营商服务、互联网访问或第三方服务。DN 603可包括或类似于先前讨论的应用服务器430。UPF 602可经由SMF 624和UPF 602之间的N4参考点与SMF 624进行交互。
AUSF 622可存储用于UE 601的认证的数据并处理与认证相关的功能。AUSF 622可有利于针对各种访问类型的公共认证框架。AUSF 622可经由AMF 621和AUSF 622之间的N12参考点与AMF 621通信;并且可经由UDM 627和AUSF 622之间的N13参考点与UDM 627通信。另外,AUSF 622可呈现出基于Nausf服务的接口。
AMF 621可负责注册管理(例如,负责注册UE 601等)、连接管理、可达性管理、移动性管理和对AMF相关事件的合法拦截,并且访问认证和授权。AMF 621可以是AMF 621和SMF624之间的N11参考点的终止点。AMF 621可为UE 601和SMF 624之间的SM消息提供传输,并且充当用于路由SM消息的透明代理。AMF 621还可为UE 601和SMSF(图6中未示出)之间的SMS消息提供传输。AMF 621可充当SEAF,该SEAF可包括与AUSF 622和UE 601的交互,接收由于UE 601认证过程而建立的中间密钥。在使用基于USIM的认证的情况下,AMF 621可从AUSF622检索安全材料。AMF 621还可包括SCM功能,该SCM功能从SEA接收用于导出接入网络特定密钥的密钥。此外,AMF 621可以是RAN CP接口的终止点,其可包括或为(R)AN 610和AMF621之间的N2参考点;并且AMF 621可以是NAS(N1)信令的终止点,并且执行NAS加密和完整性保护。
AMF 621还可通过N3 IWF接口支持与UE 601的NAS信令。N3IWF可用于提供对不可信实体的访问。N3IWF可以是控制平面的(R)AN 610和AMF 621之间的N2接口的终止点,并且可以是用户平面的(R)AN 610和UPF 602之间的N3参考点的终止点。因此,AMF 621可处理来自SMF 624和AMF 621的用于PDU会话和QoS的N2信令,封装/解封分组以用于IPSec和N3隧道,将N3用户平面分组标记在上行链路中,并且执行对应于N3分组标记的QoS,这考虑到与通过N2接收的此类标记相关联的QoS需求。N3IWF还可经由UE 601和AMF 621之间的N1参考点在UE 601和AMF 621之间中继上行链路和下行链路控制平面NAS信令,并且在UE 601和UPF 602之间中继上行链路和下行链路用户平面分组。N3IWF还提供用于利用UE 601建立IPsec隧道的机制。AMF 621可呈现出基于Namf服务的接口,并且可以是两个AMF 621之间的N14参考点和AMF 621与5G-EIR(图6未示出)之间的N17参考点的终止点。
UE 601可能需要向AMF 621注册以便接收网络服务。RM用于向网络(例如,AMF621)注册UE 601或解除UE的注册,并且在网络(例如,AMF 621)中建立UE上下文。UE 601可在RM-REGISTERED状态或RM-DEREGISTERED状态下操作。在RM-DEREGISTERED状态下,UE 601未向网络注册,并且AMF 621中的UE上下文不保持UE 601的有效位置或路由信息,因此AMF621无法到达UE 601。在RM-REGISTERED状态下,UE 601向网络注册,并且AMF 621中的UE上下文可保持UE 601的有效位置或路由信息,因此AMF 621可到达UE 601。在RM-REGISTERED状态下,UE 601可执行移动性注册更新过程,执行由周期性更新定时器的到期触发的周期性注册更新过程(例如,以通知网络UE 601仍然处于活动状态),并且执行注册更新过程以更新UE能力信息或与网络重新协商协议参数等。
AMF 621可存储用于UE 601的一个或多个RM上下文,其中每个RM上下文与对网络的特定接入相关联。RM上下文可以是数据结构、数据库对象等,其指示或存储尤其每种接入类型的注册状态和周期性更新计时器。AMF 621还可存储可与先前讨论的(E)MM上下文相同或类似的5GC MM上下文。在各种具体实施中,AMF 621可在相关联的MM上下文或RM上下文中存储UE 601的CE模式B限制参数。AMF 621还可在需要时从已经存储在UE上下文(和/或MM/RM上下文)中的UE的使用设置参数导出值。
CM可用于通过N1接口建立和释放UE 601和AMF 621之间的信令连接。信令连接用于启用UE 601和CN 620之间的NAS信令交换,并且包括UE和AN之间的信令连接(例如,用于非3GPP接入的RRC连接或UE-N3IWF连接)以及AN(例如,RAN 610)和AMF 621之间的UE 601的N2连接。UE 601可在两个CM状态(CM-IDLE模式或CM-CONNECTED模式)中的一者下操作。当UE601在CM-IDLE状态/模式下操作时,UE 601可不具有通过N1接口与AMF 621建立的NAS信令连接,并且可存在用于UE 601的(R)AN 610信令连接(例如,N2和/或N3连接)。当UE 601在CM-CONNECTED状态/模式下操作时,UE 601可具有通过N1接口与AMF 621建立的NAS信令连接,并且可存在用于UE 601的(R)AN 610信令连接(例如,N2和/或N3连接)。在(R)AN 610与AMF 621之间建立N2连接可致使UE 601从CM-IDLE模式转变为CM-CONNECTED模式,并且当(R)AN 610与AMF 621之间的N2信令被释放时,UE 601可从CM-CONNECTED模式转变为CM-IDLE模式。
SMF 624可负责SM(例如,会话建立、修改和发布,包括UPF和AN节点之间的隧道维护);UE IP地址分配和管理(包括任选授权);UP功能的选择和控制;配置UPF的交通转向以将流量路由至正确的目的地;终止朝向策略控制功能的接口;策略执行和QoS的控制部分;合法拦截(对于SM事件和与LI系统的接口);终止NAS消息的SM部分;下行链路数据通知;发起经由AMF通过N2发送到AN的AN特定SM信息;以及确定会话的SSC模式。SM可指PDU会话的管理,并且PDU会话或“会话”可指提供或实现由数据网络名称(DNN)识别的UE 601和数据网络(DN)603之间的PDU交换的PDU连接性服务。PDU会话可在UE 601请求时建立,在UE 601和5GC620请求时修改,并且在UE 601和5GC 620请求时使用通过UE 601和SMF 624之间的N1参考点交换的NAS SM信令来释放。在从应用服务器请求时,5GC 620可触发UE 601中的特定应用程序。响应于接收到触发消息,UE 601可将触发消息(或触发消息的相关部分/信息)传递到UE 601中的一个或多个识别的应用程序。UE 601中的识别的应用程序可建立到特定DNN的PDU会话。SMF 624可检查UE 601请求是否符合与UE 601相关联的用户订阅信息。就这一点而言,SMF 624可检索和/或请求以从UDM 627接收关于SMF 624级别订阅数据的更新通知。
SMF 624可包括以下漫游功能:处理本地执行以应用QoS SLA(VPLMN);计费数据采集和计费接口(VPLMN);合法拦截(对于SM事件和与LI系统的接口,在VPLMN中);以及支持与外部DN的交互,以传输用于通过外部DN进行PDU会话授权/认证的信令。在漫游场景中,两个SMF 624之间的N16参考点可包括在系统600中,该系统可位于受访网络中的SMF 624与家庭网络中的另一个SMF 624之间。另外,SMF 624可呈现出基于Nsmf服务的接口。
NEF 623可提供用于安全地暴露由3GPP网络功能为第三方、内部暴露/再暴露、应用功能(例如,AF 628)、边缘计算或雾计算系统等提供的服务和能力的构件。在此类具体实施中,NEF 623可对AF进行认证、授权和/或限制。NEF 623还可转换与AF 628交换的信息以及与内部网络功能交换的信息。例如,NEF 623可在AF服务标识符和内部5GC信息之间转换。NEF 623还可基于其他网络功能的暴露能力从其他网络功能(NF)接收信息。该信息可作为结构化数据存储在NEF 623处,或使用标准化接口存储在数据存储NF处。然后,存储的信息可由NEF 623重新暴露于其他NF和AF,并且/或者用于其他目的诸如分析。另外,NEF 623可呈现出基于Nnef服务的接口。
NRF 625可支持服务发现功能,从NF实例接收NF发现请求,并且向NF实例提供发现的NF实例的信息。NRF 625还维护可用的NF实例及其支持的服务的信息。如本文所用,术语“实例化”等可指实例的创建,并且“实例”可指对象的具体出现,其可例如在程序代码的执行期间发生。另外,NRF 625可呈现出基于Nnrf服务的接口。
PCF 626可提供用于控制平面功能以执行它们的策略规则,并且还可支持用于管理网络行为的统一策略框架。PCF 626还可实现FE以访问与UDM 627的UDR中的策略决策相关的订阅信息。PCF 626可经由PCF 626和AMF 621之间的N15参考点与AMF 621通信,这可包括受访网络中的PCF 626和在漫游场景情况下的AMF 621。PCF 626可经由PCF 626和AF 628之间的N5参考点与AF 628通信;并且经由PCF 626和SMF 624之间的N7参考点与SMF 624通信。系统600和/或CN 620还可包括(家庭网络中的)PCF626和受访网络中的PCF 626之间的N24参考点。另外,PCF 626可呈现出基于Npcf服务的接口。
UDM 627可处理与订阅相关的信息以支持网络实体对通信会话的处理,并且可存储UE 601的订阅数据。例如,可经由UDM 627和AMF之间的N8参考点在UDM 627和AMF 621之间传送订阅数据。UDM 627可包括两部分:应用程序FE和UDR(图6未示出FE和UDR)。UDR可存储UDM 627和PCF 626的订阅数据和策略数据,和/或NEF 623的用于暴露的结构化数据以及应用数据(包括用于应用检测的PFD、多个UE 601的应用请求信息)。基于Nudr服务的接口可由UDR 221呈现出以允许UDM 627、PCF 626和NEF 623访问存储的数据的特定集,以及读取、更新(例如,添加、修改)、删除和订阅UDR中的相关数据更改的通知。UDM可包括UDM-FE,其负责处理凭据、位置管理、订阅管理等。在不同的事务中,若干不同的前端可为同一用户服务。UDM-FE访问存储在UDR中的订阅信息,并且执行认证凭证处理、用户识别处理、访问授权、注册/移动性管理和订阅管理。UDR可经由UDM 627和SMF 624之间的N10参考点与SMF 624进行交互。UDM 627还可支持SMS管理,其中SMS-FE实现如上所述的类似应用逻辑。另外,UDM 627可呈现出基于Nudm服务的接口。
AF 628可提供应用程序对流量路由的影响,提供对NCE的访问,并且与策略框架进行交互以进行策略控制。NCE可以是允许5GC 620和AF 628经由NEF 623彼此提供信息的机制,该机制可用于边缘计算具体实施。在此类具体实施中,网络运营商和第三方服务可被托管在附件的UE 601接入点附近,以通过减小的端到端延迟和传输网络上的负载来实现有效的服务递送。对于边缘计算具体实施,5GC可选择UE 601附近的UPF 602并且经由N6接口执行从UPF 602到DN 603的流量转向。这可基于UE订阅数据、UE位置和AF 628所提供的信息。这样,AF 628可影响UPF(重新)选择和流量路由。基于运营商部署,当AF 628被认为是可信实体时,网络运营商可允许AF 628与相关NF直接进行交互。另外,AF 628可呈现出基于Naf服务的接口。
NSSF 629可选择为UE 601服务的一组网络切片实例。如果需要,NSSF 629还可确定允许的NSSAI和到订阅的S-NSSAI的映射。NSSF 629还可基于合适的配置并且可能通过查询NRF 625来确定用于为UE 601服务的AMF集,或候选AMF 621的列表。UE 601的一组网络切片实例的选择可由AMF 621触发,其中UE 601通过与NSSF 629进行交互而注册,这可导致AMF 621发生改变。NSSF 629可经由AMF 621和NSSF 629之间的N22参考点与AMF 621进行交互;并且可经由N31参考点(图6未示出)与受访网络中的另一NSSF 629通信。另外,NSSF 629可呈现出基于Nnssf服务的接口。
如前所讨论,CN 620可包括SMSF,该SMSF可负责SMS订阅检查和验证,并向/从UE601从/向其他实体中继SM消息,所述其他实体诸如SMS-GMSC/IWMSC/SMS路由器。SMS还可与AMF 621和UDM 627进行交互以用于UE 601可用于SMS传输的通知程序(例如,设置UE不可达标志,并且当UE 601可用于SMS时通知UDM 627)。CN 120还可包括图6未示出的其他元素,诸如数据存储系统/架构、5G-EIR、SEPP等。
数据存储系统可包括SDSF、UDSF等。任何NF均可经由任何NF和UDSF(图6未示出)之间的N18参考点将未结构化数据存储到UDSF(例如,UE上下文)中或从中检索。单个NF可共享用于存储其相应非结构化数据的UDSF,或者各个NF可各自具有位于单个NF处或附近的它们自己的UDSF。另外,UDSF可呈现出基于Nudsf服务的接口(图6未示出)。5G-EIR可以是NF,其检查PEI的状态,以确定是否将特定设备/实体从网络中列入黑名单;并且SEPP可以是在PLMN间控制平面接口上执行拓扑隐藏、消息过滤和警管的非透明代理。
另外,NF中的NF服务之间可存在更多参考点和/或基于服务的接口;然而,为了清楚起见,图6省略了这些接口和参考点。在一个示例中,CN 620可包括Nx接口,其为MME(例如,MME 521)和AMF 621之间的CN间接口,以便能够在CN 620和CN 520之间进行互通。其他示例接口/参考点可包括由5G-EIR呈现出的基于N5g-EIR服务的接口、受访网络中的NRF和家庭网络中的NRF之间的N27参考点;以及受访网络中的NSSF和家庭网络中的NSSF之间的N31参考点。
图7示出了根据各种具体实施的基础设施设备700的示例。基础设施设备700(或“系统700”)可被实现为基站、无线电头端、RAN节点(诸如先前所示和所述的RAN节点411和/或AP 406)、应用服务器430和/或本文所讨论的任何其他元件/设备。在其他示例中,系统700可在UE中或由UE实现。
系统700可包括:应用电路705、基带电路710、一个或多个无线电前端模块715、存储器电路720、电源管理集成电路(PMIC)725、电源三通电路730、网络控制器电路735、网络接口连接器740、卫星定位电路745和用户接口750。在一些具体实施中,设备700可包括另外的元件,诸如,存储器/存储装置、显示器、相机、传感器或输入/输出(I/O)接口。在其他具体实施中,下文所述的部件可包括在多于一个设备中。例如,所述电路可单独地包括在用于CRAN、vBBU或其他类似具体实施的多于一个设备中。
应用电路705包括电路诸如但不限于:一个或多个处理器(或处理器核心)、高速缓存存储器、和以下中的一者或多者:低压差稳压器(LDO)、中断控制器、串行接口诸如SPI、l2C或通用可编程串行接口模块、实时时钟(RTC)、包括间隔计时器和看门狗计时器的计时器-计数器、通用输入/输出(I/O或IO)、存储卡控制器诸如安全数字(SD)多媒体卡(MMC)或类似产品、通用串行总线(USB)接口、移动产业处理器接口(MIPI)接口和联合测试访问组(JTAG)测试访问端口。应用电路705的处理器(或核心)可与存储器/存储元件耦接或可包括存储器/存储元件,并且可被配置为执行存储在存储器/存储元件中的指令,以使各种应用程序或操作系统能够在系统700上运行。在一些具体实施中,存储器/存储元件可以是片上存储器电路,该电路可包括任何合适的易失性和/或非易失性存储器,诸如DRAM、SRAM、EPROM、EEPROM、闪存存储器、固态存储器和/或任何其他类型的存储器设备技术,诸如本文讨论的那些。
应用电路705的处理器可包括例如一个或多个处理器核心(CPU)、一个或多个应用处理器、一个或多个图形处理单元(GPU)、一个或多个精简指令集计算(RISC)处理器、一个或多个Acorn RISC机(ARM)处理器、一个或多个复杂指令集计算(CISC)处理器、一个或多个数字信号处理器(DSP)、一个或多个FPGA、一个或多个PLD、一个或多个ASIC、一个或多个微处理器或控制器或它们的任何合适的组合。在一些具体实施中,应用电路705可包括或可以为用于根据本文的各种具体实施进行操作的专用处理器/控制器。作为示例,应用电路705的处理器可包括一个或多个Apple A系列处理器、Intel
Figure BDA0003382056570000271
Figure BDA0003382056570000272
处理器;Advanced Micro Devices(AMD)
Figure BDA0003382056570000274
处理器、加速处理单元(APU)或
Figure BDA0003382056570000273
处理器;ARM Holdings,Ltd.授权的基于ARM的处理器,诸如由Cavium(TM),Inc.提供的ARMCortex-A系列处理器和
Figure BDA0003382056570000275
来自MIPS Technologies,Inc.的基于MIPS的设计,诸如MIPS Warrior P级处理器;等等。在一些具体实施中,系统700可能不利用应用电路705,并且替代地可能包括专用处理器/控制器以处理例如从EPC或5GC接收的IP数据。
在一些具体实施中,应用电路705可包括一个或多个硬件加速器,该硬件加速器可以是微处理器、可编程处理设备等。该一个或多个硬件加速器可包括例如计算机视觉(CV)和/或深度学习(DL)加速器。例如,可编程处理设备可以是一个或多个现场可编程设备(FPD),诸如现场可编程门阵列(FPGA)等;可编程逻辑设备(PLD),诸如复杂PLD(CPLD)、大容量PLD(HCPLD)等;ASIC,诸如结构化ASIC等;可编程SoC(PSoC);等等。在此类具体实施中,应用电路705的电路可包括逻辑块或逻辑构架,以及可被编程用于执行各种功能诸如本文所讨论的各种具体实施的过程、方法、功能等的其他互连资源。在此类具体实施中,应用电路705的电路可包括用于将逻辑块、逻辑构架、数据等存储在查找表(LUT)等中的存储器单元(例如,可擦可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)、闪存存储器、静态存储器(例如,静态随机存取存储器(SRAM)、防熔丝等))。
基带电路710可被实现为例如焊入式衬底,其包括一个或多个集成电路、焊接到主电路板的单个封装集成电路或包含两个或更多个集成电路的多芯片模块。在下文中参照图9讨论基带电路710的各种硬件电子元件。
用户接口电路750可包括被设计成使得用户能够与系统700或外围部件接口进行交互的一个或多个用户接口,该外围部件接口被设计成使得外围部件能够与系统700进行交互。用户接口可包括但不限于一个或多个物理或虚拟按钮(例如,复位按钮)、一个或多个指示器(例如,发光二极管(LED))、物理键盘或小键盘、鼠标、触摸板、触摸屏、扬声器或其他音频发射设备、麦克风、打印机、扫描仪、头戴式耳机、显示屏或显示设备等。外围部件接口可包括但不限于非易失性存储器端口、通用串行总线(USB)端口、音频插孔、电源接口等。
无线电前端模块(RFEM)715可包括毫米波(mmWave)RFEM和一个或多个子毫米波射频集成电路(RFIC)。在一些具体实施中,该一个或多个子毫米波RFIC可与毫米波RFEM物理地分离。RFIC可包括到一个或多个天线或天线阵列的连接件(参见例如下文图9的天线阵列911),并且RFEM可连接到多个天线。在另选的具体实施中,毫米波和子毫米波两者的无线电功能均可在结合毫米波天线和子毫米波两者的相同的物理RFEM 715中实现。
存储器电路720可包括以下中的一者或多者:包括动态随机存取存储器(DRAM)和/或同步动态随机存取存储器(SDRAM)的易失性存储器、包括高速电可擦存储器(通常称为“闪存存储器”)的非易失性存储器(NVM)、相变随机存取存储器(PRAM)、磁阻随机存取存储器(MRAM)等,并且可结合
Figure BDA0003382056570000281
Figure BDA0003382056570000282
的三维(3D)交叉点(XPOINT)存储器。存储器电路720可被实现为以下中的一者或多者:焊入式封装集成电路、套接存储器模块和插入式存储卡。
PMIC 725可包括稳压器、电涌保护器、电源警报检测电路以及一个或多个备用电源,诸如电池或电容器。电源警报检测电路可检测掉电(欠压)和电涌(过压)状况中的一者或多者。电源三通电路730可提供从网络电缆提取的电力,以使用单个电缆来为基础设施设备700提供电源和数据连接两者。
网络控制器电路735可使用标准网络接口协议诸如以太网、基于GRE隧道的以太网、基于多协议标签交换(MPLS)的以太网或一些其他合适的协议来提供到网络的连接。可使用物理连接经由网络接口连接器740向基础设施设备700提供网络连接/提供来自该基础设施设备的网络连接,该物理连接可以是电连接(通常称为“铜互连”)、光学连接或无线连接。网络控制器电路735可包括用于使用前述协议中的一者或多者来通信的一个或多个专用处理器和/或FPGA。在一些具体实施中,网络控制器电路735可包括用于使用相同或不同的协议来提供到其他网络的连接的多个控制器。
定位电路745包括用于接收和解码由全球导航卫星系统(GNSS)的定位网络发射/广播的信号的电路。导航卫星星座(或GNSS)的示例包括美国的全球定位系统(GPS)、俄罗斯的全球导航系统(GLONASS)、欧盟的伽利略系统、中国的北斗导航卫星系统、区域导航系统或GNSS增强系统(例如,利用印度星座(NAVIC)、日本的准天顶卫星系统(QZSS)、法国的多普勒轨道图和卫星集成的无线电定位(DORIS)等进行导航)等。定位电路745包括各种硬件元件(例如,包括用于促进OTA通信的硬件设备诸如开关、滤波器、放大器、天线元件等)以与定位网络的部件诸如导航卫星星座节点通信。在一些具体实施中,定位电路745可包括用于定位、导航和定时的微型技术(微型PNT)IC,其在没有GNSS辅助的情况下使用主定时时钟来执行位置跟踪/估计。定位电路745还可以为基带电路710和/或RFEM 715的一部分或与其交互以与定位网络的节点和部件通信。定位电路745还可向应用电路705提供位置数据和/或时间数据,该应用电路可使用该数据来使操作与各种基础设施(例如,RAN节点411等)等同步。
图7所示的部件可使用接口电路来彼此通信,该接口电路可包括任何数量的总线和/或互连(IX)技术,诸如行业标准架构(ISA)、扩展ISA(EISA)、外围部件互连(PCI)、外围部件互连扩展(PCIx)、PCI express(PCIe)或任何数量的其他技术。总线/IX可以是专有总线,例如,在基于SoC的系统中使用。可包括其他总线/IX系统,诸如I2C接口、SPI接口、点对点接口和电源总线等等。
图8示出了根据各种具体实施的平台800(或“设备800”)的示例。在具体实施中,计算机平台800可适于用作UE 401、501、601、应用服务器430和/或本文所讨论的任何其他元件/设备。平台800可包括示例中所示的部件的任何组合。平台800的部件可被实现为集成电路(IC)、IC的部分、分立电子设备或适配在计算机平台800中的其他模块、逻辑、硬件、软件、固件或它们的组合,或者被实现为以其他方式结合在较大系统的底盘内的部件。图8的框图旨在示出计算机平台800的部件的高级视图。然而,可省略所示的部件中的一些,可存在附加部件,并且所示部件的不同布置可在其他具体实施中发生。
应用电路805包括电路,诸如但不限于一个或多个处理器(或处理器内核)、高速缓存存储器,以及LDO、中断控制器、串行接口(诸如SPI)、I2C或通用可编程串行接口模块、RTC、计时器(包括间隔计时器和看门狗计时器)、通用I/O、存储卡控制器(诸如SD MMC或类似控制器)、USB接口、MIPI接口和JTAG测试接入端口中的一者或多者。应用电路805的处理器(或核心)可与存储器/存储元件耦接或可包括存储器/存储元件,并且可被配置为执行存储在存储器/存储元件中的指令,以使各种应用程序或操作系统能够在系统800上运行。在一些具体实施中,存储器/存储元件可以是片上存储器电路,该电路可包括任何合适的易失性和/或非易失性存储器,诸如DRAM、SRAM、EPROM、EEPROM、闪存存储器、固态存储器和/或任何其他类型的存储器设备技术,诸如本文讨论的那些。
应用电路705的处理器可包括例如一个或多个处理器核心、一个或多个应用处理器、一个或多个GPU、一个或多个RISC处理器、一个或多个ARM处理器、一个或多个CISC处理器、一个或多个DSP、一个或多个FPGA、一个或多个PLD、一个或多个ASIC、一个或多个微处理器或控制器、多线程处理器、超低电压处理器、嵌入式处理器、一些其他已知的处理元件或它们的任何合适的组合。在一些具体实施中,应用电路705可包括或可以为用于根据本文的各种具体实施进行操作的专用处理器/控制器。
作为示例,应用电路805的处理器可包括Apple A系列处理器。应用电路805的处理器还可包括以下中的一者或多者:基于
Figure BDA0003382056570000301
Architecture CoreTM的处理器,诸如QuarkTM、AtomTM、i3、i5、i7或MCU级处理器,或可购自加利福尼亚州圣克拉拉市
Figure BDA0003382056570000302
公司(
Figure BDA0003382056570000303
Corporation,Santa Clara,CA)的另一此类处理器;Advanced Micro Devices(AMD)
Figure BDA0003382056570000304
处理器或加速处理单元(APU);来自
Figure BDA0003382056570000305
Technologies,Inc.的SnapdragonTM处理器、Texas Instruments,
Figure BDA0003382056570000306
Open Multimedia ApplicationsPlatform(OMAP)TM处理器;来自MIPS Technologies,Inc.的基于MIPS的设计,诸如MIPSWarrior M级、Warrior I级和Warrior P级处理器;获得ARM Holdings,Ltd.许可的基于ARM的设计,诸如ARM Cortex-A、Cortex-R和Cortex-M系列处理器;等。在一些具体实施中,应用电路805可以是片上系统(SoC)的一部分,其中应用电路805和其他部件形成为单个集成电路或单个封装。
除此之外或另选地,应用电路805可包括电路,诸如但不限于一个或多个现场可编程设备(FPD)诸如FPGA等;可编程逻辑设备(PLD),诸如复杂PLD(CPLD)、大容量PLD(HCPLD)等;ASIC,诸如结构化ASIC等;可编程SoC(PSoC);等等。在此类具体实施中,应用电路805的电路可包括逻辑块或逻辑构架,以及可被编程用于执行各种功能诸如本文所讨论的各种具体实施的过程、方法、功能等的其他互连资源。在此类具体实施中,应用电路805的电路可包括用于将逻辑块、逻辑构架、数据等存储在查找表(LUT)等中的存储器单元(例如,可擦可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)、闪存存储器、静态存储器(例如,静态随机存取存储器(SRAM)、防熔丝等))。
基带电路810可被实现为例如焊入式衬底,其包括一个或多个集成电路、焊接到主电路板的单个封装集成电路或包含两个或更多个集成电路的多芯片模块。在下文中参照图9讨论基带电路810的各种硬件电子元件。
RFEM 815可包括毫米波(mmWave)RFEM和一个或多个子毫米波射频集成电路(RFIC)。在一些具体实施中,该一个或多个子毫米波RFIC可与毫米波RFEM物理地分离。RFIC可包括到一个或多个天线或天线阵列的连接件(参见例如下文图9的天线阵列911),并且RFEM可连接到多个天线。在另选的具体实施中,毫米波和子毫米波两者的无线电功能均可在结合毫米波天线和子毫米波两者的相同的物理RFEM 815中实现。
存储器电路820可包括用于提供给定量的系统存储器的任何数量和类型的存储器设备。例如,存储器电路820可包括以下各项中的一者或多者:易失性存储器,其包括随机存取存储器(RAM)、动态RAM(DRAM)和/或同步动态RAM(SDRAM);和非易失性存储器(NVM),其包括高速电可擦除存储器(通常称为闪存存储器)、相变随机存取存储器(PRAM)、磁阻随机存取存储器(MRAM)等。存储器电路820可根据联合电子设备工程委员会(JEDEC)基于低功率双倍数据速率(LPDDR)的设计诸如LPDDR2、LPDDR3、LPDDR4等进行开发。存储器电路820可被实现为以下中的一者或多者:焊入式封装集成电路、单管芯封装(SDP)、双管芯封装(DDP)或四管芯封装(Q17P)、套接存储器模块、包括微DIMM或迷你DIMM的双列直插存储器模块(DIMM),并且/或者经由球栅阵列(BGA)焊接到母板上。在低功率具体实施中,存储器电路820可以是与应用电路805相关联的片上存储器或寄存器。为了提供对信息诸如数据、应用程序、操作系统等的持久存储,存储器电路820可包括一个或多个海量存储设备,其可尤其包括固态磁盘驱动器(SSDD)、硬盘驱动器(HDD)、微型HDD、电阻变化存储器、相变存储器、全息存储器或化学存储器等等。例如,计算机平台800可结合得自
Figure BDA0003382056570000321
Figure BDA0003382056570000322
的三维(3D)交叉点(XPOINT)存储器。
可移除存储器电路823可包括用于将便携式数据存储设备与平台800耦接的设备、电路、外壳/壳体、端口或插座等。这些便携式数据存储设备可用于大容量存储,并且可包括例如闪存存储器卡(例如,安全数字(SD)卡、微型SD卡、xD图片卡等),以及USB闪存驱动器、光盘、外部HDD等。
平台800还可包括用于将外部设备与平台800连接的接口电路(未示出)。经由该接口电路连接到平台800的外部设备包括传感器电路821和机电部件(EMC)822,以及耦接到可移除存储器电路823的可移除存储器设备。
传感器电路821包括目的在于检测其环境中的事件或变化的设备、模块或子系统,并且将关于所检测的事件的信息(传感器数据)发送到一些其他设备、模块、子系统等。此类传感器的示例尤其包括:包括加速度计、陀螺仪和/或磁力仪的惯性测量单元(IMU);包括三轴加速度计、三轴陀螺仪和/或磁力仪的微机电系统(MEMS)或纳机电系统(NEMS);液位传感器;流量传感器;温度传感器(例如,热敏电阻器);压力传感器;气压传感器;重力仪;测高仪;图像捕获设备(例如,相机或无透镜孔径);光检测和测距(LiDAR)传感器;接近传感器(例如,红外辐射检测器等)、深度传感器、环境光传感器、超声收发器;麦克风或其他类似的音频捕获设备;等。
EMC 822包括目的在于使平台800能够改变其状态、位置和/或取向或者移动或控制机构或(子)系统的设备、模块或子系统。另外,EMC 822可被配置为生成消息/信令并向平台800的其他部件发送消息/信令以指示EMC 822的当前状态。EMC 822包括一个或多个电源开关、继电器(包括机电继电器(EMR)和/或固态继电器(SSR))、致动器(例如,阀致动器等)、可听声发生器、视觉警告设备、马达(例如,DC马达、步进马达等)、轮、推进器、螺旋桨、爪、夹钳、钩和/或其他类似的机电部件。在具体实施中,平台800被配置为基于从服务提供方和/或各种客户端接收到的一个或多个捕获事件和/或指令或控制信号来操作一个或多个EMC822。
在一些具体实施中,接口电路可将平台800与定位电路845连接。定位电路845包括用于接收和解码由GNSS的定位网络发射/广播的信号的电路。导航卫星星座(或GNSS)的示例可包括美国的GPS、俄罗斯的GLONASS、欧盟的伽利略系统、中国的北斗导航卫星系统、区域导航系统或GNSS增强系统(例如,NAVIC、日本的QZSS、法国的DORIS等)等。定位电路845可包括各种硬件元件(例如,包括用于促进OTA通信的硬件设备诸如开关、滤波器、放大器、天线元件等)以与定位网络的部件诸如导航卫星星座节点通信。在一些具体实施中,定位电路845可包括微型PNT IC,其在没有GNSS辅助的情况下使用主定时时钟来执行位置跟踪/估计。定位电路845还可以为基带电路710和/或RFEM 815的一部分或与其交互以与定位网络的节点和部件通信。定位电路845还可向应用电路805提供位置数据和/或时间数据,该应用电路可使用该数据来使操作与各种基础设施(例如,无线电基站)同步,以用于逐个拐弯导航应用程序等。
在一些具体实施中,接口电路可将平台800与近场通信(NFC)电路840连接。NFC电路840被配置为基于射频识别(RFID)标准提供非接触式近程通信,其中磁场感应用于实现NFC电路840与平台800外部的支持NFC的设备(例如,“NFC接触点”)之间的通信。NFC电路840包括与天线元件耦接的NFC控制器和与NFC控制器耦接的处理器。NFC控制器可以是通过执行NFC控制器固件和NFC堆栈向NFC电路840提供NFC功能的芯片/IC。NFC堆栈可由处理器执行以控制NFC控制器,并且NFC控制器固件可由NFC控制器执行以控制天线元件发射近程RF信号。RF信号可为无源NFC标签(例如,嵌入贴纸或腕带中的微芯片)供电以将存储的数据传输到NFC电路840,或者发起在NFC电路840和靠近平台800的另一个有源NFC设备(例如,智能电话或支持NFC的POS终端)之间的数据传输。
驱动电路846可包括用于控制嵌入在平台800中、附接到平台800或以其他方式与平台800通信地耦接的特定设备的软件元件和硬件元件。驱动电路846可包括各个驱动器,从而允许平台800的其他部件与可存在于平台800内或连接到该平台的各种输入/输出(I/O)设备交互或控制这些I/O设备。例如,驱动电路846可包括:用于控制并允许接入显示设备的显示驱动器、用于控制并允许接入平台800的触摸屏接口的触摸屏驱动器、用于获取传感器电路821的传感器读数并控制且允许接入传感器电路821的传感器驱动器、用于获取EMC822的致动器位置并且/或者控制并允许接入EMC 822的EMC驱动器、用于控制并允许接入嵌入式图像捕获设备的相机驱动器、用于控制并允许接入一个或多个音频设备的音频驱动器。
电源管理集成电路(PMIC)825(也称为“电源管理电路825”)可管理提供给平台800的各种部件的电力。具体地讲,相对于基带电路810,PMIC 825可控制电源选择、电压调节、电池充电或DC-DC转换。当平台800能够由电池830供电时,例如,当设备包括在UE 401、501、601中时,通常可包括PMIC 825。
在一些具体实施中,PMIC 825可以控制或以其他方式成为平台800的各种省电机制的一部分。例如,如果平台800处于RRC_Connected状态,在该状态下该平台仍连接到RAN节点,因为它预期不久接收流量,则在一段时间不活动之后,该平台可进入被称为非连续接收模式(DRX)的状态。在该状态期间,平台800可以在短时间间隔内断电,从而节省功率。如果在延长的时间段内不存在数据流量活动,则平台800可以转换到RRC_Idle状态,在该状态下该平台与网络断开连接,并且不执行操作诸如信道质量反馈、切换等。平台800进入极低功率状态,并且执行寻呼,其中该平台周期性地唤醒以侦听网络,然后再次断电。平台800在该状态下可能不接收数据;为了接收数据,该平台必须转变回RRC_Connected状态。附加的省电模式可以使设备无法使用网络的时间超过寻呼间隔(从几秒到几小时不等)。在此期间,该设备完全无法连接到网络,并且可以完全断电。在此期间发送的任何数据都会造成很大的延迟,并且假定延迟是可接受的。
电池830可为平台800供电,但在一些示例中,平台800可被安装在固定位置,并且可具有耦接到电网的电源。电池830可以是锂离子电池、金属-空气电池诸如锌-空气电池、铝-空气电池、锂-空气电池等。在一些具体实施中,例如在V2X应用中,电池830可以是典型的铅酸汽车电池。
在一些具体实施中,电池830可以是“智能电池”,其包括电池管理系统(BMS)或电池监测集成电路或与其耦接。BMS可包括在平台800中以跟踪电池830的充电状态(SoCh)。BMS可用于监测电池830的其他参数,诸如电池830的健康状态(SoH)和功能状态(SoF),以提供故障预测。BMS可将电池830的信息传送到应用电路805或平台800的其他部件。BMS还可包括模数(ADC)转换器,该模数转换器允许应用电路805直接监测电池830的电压或来自电池830的电流。电池参数可用于确定平台800可执行的动作,诸如传输频率、网络操作、感测频率等。
耦接到电网的功率块或其他电源可与BMS耦接以对电池830进行充电。在一些示例中,可用无线功率接收器替换功率块XS30,以例如通过计算机平台800中的环形天线来无线地获取电力。在这些示例中,无线电池充电电路可包括在BMS中。所选择的具体充电电路可取决于电池830的大小,并因此取决于所需的电流。充电可使用航空燃料联盟公布的航空燃料标准、无线电力联盟公布的Qi无线充电标准,或无线电力联盟公布的Rezence充电标准来执行。
用户接口电路850包括存在于平台800内或连接到该平台的各种输入/输出(I/O)设备,并且包括被设计成实现与平台800的用户交互的一个或多个用户接口和/或被设计成实现与平台800的外围部件交互的外围部件接口。用户接口电路850包括输入设备电路和输出设备电路。输入设备电路包括用于接受输入的任何物理或虚拟装置,尤其包括一个或多个物理或虚拟按钮(例如,复位按钮)、物理键盘、小键盘、鼠标、触控板、触摸屏、麦克风、扫描仪、头戴式耳机等。输出设备电路包括用于显示信息或以其他方式传达信息(诸如传感器读数、致动器位置或其他类似信息)的任何物理或虚拟装置。输出设备电路可包括任何数量和/或组合的音频或视觉显示,尤其包括一个或多个简单的视觉输出/指示器(例如,二进制状态指示器(例如,发光二极管(LED))和多字符视觉输出,或更复杂的输出,诸如显示设备或触摸屏(例如,液晶显示器(LCD)、LED显示器、量子点显示器、投影仪等),其中字符、图形、多媒体对象等的输出由平台800的操作生成或产生。输出设备电路还可包括扬声器或其他音频发射设备、打印机等。在一些具体实施中,传感器电路821可用作输入设备电路(例如,图像捕获设备、运动捕获设备等)并且一个或多个EMC可用作输出设备电路(例如,用于提供触觉反馈的致动器等)。在另一个示例中,可包括NFC电路以读取电子标签和/或与另一个支持NFC的设备连接,该NFC电路包括与天线元件耦接的NFC控制器和处理设备。外围部件接口可包括但不限于非易失性存储器端口、USB端口、音频插孔、电源接口等。
尽管未示出,但平台800的部件可使用合适的总线或互连(IX)技术彼此通信,所述技术可包括任何数量的技术,包括ISA、EISA、PCI、PCIx、PCIe、时间触发协议(TTP)系统、FlexRay系统或任何数量的其他技术。总线/IX可以是专有总线/IX,例如,在基于SoC的系统中使用。可包括其他总线/IX系统,诸如I2C接口、SPI接口、点对点接口和电源总线等等。
图9示出了根据各种具体实施的基带电路910和无线电前端模块(RFEM)915的示例性部件。基带电路910相应地对应于图7和图8的基带电路710和810。RFEM 915相应地对应于图7和图8的RFEM 715和815。如图所示,RFEM 915可包括射频(RF)电路906、前端模块(FEM)电路908、至少如图所示耦接在一起的天线阵列911。
基带电路910包括电路和/或控制逻辑部件,其被配置为执行使得能够经由RF电路906实现与一个或多个无线电网络的通信的各种无线电/网络协议和无线电控制功能。无线电控制功能可包括但不限于信号调制/解调、编码/解码、射频移位等。在一些具体实施中,基带电路910的调制/解调电路可包括快速傅里叶变换(FFT)、预编码或星座映射/解映射功能。在一些具体实施中,基带电路910的编码/解码电路可包括卷积、咬尾卷积、turbo、维特比或低密度奇偶校验(LDPC)编码器/解码器功能。调制/解调和编码器/解码器功能的具体实施不限于这些示例,并且在其他方面可包括其他合适的功能。基带电路910被配置为处理从RF电路906的接收信号路径所接收的基带信号以及生成用于RF电路906的发射信号路径的基带信号。基带电路910被配置为与应用电路705/805(参见图7和图8)连接,以生成和处理基带信号并控制RF电路906的操作。基带电路910可处理各种无线电控制功能。
基带电路910的前述电路和/或控制逻辑部件可包括一个或多个单核或多核处理器。例如,该一个或多个处理器可包括3G基带处理器904A、4G/LTE基带处理器904B、5G/NR基带处理器904C,或用于其他现有代、正在开发或将来待开发的代(例如,第六代(6G)等)的一些其他基带处理器904D。在其他具体实施中,基带处理器904A-D中的一些或全部功能可包括在存储器904G中存储的模块中,并且经由中央处理单元(CPU)904E来执行。在其他具体实施中,基带处理器904A-D的一部分或全部功能可被提供为加载有存储在相应存储器单元中的适当比特流或逻辑块的硬件加速器(例如,FPGA、ASIC等)。在各种具体实施中,存储器904G可存储实时OS(RTOS)的程序代码,该程序代码当由CPU 904E(或其他基带处理器)执行时,将使CPU 904E(或其他基带处理器)管理基带电路910的资源、调度任务等。RTOS的示例可包括由
Figure BDA0003382056570000371
提供的Operating System Embedded(OSE)TM,由Mentor
Figure BDA0003382056570000372
提供的Nucleus RTOSTM,由Mentor
Figure BDA0003382056570000373
提供的Versatile Real-Time Executive(VRTX),由Express
Figure BDA0003382056570000374
提供的ThreadXTM,由
Figure BDA0003382056570000375
提供的FreeRTOS、REX OS,由OpenKernel(OK)
Figure BDA0003382056570000376
提供的OKL4,或任何其他合适的RTOS,诸如本文所讨论的那些。此外,基带电路910包括一个或多个音频数字信号处理器(DSP)904F。音频DSP 904F包括用于压缩/解压和回声消除的元件,并且在其他具体实施中可包括其他合适的处理元件。
在一些具体实施中,处理器904A-904E中的每个处理器包括相应的存储器接口以向存储器904G发送数据/从该存储器接收数据。基带电路910还可包括用于通信地耦接到其他电路/设备的一个或多个接口,诸如用于向基带电路910外部的存储器发送数据/从该基带电路外部的存储器接收数据的接口;用于向图7至图XT的应用电路705/805发送数据/从该应用电路接收数据的应用电路接口;用于向图9的RF电路906发送数据/从该RF电路接收数据的RF电路接口;用于从一个或多个无线硬件元件(例如,近场通信(NFC)部件、
Figure BDA0003382056570000377
低功耗部件、
Figure BDA0003382056570000378
部件等)发送数据/从这些无线硬件元件接收数据的无线硬件连接接口;以及用于向PMIC825发送电力或控制信号/从该PMIC接收电力或控制信号的电源管理接口。
在另选的具体实施(其可与上述具体实施组合)中,基带电路910包括一个或多个数字基带系统,该一个或多个数字基带系统经由互连子系统彼此耦接并且耦接到CPU子系统、音频子系统和接口子系统。数字基带子系统还可经由另一个互连子系统耦接到数字基带接口和混合信号基带子系统。互连子系统中的每个可包括总线系统、点对点连接件、片上网络(NOC)结构和/或一些其他合适的总线或互连技术,诸如本文所讨论的那些。音频子系统可包括DSP电路、缓冲存储器、程序存储器、语音处理加速器电路、数据转换器电路诸如模数转换器电路和数模转换器电路,包括放大器和滤波器中的一者或多者的模拟电路,和/或其他类似部件。在本公开的一个方面,基带电路910可包括具有一个或多个控制电路实例(未示出)的协议处理电路,以为数字基带电路和/或射频电路(例如,无线电前端模块915)提供控制功能。
尽管图9未示出,但在一些具体实施中,基带电路910包括用以操作一个或多个无线通信协议的各个处理设备(例如,“多协议基带处理器”或“协议处理电路”)和用以实现PHY层功能的各个处理设备。在这些具体实施中,PHY层功能包括前述无线电控制功能。在这些具体实施中,协议处理电路操作或实现一个或多个无线通信协议的各种协议层/实体。在第一示例中,当基带电路910和/或RF电路906是毫米波通信电路或一些其他合适的蜂窝通信电路的一部分时,协议处理电路可操作LTE协议实体和/或5G/NR协议实体。在第一示例中,协议处理电路将操作MAC、RLC、PDCP、SDAP、RRC和NAS功能。在第二示例中,当基带电路910和/或RF电路906是Wi-Fi通信系统的一部分时,协议处理电路可操作一个或多个基于IEEE的协议。在第二示例中,协议处理电路将操作Wi-Fi MAC和逻辑链路控制(LLC)功能。协议处理电路可包括用于存储程序代码和用于操作协议功能的数据的一个或多个存储器结构(例如904G),以及用于执行程序代码和使用数据执行各种操作的一个或多个处理内核。基带电路910还可支持多于一个无线协议的无线电通信。
本文讨论的基带电路910的各种硬件元件可被实现为例如焊入式衬底,其包括一个或多个集成电路(IC)、焊接到主电路板的单个封装集成电路或包含两个或更多个IC的多芯片模块。在一个示例中,基带电路910的部件可适当地组合在单个芯片或单个芯片组中,或设置在同一电路板上。在另一个示例中,基带电路910和RF电路906的组成部件中的一些或全部可一起实现,诸如例如片上系统(SoC)或系统级封装(SiP)。在另一个示例中,基带电路910的组成部件中的一些或全部可被实现为与RF电路906(或RF电路906的多个实例)通信地耦接的单独的SoC。在又一个示例中,基带电路910和应用电路705/805的组成部件中的一些或全部可一起被实现为安装到同一电路板的单独的SoC(例如,“多芯片封装”)。
在一些具体实施中,基带电路910可提供与一种或多种无线电技术兼容的通信。例如,在一些具体实施中,基带电路910可支持与E-UTRAN或其他WMAN、WLAN、WPAN的通信。其中基带电路910被配置为支持多于一种的无线协议的无线电通信的具体实施可被称为多模式基带电路。
RF电路906可实现使用调制的电磁辐射通过非固体介质与无线网络通信。在各种具体实施中,RF电路906可包括开关、滤波器、放大器等,以促成与无线网络的通信。RF电路906可包括接收信号路径,该接收信号路径可包括用于下变频从FEM电路908接收的RF信号并向基带电路910提供基带信号的电路。RF电路906还可包括发射信号路径,该发射信号路径可包括用于上变频由基带电路910提供的基带信号并向FEM电路908提供用于传输的RF输出信号的电路。
在一些具体实施中,RF电路906的接收信号路径可包括混频器电路906a、放大器电路906b和滤波器电路906c。在一些具体实施中,RF电路906的发射信号路径可包括滤波器电路906c和混频器电路906a。RF电路906还可包括合成器电路906d,该合成器电路用于合成由接收信号路径和发射信号路径的混频器电路906a使用的频率。在一些具体实施中,接收信号路径的混频器电路906a可以被配置为基于合成器电路906d提供的合成频率来将从FEM电路908接收的RF信号下变频。放大器电路906b可被配置为放大下变频信号,并且滤波器电路906c可以是低通滤波器(LPF)或带通滤波器(BPF),其被配置为从下变频信号中移除不想要的信号以生成输出基带信号。可将输出基带信号提供给基带电路910以进行进一步处理。在一些具体实施中,输出基带信号可以是零频率基带信号,但这不是必需的。在一些具体实施中,接收信号路径的混频器电路906a可包括无源混频器,但是具体实施的范围在这方面不受限制。
在一些具体实施中,发射信号路径的混频器电路906a可被配置为基于由合成器电路906d提供的合成频率来对输入基带信号进行上变频,以生成用于FEM电路908的RF输出信号。基带信号可由基带电路910提供,并且可由滤波器电路906c滤波。
在一些具体实施中,接收信号路径的混频器电路906a和发射信号路径的混频器电路906a可包括两个或更多个混频器,并且可以被布置为分别用于正交下变频和上变频。在一些具体实施中,接收信号路径的混频器电路906a和发射信号路径的混频器电路906a可包括两个或更多个混频器,并且可被布置用于图像抑制(例如,Hartley图像抑制)。在一些具体实施中,接收信号路径的混频器电路906a和发射信号路径的混频器电路906a可被布置为分别用于直接下变频和直接上变频。在一些具体实施中,接收信号路径的混频器电路906a和发射信号路径的混频器电路906a可被配置用于超外差操作。
在一些具体实施中,输出基带信号和输入基带信号可以是模拟基带信号,尽管具体实施的范围在这方面不受限制。在一些另选的具体实施中,输出基带信号和输入基带信号可以是数字基带信号。在这些另选的具体实施中,RF电路906可包括模数转换器(ADC)和数模转换器(DAC)电路,并且基带电路910可包括数字基带接口以与RF电路906进行通信。
在一些双模式具体实施中,可以提供单独的无线电IC电路来处理每个频谱的信号,但是具体实施的范围在这方面不受限制。
在一些具体实施中,合成器电路906d可以是分数-N合成器或分数N/N+1合成器,但具体实施的范围在这方面不受限制,因为其他类型的频率合成器也可以是合适的。例如,合成器电路906d可以是Δ-∑合成器、倍频器或包括具有分频器的锁相环路的合成器。
合成器电路906d可被配置为基于频率输入和分频器控制输入来合成输出频率,以供RF电路906的混频器电路906a使用。在一些具体实施中,合成器电路906d可以是分数N/N+1合成器。
在一些具体实施中,频率输入可由电压控制振荡器(VCO)提供,尽管这不是必须的。可由基带电路910或应用电路705/805根据所需的输出频率提供分频器控制输入。在一些具体实施中,可基于由应用电路705/805指示的信道来从查找表中确定分频器控制输入(例如,N)。
RF电路906的合成器电路906d可包括分频器、延迟锁定环路(DLL)、复用器和相位累加器。在一些具体实施中,分频器可以是双模分频器(DMD),并且相位累加器可以是数字相位累加器(DPA)。在一些具体实施中,DMD可被配置为通过N或N+1(例如,基于进位输出)来划分输入信号,以提供分数分频比。在一些示例性具体实施中,DLL可包括级联的、可调谐的、延迟元件、鉴相器、电荷泵和D型触发器集。在这些具体实施中,延迟元件可以被配置为将VCO周期分成Nd个相等的相位分组,其中Nd是延迟线中的延迟元件的数量。这样,DLL提供了负反馈,以帮助确保通过延迟线的总延迟为一个VCO周期。
在一些具体实施中,合成器电路906d可被配置为生成载波频率作为输出频率,而在其他具体实施中,输出频率可以是载波频率的倍数(例如,载波频率的两倍,载波频率的四倍)并且可与正交发生器和分频器电路一起使用以在该载波频率上生成相对于彼此具有多个不同相位的多个信号。在一些具体实施中,输出频率可以是LO频率(fLO)。在一些具体实施中,RF电路906可包括IQ/极性转换器。
FEM电路908可包括接收信号路径,该接收信号路径可包括电路,该电路被配置为对从天线阵列911接收的RF信号进行操作,放大接收到的信号并且将接收到的信号的放大版本提供给RF电路906以进行进一步处理。FEM电路908还可包括发射信号路径,该发射信号路径可包括电路,该电路被配置为放大由RF电路906提供的、用于由天线阵列911中的一个或多个天线元件发射的发射信号。在各种具体实施中,通过发射信号路径或接收信号路径的放大可仅在RF电路906中、仅在FEM电路908中或者在RF电路906和FEM电路908两者中完成。
在一些具体实施中,FEM电路908可包括TX/RX开关,以在发射模式与接收模式操作之间切换。FEM电路908可包括接收信号路径和发射信号路径。FEM电路908的接收信号路径可包括LNA以放大接收到的RF信号并且提供经放大的接收到的RF信号作为输出(例如,给RF电路906)。FEM电路908的发射信号路径可包括用于放大输入RF信号(例如,由RF电路906提供)的功率放大器(PA),以及用于生成RF信号以便随后由天线阵列911的一个或多个天线元件传输的一个或多个滤波器。
天线阵列911包括一个或多个天线元件,每个天线元件被配置为将电信号转换成无线电波以行进通过空气并且将所接收的无线电波转换成电信号。例如,由基带电路910提供的数字基带信号被转换成模拟RF信号(例如,调制波形),该模拟RF信号将被放大并经由包括一个或多个天线元件(未示出)的天线阵列911的天线元件传输。天线元件可以是全向的、定向的或是它们的组合。天线元件可形成如已知那样和/或本文讨论的多种布置。天线阵列911可包括制造在一个或多个印刷电路板的表面上的微带天线或印刷天线。天线阵列911可形成为各种形状的金属箔的贴片(例如,贴片天线),并且可使用金属传输线等与RF电路906和/或FEM电路908耦接。
应用电路705/805的处理器和基带电路910的处理器可用于执行协议栈的一个或多个实例的元件。例如,可单独地或组合地使用基带电路910的处理器来执行层3、层2或层1功能,而应用电路705/805的处理器可利用从这些层接收到的数据(例如,分组数据)并进一步执行层4功能(例如,TCP和UDP层)。如本文所提到的,层3可包括RRC层,下文将进一步详细描述。如本文所提到的,层2可包括MAC层、RLC层和PDCP层,下文将进一步详细描述。如本文所提到的,层1可包括UE/RAN节点的PHY层,下文将进一步详细描述。
图10示出了根据各种具体实施的可在无线通信设备中实现的各种协议功能。具体地,图10包括示出各种协议层/实体之间的互连的布置1000。针对结合5G/NR系统标准和LTE系统标准操作的各种协议层/实体提供了图10的以下描述,但图10的一些或所有方面也可适用于其他无线通信网络系统。
除了未示出的其他较高层功能之外,布置1000的协议层还可包括PHY 1010、MAC1020、RLC 1030、PDCP 1040、SDAP 1047、RRC 1055和NAS层1057中的一者或多者。这些协议层可包括能够提供两个或更多个协议层之间的通信的一个或多个服务接入点(例如,图10中的项1059、1056、1050、1049、1045、1035、1025和1015)。
PHY 1010可以传输和接收物理层信号1005,这些物理层信号可以从一个或多个其他通信设备接收或传输至一个或多个其他通信设备。物理层信号1005可包括一个或多个物理信道,诸如本文所讨论的那些。PHY 1010还可执行链路自适应或自适应调制和编码(AMC)、功率控制、小区搜索(例如,用于初始同步和切换目的)以及由较高层(例如,RRC1055)使用的其他测量。PHY 1010还可进一步在传输信道、传输信道的前向纠错(FEC)编码/解码、物理信道的调制/解调、交织、速率匹配、映射到物理信道以及MIMO天线处理上执行错误检测。在具体实施中,PHY 1010的实例可经由一个或多个PHY-SAP 1015处理来自MAC1020的实例的请求,并且向其提供指示。根据一些具体实施,经由PHY-SAP 1015传送的请求和指示可以包括一个或多个传输信道。
MAC 1020的实例可经由一个或多个MAC-SAP 1025处理来自RLC 1030的实例的请求,并且向其提供指示。经由MAC-SAP 1025传送的这些请求和指示可包括一个或多个逻辑信道。MAC 1020可以执行逻辑信道与传输信道之间的映射,将来自一个或多个逻辑信道的MAC SDU复用到待经由传输信道递送到PHY 1010的TB上,将MAC SDU从经由传输信道从PHY1010递送的TB解复用到一个或多个逻辑信道,将MAC SDU复用到TB上,调度信息报告,通过HARQ进行纠错以及逻辑信道优先级划分。
RLC 1030的实例可经由一个或多个无线电链路控制服务接入点(RLC-SAP)1035处理来自PDCP 1040的实例的请求,并且向其提供指示。经由RLC-SAP 1035传送的这些请求和指示可包括一个或多个RLC信道。RLC1030可以多种操作模式进行操作,包括:透明模式(TM)、未确认模式(UM)和已确认模式(AM)。RLC 1030可以执行上层协议数据单元(PDU)的传输,通过用于AM数据传输的自动重传请求(ARQ)的纠错,以及用于UM和AM数据传输的RLCSDU的级联、分段和重组。RLC 1030还可以对用于AM数据传输的RLC数据PDU执行重新分段,对用于UM和AM数据传输的RLC数据PDU进行重新排序,检测用于UM和AM数据传输的重复数据,丢弃用于UM和AM数据传输的RLC SDU,检测用于AM数据传输的协议错误,并且执行RLC重新建立。
PDCP 1040的实例可经由一个或多个分组数据汇聚协议服务点(PDCP-SAP)1045处理来自RRC 1055的实例和/或SDAP 1047的实例的请求,并且向其提供指示。经由PDCP-SAP1045传送的这些请求和指示可包括一个或多个无线电承载。PDCP 1040可以执行IP数据的标头压缩和解压缩,维护PDCP序列号(SN),在下层重新建立时执行上层PDU的顺序递送,在为RLC AM上映射的无线电承载重新建立低层时消除低层SDU的重复,加密和解密控制平面数据,对控制平面数据执行完整性保护和完整性验证,控制基于定时器的数据丢弃,并且执行安全操作(例如,加密、解密、完整性保护、完整性验证等)。
SDAP 1047的实例可经由一个或多个SDAP-SAP 1049处理来自一个或多个较高层协议实体的请求,并且向其提供指示。经由SDAP-SAP 1049传送的这些请求和指示可包括一个或多个QoS流。SDAP 1047可将QoS流映射到DRB,反之亦然,并且还可标记DL分组和UL分组中的QFI。单个SDAP实体1047可被配置用于单独的PDU会话。在UL方向上,NG-RAN 410可以以两种不同的方式(反射映射或显式映射)控制QoS流到DRB的映射。对于反射映射,UE 401的SDAP 1047可监测每个DRB的DL分组的QFI,并且可针对在UL方向上流动的分组应用相同的映射。对于DRB,UE401的SDAP 1047可映射属于QoS流的UL分组,该QoS流对应于在该DRB的DL分组中观察到的QoS流ID和PDU会话。为了实现反射映射,NG-RAN 610可通过Uu接口用QoS流ID标记DL分组。显式映射可涉及RRC 1055用QoS流到DRB的显式映射规则配置SDAP 1047,该规则可由SDAP 1047存储并遵循。在具体实施中,SDAP 1047可仅用于NR具体实施中,并且可不用于LTE具体实施中。
RRC 1055可经由一个或多个管理服务接入点(M-SAP)配置一个或多个协议层的各方面,该一个或多个协议层可包括PHY 1010、MAC 1020、RLC 1030、PDCP 1040和SDAP 1047的一个或多个实例。在具体实施中,RRC 1055的实例可处理来自一个或多个NAS实体1057的请求,并且经由一个或多个RRC-SAP 1056向其提供指示。RRC 1055的主要服务和功能可包括系统信息的广播(例如,包括在与NAS有关的MIB或SIB中),与接入层(AS)有关的系统信息的广播,UE 401与RAN 410之间的RRC连接的寻呼、建立、维护和释放(例如,RRC连接寻呼、RRC连接建立、RRC连接修改和RRC连接释放),点对点无线电承载的建立、配置、维护和释放,包括密钥管理的安全功能,RAT间的移动性以及用于UE测量报告的测量配置。这些MIB和SIB可包括一个或多个IE,其各自可以包括单独的数据字段或数据结构。
NAS 1057可形成UE 401与AMF 621之间的控制平面的最高层。NAS 1057可支持UE401的移动性和会话管理过程,以在LTE系统中建立和维护UE 401和P-GW之间的IP连接。
根据各种具体实施,布置1000的一个或多个协议实体可在UE 401、RAN节点411、NR具体实施中的AMF 621或LTE具体实施中的MME 521、NR具体实施中的UPF 602或LTE具体实施中的S-GW 522和P-GW 523等中实现,以用于前述设备之间的控制平面或用户平面通信协议栈。在此类具体实施中,可在UE 401、gNB 411、AMF 621等中的一者或多者中实现的一个或多个协议实体可以与可在另一个设备中或在另一个设备上实现的相应对等协议实体进行通信(使用相应较低层协议实体的服务来执行此类通信)。在一些具体实施中,gNB 411的gNB-CU可托管gNB的控制一个或多个gNB-DU操作的RRC 1055、SDAP 1047和PDCP 1040,并且gNB 411的gNB-DU可各自托管gNB 411的RLC 1030、MAC 1020和PHY 1010。
在第一示例中,控制平面协议栈可按从最高层到最低层的顺序包括NAS 1057、RRC1055、PDCP 1040、RLC 1030、MAC 1020和PHY 1010。在该示例中,上层1060可以构建在NAS1057的顶部,该NAS包括IP层1061、SCTP 1062和应用层信令协议(AP)1063。
在NR具体实施中,AP 1063可以是用于被限定在NG-RAN节点411和AMF 621之间的NG接口413的NG应用协议层(NGAP或NG-AP)1063,或者AP 1063可以是用于被限定在两个或更多个RAN节点411之间的Xn接口412的Xn应用协议层(XnAP或Xn-AP)1063。
NG-AP 1063可支持NG接口413的功能,并且可包括初级程序(EP)。NG-AP EP可以是NG-RAN节点411与AMF 621之间的交互单元。NG-AP 1063服务可包括两个组:UE相关联的服务(例如,与UE 401有关的服务)和非UE相关联的服务(例如,与NG-RAN节点411和AMF 621之间的整个NG接口实例有关的服务)。这些服务可包括功能,包括但不限于:用于将寻呼请求发送到特定寻呼区域中涉及的NG-RAN节点411的寻呼功能;用于允许AMF 621建立、修改和/或释放AMF 621和NG-RAN节点411中的UE上下文的UE上下文管理功能;用于ECM-CONNECTED模式下的UE 401的移动性功能,用于系统内HO支持NG-RAN内的移动性,并且用于系统间HO支持从/到EPS系统的移动性;用于在UE 401和AMF 621之间传输或重新路由NAS消息的NAS信令传输功能;用于确定AMF 621和UE 401之间的关联的NAS节点选择功能;用于设置NG接口并通过NG接口监测错误的NG接口管理功能;用于提供经由NG接口传输警告消息或取消正在进行的警告消息广播的手段的警告消息发送功能;用于经由CN 420在两个RAN节点411之间请求和传输RAN配置信息(例如,SON信息、性能测量(PM)数据等)的配置传输功能;和/或其他类似的功能。
XnAP 1063可支持Xn接口412的功能,并且可包括XnAP基本移动性过程和XnAP全局过程。XnAP基本移动性过程可包括用于处理NG RAN411(或E-UTRAN 510)内的UE移动性的过程,诸如切换准备和取消过程、SN状态传输过程、UE上下文检索和UE上下文释放过程、RAN寻呼过程、与双连接有关的过程等。XnAP全局过程可包括与特定UE 401无关的过程,诸如Xn接口设置和重置过程、NG-RAN更新过程、小区激活过程等。
在LTE具体实施中,AP 1063可以是用于被限定在E-UTRAN节点411和MME之间的S1接口413的S1应用协议层(S1-AP)1063,或者AP 1063可以是用于限定在两个或更多个E-UTRAN节点411之间的X2接口412的X2应用协议层(X2AP或X2-AP)1063。
S1应用协议层(S1-AP)1063可支持S1接口的功能,并且类似于先前讨论的NG-AP,S1-AP可包括S1-AP EP。S1-AP EP可以是LTE CN 420内的E-UTRAN节点411与MME 521之间的交互单元。S1-AP 1063服务可包括两组:UE相关联的服务和非UE相关联的服务。这些服务执行的功能包括但不限于:E-UTRAN无线电接入承载(E-RAB)管理、UE能力指示、移动性、NAS信令传输、RAN信息管理(RIM)和配置传输。
X2AP 1063可支持X2接口412的功能,并且可包括X2AP基本移动性过程和X2AP全局过程。X2AP基本移动性过程可包括用于处理E-UTRAN 420内的UE移动性的过程,诸如切换准备和取消过程、SN状态传输过程、UE上下文检索和UE上下文释放过程、RAN寻呼过程、与双连接有关的过程等。X2AP全局过程可包括与特定UE 401无关的过程,诸如X2接口设置和重置过程、负载指示过程、错误指示过程、小区激活过程等。
SCTP层(另选地称为SCTP/IP层)1062可提供应用层消息(例如,NR具体实施中的NGAP或XnAP消息,或LTE具体实施中的S1-AP或X2AP消息)的保证递送。SCTP 1062可以部分地基于由IP 1061支持的IP协议来确保RAN节点411和AMF 621/MME 521之间的信令消息的可靠递送。互联网协议层(IP)1061可用于执行分组寻址和路由功能。在一些具体实施中,IP层1061可使用点对点传输来递送和传送PDU。就这一点而言,RAN节点411可包括与MME/AMF的L2和L1层通信链路(例如,有线或无线)以交换信息。
在第二示例中,用户平面协议栈可按从最高层到最低层的顺序包括SDAP 1047、PDCP 1040、RLC 1030、MAC 1020和PHY 1010。用户平面协议栈可用于NR具体实施中的UE401、RAN节点411和UPF 602之间的通信,或LTE具体实施中的S-GW 522和P-GW 523之间的通信。在该示例中,上层1051可构建在SDAP 1047的顶部,并且可包括用户数据报协议(UDP)和IP安全层(UDP/IP)1052、用于用户平面层(GTP-U)1053的通用分组无线服务(GPRS)隧道协议和用户平面PDU层(UP PDU)1063。
传输网络层1054(也被称为“传输层”)可构建在IP传输上,并且GTP-U 1053可用于UDP/IP层1052(包括UDP层和IP层)的顶部以承载用户平面PDU(UP-PDU)。IP层(也称为“互联网层”)可用于执行分组寻址和路由功能。IP层可将IP地址分配给例如以IPv4、IPv6或PPP格式中的任一种格式用户数据分组。
GTP-U 1053可用于在GPRS核心网络内以及在无线电接入网和核心网络之间承载用户数据。例如,传输的用户数据可以是IPv4、IPv6或PPP格式中任一种格式的分组。UDP/IP1052可提供用于数据完整性的校验和,用于寻址源和目的地处的不同功能的端口号,以及对所选择数据流的加密和认证。RAN节点411和S-GW 522可利用S1-U接口经由包括L1层(例如,PHY 1010)、L2层(例如,MAC 1020、RLC 1030、PDCP 1040和/或SDAP1047)、UDP/IP层1052以及GTP-U 1053的协议栈来交换用户平面数据。S-GW 522和P-GW 523可利用S5/S8a接口经由包括L1层、L2层、UDP/IP层1052和GTP-U 1053的协议栈来交换用户平面数据。如先前讨论的,NAS协议可支持UE 401的移动性和会话管理过程,以建立和维护UE 401与P-GW 523之间的IP连接。
此外,尽管图10未示出,但应用层可存在于AP 1063和/或传输网络层1054上方。应用层可以是其中UE 401、RAN节点411或其他网络元件的用户与例如分别由应用电路705或应用电路805执行的软件应用进行交互的层。应用层还可为软件应用提供一个或多个接口以与UE 401或RAN节点411的通信系统(诸如基带电路910)进行交互。在一些具体实施中,IP层和/或应用层可提供与开放系统互连(OSI)模型的层5至层7或其部分(例如,OSI层7—应用层、OSI层6—表示层和OSI层5—会话层)相同或类似的功能。
图11示出了根据各种具体实施的核心网的部件。CN 520的部件可在一个物理节点或单独的物理节点中实现,包括用于从机器可读或计算机可读介质(例如,非暂态机器可读存储介质)读取和执行指令的部件。在具体实施中,CN 620的部件能够以与本文关于CN 520的部件所讨论的相同或类似的方式来实现。在一些具体实施中,NFV用于经由存储在一个或多个计算机可读存储介质中的可执行指令来将上述网络节点功能中的任一个或全部虚拟化(下文将进一步详细描述)。CN 520的逻辑实例可被称为网络切片1101,并且CN 520的各个逻辑实例可提供特定的网络功能和网络特性。CN 520的一部分的逻辑实例可被称为网络子切片1102(例如,网络子切片1102被示出为包括P-GW 523和PCRF 526)。
如本文所用,术语“实例化”等可指实例的创建,并且“实例”可指对象的具体出现,其可例如在程序代码的执行期间发生。网络实例可指识别域的信息,该信息可用于在不同IP域或重叠IP地址的情况下的业务检测和路由。网络切片实例可指一组网络功能(NF)实例和部署网络切片所需的资源(例如,计算、存储和联网资源)。
相对于5G系统(参见例如图6),网络切片总是包括RAN部分和CN部分。对网络切片的支持依赖于用于不同切片的流量由不同PDU会话处理的原理。网络可通过调度并且还通过提供不同的L1/L2配置来实现不同的网络切片。如果适当的RRC消息已经由NAS提供,则UE601在适当的RRC消息中提供用于网络切片选择的辅助信息。虽然网络可支持大量切片,但是UE不需要同时支持多于8个切片。
网络切片可包括CN 620控制平面和用户平面NF、服务PLMN中的NG-RAN 610,以及服务PLMN中的N3IWF功能。各个网络切片可具有不同的S-NSSAI和/或可具有不同的SST。NSSAI包括一个或多个S-NSSAI,并且每个网络切片由S-NSSAI唯一地识别。网络切片可针对支持的特征和网络功能优化而不同,并且/或者多个网络切片实例可递送相同的服务/功能,但针对不同的UE 601组(例如,企业用户)而不同。例如,各个网络切片可递送不同的承诺服务和/或可专用于特定客户或企业。在该示例中,每个网络切片可具有带有相同SST但带有不同切片微分器的不同S-NSSAI。另外,单个UE可经由5G AN由一个或多个网络切片实例同时服务,并且与八个不同的S-NSSAI相关联。此外,服务单个UE的AMF 621实例可属于服务该UE 601的每个网络切片实例。
NG-RAN 610中的网络切片涉及RAN切片感知。RAN切片感知包括用于已经预先配置的不同网络切片的流量的分化处理。通过在包括PDU会话资源信息的所有信令中指示对应于PDU会话的S-NSSAI,在PDU会话级别引入NG-RAN 610中的切片感知。NG-RAN 610如何支持在NG-RAN功能(例如,包括每个切片的一组网络功能)方面的切片启用是取决于具体实施的。NG-RAN 610使用由UE 601或5GC 620提供的辅助信息来选择网络切片的RAN部分,该辅助信息明确地识别PLMN中的预先配置的网络切片中的一者或多者。NG-RAN 610还支持按照SLA在切片之间进行资源管理和策略实施。单个NG-RAN节点可支持多个切片,并且NG-RAN610还可将针对适当位置的SLA的适当RRM策略应用于每个支持的切片。NG-RAN610还可支持切片内的QoS区分。
如果可用,NG-RAN 610还可使用UE辅助信息以用于在初始附接期间选择AMF 621。NG-RAN 610使用辅助信息以用于将初始NAS路由到AMF 621。如果NG-RAN 610不能使用辅助信息来选择AMF 621,或者UE 601不提供任何此类信息,则NG-RAN 610将NAS信令发送到可位于AMF 621的池中的默认AMF 621。对于后续接入,UE 601提供由5GC 620分配给UE 601的temp ID以使得NG-RAN 610能够将NAS消息路由到适当的AMF 621,只要该temp ID有效即可。NG-RAN 610知道并可到达与temp ID相关联的AMF 621。否则,应用用于初始附接的方法。
NG-RAN 610支持切片之间的资源隔离。可通过RRM策略和保护机制来实现NG-RAN610资源隔离,RRM策略和保护机制应避免在一个切片中断了另一个切片的服务级协议的情况下的共享资源短缺。在一些具体实施中,可以将NG-RAN 610资源完全指定给某个切片。NG-RAN 610如何支持资源隔离取决于具体实施。
一些切片可仅部分地在网络中可用。NG-RAN 610对其相邻小区中支持的切片的感知对于连接模式中的频率间移动性可能是有益的。在UE的注册区域内,切片可用性可不改变。NG-RAN 610和5GC 620负责处理针对在给定区域中可能可用或可能不可用的切片的服务请求。对切片访问的准入或拒绝可取决于诸如对切片的支持、资源的可用性、NG-RAN 610对所请求的服务的支持的因素。
UE 601可同时与多个网络切片相关联。在UE 601同时与多个切片相关联的情况下,仅保持一个信令连接,并且对于频率内小区重选,UE 601尝试预占最佳小区。对于频率间小区重选,专用优先级可用于控制UE 601预占的频率。5GC 620将验证UE 601具有访问网络切片的权利。在接收到初始上下文设置请求消息之前,基于对UE 601请求访问的特定切片的感知,可允许NG-RAN 610应用一些临时/本地策略。在初始上下文设置期间,向NG-RAN610通知正在请求其资源的切片。
NFV架构和基础设施可用于将一个或多个NF虚拟化到包含行业标准服务器硬件、存储硬件或交换机的组合的物理资源上(另选地由专有硬件执行)。换句话讲,NFV系统可用于执行一个或多个EPC部件/功能的虚拟或可重新配置的具体实施。
图12是示出了根据一些示例性具体实施的支持NFV的系统1200的部件的框图。系统1200被示出为包括VIM 1202、NFVI 1204、VNFM 1206、VNF 1208、EM 1210、NFVO 1212和NM1214。
VIM 1202管理NFVI 1204的资源。NFVI 1204可包括用于执行系统1200的物理或虚拟资源和应用程序(包括管理程序)。VIM 1202可利用NFVI 1204管理虚拟资源的生命周期(例如,与一个或多个物理资源相关联的VM的创建、维护和拆除),跟踪VM实例,跟踪VM实例和相关联的物理资源的性能、故障和安全性,并且将VM实例和相关联的物理资源暴露于其他管理系统。
VNFM 1206可管理VNF 1208。VNF 1208可用于执行EPC部件/功能。VNFM 1206可以管理VNF 1208的生命周期,并且跟踪VNF 1208虚拟方面的性能、故障和安全性。EM 1210可以跟踪VNF 1208的功能方面的性能、故障和安全性。来自VNFM 1206和EM 1210的跟踪数据可包括,例如,由VIM 1202或NFVI 1204使用的PM数据。VNFM 1206和EM 1210均可按比例放大/缩小系统1200的VNF数量。
NFVO 1212可协调、授权、释放和接合NFVI 1204的资源,以便提供所请求的服务(例如,以执行EPC功能、部件或切片)。NM 1214可提供负责网络管理的最终用户功能包,其可包括具有VNF的网络元素、非虚拟化的网络功能或这两者(对VNF的管理可经由EM 1210发生)。
图13是示出了根据一些示例性具体实施的能够从机器可读介质或计算机可读介质(例如,非暂态机器可读存储介质)读取指令并执行本文所讨论的方法中的任何一种或多种的部件的框图。具体地,图13示出了硬件资源1300的示意图,包括一个或多个处理器(或处理器核心)1310、一个或多个存储器/存储设备1320以及一个或多个通信资源1330,它们中的每一者都可以经由总线1340通信地耦接。对于其中利用节点虚拟化(例如,NFV)的具体实施,可执行管理程序1302以提供用于一个或多个网络切片/子切片以利用硬件资源1300的执行环境。
处理器1310可包括例如处理器1312和处理器1314。处理器1310可以是例如中央处理单元(CPU)、精简指令集计算(RISC)处理器、复杂指令集计算(CISC)处理器、图形处理单元(GPU)、DSP诸如基带处理器、ASIC、FPGA、射频集成电路(RFIC)、另一个处理器(包括本文所讨论的那些),或它们的任何合适的组合。
存储器/存储设备1320可包括主存储器、磁盘存储器或它们的任何合适的组合。存储器/存储设备1320可包括但不限于任何类型的易失性或非易失性存储器,诸如动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、可擦除可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)、闪存存储器、固态存储装置等。
通信资源1330可包括互连或网络接口部件或其他合适的设备,以经由网络1308与一个或多个外围设备1304或一个或多个数据库1306通信。例如,通信资源1330可包括有线通信部件(例如,用于经由USB进行耦接)、蜂窝通信部件、NFC部件、
Figure BDA0003382056570000511
(或
Figure BDA0003382056570000512
低功耗)部件、
Figure BDA0003382056570000513
Figure BDA0003382056570000514
部件和其他通信部件。
指令1350可包括用于使处理器1310中的至少任一个执行本文所讨论的方法集中的任一者或多者的软件、程序、应用程序、小应用程序、应用或其他可执行代码。指令1350可全部或部分地驻留在处理器1310(例如,处理器的高速缓存存储器内)、存储器/存储设备1320或它们的任何合适的组合中的至少一者内。此外,指令1350的任何部分可以从外围设备1304或数据库1306的任何组合被传送到硬件资源1300。因此,处理器1310的存储器、存储器/存储设备1320、外围设备1304和数据库1306是计算机可读和机器可读介质的示例。
对于一个或多个具体实施,在前述附图中的一个或多个中示出的部件中的至少一个可被配置为执行如下实施例部分中所述的一个或多个操作、技术、过程和/或方法。例如,上文结合前述附图中的一个或多个所述的基带电路可被配置为根据下述实施例中的一个或多个进行操作。又如,与上文结合前述附图中的一个或多个所述的UE、基站、网络元件等相关联的电路可被配置为根据以下在实施例部分中示出的实施例中的一个或多个进行操作。

Claims (45)

1.一种用于实现双连接切换的方法,包括:
由用户设备UE确定所述UE是否能够与源小区和目标小区同时通信;
由所述UE生成切换标志,所述切换标志具有指示所述UE能够与所述源小区和所述目标小区同时通信的一个或多个字段;
由所述UE向接入节点传输所述切换标志;以及
基于所述接入节点接收到所述切换标志,由所述UE从所述接入节点接收用于执行切换的命令。
2.根据权利要求1所述的方法,其中指示所述UE能够与所述源小区和所述目标小区同时通信的所述一个或多个字段包括:
第一字段,所述第一字段指示所述UE能够同时进行在所述源小区和所述目标小区中的接收;
第二字段,所述第二字段指示所述UE能够同时进行在所述源小区和所述目标小区中的传输;
第三字段,所述第三字段指示所述UE能够同时进行在所述源小区中的传输和在所述目标小区中的接收;或者
第四字段,所述第四字段指示所述UE在所述切换期间能够同时进行在所述源小区中的接收和在所述目标小区中的传输。
3.根据权利要求1所述的方法,其中指示所述UE能够与所述源小区和所述目标小区同时通信的所述一个或多个字段包括:
第一字段,所述第一字段指示所述UE能够同时进行在所述源小区和所述目标小区中的接收;
第二字段,所述第二字段指示所述UE能够同时进行在所述源小区和所述目标小区中的传输;
第三字段,所述第三字段指示所述UE能够同时进行在所述源小区中的传输和在所述目标小区中的接收;和
第四字段,所述第四字段指示所述UE在所述切换期间能够同时进行在所述源小区中的接收和在所述目标小区中的传输。
4.根据权利要求1所述的方法,其中指示所述UE能够与所述源小区和所述目标小区同时通信的所述一个或多个字段包括:
表示布尔标志的字段,所述布尔标志具有:
第一值,所述第一值指示所述UE在所述切换期间既能够同时进行在所述源小区和所述目标小区中的接收,也能够同时进行在所述源小区和所述目标小区中的传输;或者
第二值,所述第二值用于指示所述UE既不能够同时进行在所述源小区和所述目标小区中的接收,也不能够同时进行在所述源小区和所述目标小区中的传输。
5.根据权利要求4所述的方法,
其中所述布尔标志的所述第一值还指示所述UE既能够同时进行在所述源小区中的传输和在所述目标小区中的接收,也能够同时进行在所述源小区中的接收和在所述目标小区中的传输,并且
其中所述布尔标志的所述第二值还指示所述UE既不能够同时进行在所述源小区中的传输和在所述目标小区中的接收,也不能够同时进行在所述源小区中的接收和在所述目标小区中的传输。
6.根据权利要求1所述的方法,其中所述切换标志对应于所述源小区和所述目标小区的频带组合。
7.根据权利要求1所述的方法,其中所述切换标志或所述频带适用于具有不同子载波间距的所述源小区和所述目标小区。
8.根据权利要求1所述的方法,
其中所述切换标志是第一切换标志,并且
其中所述方法进一步包括:
由所述UE传输多个切换标志,所述多个切换标志包括:所述第一切换标志和第二切换标志,其中所述第一切换标志和所述第二切换标志各自对应于不同的相应频带组合。
9.一种用户设备UE,所述UE包括:
一个或多个处理器和一个或多个存储设备,所述一个或多个存储设备存储可操作的指令,所述指令在由所述一个或多个处理器执行时,使得所述一个或多个处理器执行包括以下各项的操作:
由所述UE确定所述UE是否能够与源小区和目标小区同时通信;
由所述UE生成切换标志,所述切换标志具有指示所述UE能够与所述源小区和所述目标小区同时通信的一个或多个字段;
由所述UE向接入节点传输所述切换标志;以及
基于所述接入节点接收到所述切换标志,由所述UE从所述接入节点接收用于执行切换的命令。
10.根据权利要求9所述的UE,其中指示所述UE能够与所述源小区和所述目标小区同时通信的所述一个或多个字段包括:
第一字段,所述第一字段指示所述UE能够同时进行在所述源小区和所述目标小区中的接收;
第二字段,所述第二字段指示所述UE能够同时进行在所述源小区和所述目标小区中的传输;
第三字段,所述第三字段指示所述UE能够同时进行在所述源小区中的传输和在所述目标小区中的接收;或者
第四字段,所述第四字段指示所述UE在所述切换期间能够同时进行在所述源小区中的接收和在所述目标小区中的传输。
11.根据权利要求9所述的UE,其中指示所述UE能够与所述源小区和所述目标小区同时通信的所述一个或多个字段包括:
第一字段,所述第一字段指示所述UE能够同时进行在所述源小区和所述目标小区中的接收;
第二字段,所述第二字段指示所述UE能够同时进行在所述源小区和所述目标小区中的传输;
第三字段,所述第三字段指示所述UE能够同时进行在所述源小区中的传输和在所述目标小区中的接收;和
第四字段,所述第四字段指示所述UE在所述切换期间能够同时进行在所述源小区中的接收和在所述目标小区中的传输。
12.根据权利要求9所述的UE,其中指示所述UE能够与所述源小区和所述目标小区同时通信的所述一个或多个字段包括:
表示布尔标志的字段,所述布尔标志具有:
第一值,所述第一值指示所述UE在所述切换期间既能够同时进行在所述源小区和所述目标小区中的接收,也能够同时进行在所述源小区和所述目标小区中的传输;或者
第二值,所述第二值用于指示所述UE既不能够同时进行在所述源小区和所述目标小区中的接收,也不能够同时进行在所述源小区和所述目标小区中的传输。
13.根据权利要求12所述的UE,
其中所述布尔标志的所述第一值还指示所述UE既能够同时进行在所述源小区中的传输和在所述目标小区中的接收,也能够同时进行在所述源小区中的接收和在所述目标小区中的传输,并且
其中所述布尔标志的所述第二值还指示所述UE既不能够同时进行在所述源小区中的传输和在所述目标小区中的接收,也不能够同时进行在所述源小区中的接收和在所述目标小区中的传输。
14.根据权利要求9所述的UE,其中所述切换标志对应于所述源小区和所述目标小区的频带组合。
15.根据权利要求9所述的UE,其中所述切换标志或所述频带适用于具有不同子载波间距的所述源小区和所述目标小区。
16.根据权利要求9所述的UE,
其中所述切换标志是第一切换标志,并且
其中所述方法进一步包括:
由所述UE传输多个切换标志,所述多个切换标志包括:所述第一切换标志和第二切换标志,其中所述第一切换标志和所述第二切换标志各自对应于不同的相应频带组合。
17.一种非暂态计算机可读介质,所述非暂态计算机可读介质存储包括指令的软件,所述指令能够由一个或多个处理器执行,在此类执行时使得所述一个或多个处理器执行包括以下各项的操作:
由用户设备UE确定所述UE是否能够与源小区和目标小区同时通信;
由所述UE生成切换标志,所述切换标志具有指示所述UE能够与所述源小区和所述目标小区同时通信的一个或多个字段;
由所述UE向接入节点传输所述切换标志;以及
基于所述接入节点接收到所述切换标志,由所述UE从所述接入节点接收用于执行切换的命令。
18.根据权利要求17所述的计算机可读介质,其中指示所述UE能够与所述源小区和所述目标小区同时通信的所述一个或多个字段包括:
第一字段,所述第一字段指示所述UE能够同时进行在所述源小区和所述目标小区中的接收;
第二字段,所述第二字段指示所述UE能够同时进行在所述源小区和所述目标小区中的传输;
第三字段,所述第三字段指示所述UE能够同时进行在所述源小区中的传输和在所述目标小区中的接收;或者
第四字段,所述第四字段指示所述UE在所述切换期间能够同时进行在所述源小区中的接收和在所述目标小区中的传输。
19.根据权利要求17所述的计算机可读介质,其中指示所述UE能够与所述源小区和所述目标小区同时通信的所述一个或多个字段包括:
第一字段,所述第一字段指示所述UE能够同时进行在所述源小区和所述目标小区中的接收;
第二字段,所述第二字段指示所述UE能够同时进行在所述源小区和所述目标小区中的传输;
第三字段,所述第三字段指示所述UE能够同时进行在所述源小区中的传输和在所述目标小区中的接收;和
第四字段,所述第四字段指示所述UE在所述切换期间能够同时进行在所述源小区中的接收和在所述目标小区中的传输。
20.根据权利要求17所述的计算机可读介质,其中指示所述UE能够与所述源小区和所述目标小区同时通信的所述一个或多个字段包括:
表示布尔标志的字段,所述布尔标志具有:
第一值,所述第一值指示所述UE在所述切换期间既能够同时进行在所述源小区和所述目标小区中的接收,也能够同时进行在所述源小区和所述目标小区中的传输;或者
第二值,所述第二值用于指示所述UE既不能够同时进行在所述源小区和所述目标小区中的接收,也不能够同时进行在所述源小区和所述目标小区中的传输。
21.根据权利要求20所述的计算机可读介质,
其中所述布尔标志的所述第一值还指示所述UE既能够同时进行在所述源小区中的传输和在所述目标小区中的接收,也能够同时进行在所述源小区中的接收和在所述目标小区中的传输,并且
其中所述布尔标志的所述第二值还指示所述UE既不能够同时进行在所述源小区中的传输和在所述目标小区中的接收,也不能够同时进行在所述源小区中的接收和在所述目标小区中的传输。
22.根据权利要求17所述的计算机可读介质,其中所述切换标志对应于所述源小区和所述目标小区的频带组合。
23.根据权利要求17所述的计算机可读介质,其中所述切换标志或所述频带适用于具有不同子载波间距的所述源小区和所述目标小区。
24.根据权利要求17所述的计算机可读介质,
其中所述切换标志是第一切换标志,并且
其中所述方法进一步包括:
由所述UE传输多个切换标志,所述多个切换标志包括:所述第一切换标志和第二切换标志,其中所述第一切换标志和所述第二切换标志各自对应于不同的相应频带组合。
25.一种用于实现双连接切换的方法,包括:
由接入节点获取切换标志,所述切换标志具有指示发起所述切换标志的用户设备UE能够与源小区和目标小区同时通信的一个或多个字段;
由所述接入节点基于所获取的标志生成切换命令,所述切换命令包括:将数据结构化的一个或多个字段,所述数据在被所述UE处理时,使得所述UE执行切换至所述目标小区;
由所述接入节点对所述切换命令进行编码以传输到所述UE;以及
由所述接入节点使一个或多个天线向所述UE传输所述切换命令。
26.根据权利要求25所述的方法,其中指示发起所述切换标志的所述UE能够与所述源小区和所述目标小区同时通信的所述一个或多个字段包括:
第一字段,所述第一字段指示所述UE能够同时进行在所述源小区和所述目标小区中的接收;
第二字段,所述第二字段指示所述UE能够同时进行在所述源小区和所述目标小区中的传输;
第三字段,所述第三字段指示所述UE能够同时进行在所述源小区中的传输和在所述目标小区中的接收;或者
第四字段,所述第四字段指示所述UE在所述切换期间能够同时进行在所述源小区中的接收和在所述目标小区中的传输。
27.根据权利要求25所述的方法,其中指示发起所述切换标志的所述UE能够与所述源小区和所述目标小区同时通信的所述一个或多个字段包括:
第一字段,所述第一字段指示所述UE能够同时进行在所述源小区和所述目标小区中的接收;
第二字段,所述第二字段指示所述UE能够同时进行在所述源小区和所述目标小区中的传输;
第三字段,所述第三字段指示所述UE能够同时进行在所述源小区中的传输和在所述目标小区中的接收;和
第四字段,所述第四字段指示所述UE在所述切换期间能够同时进行在所述源小区中的接收和在所述目标小区中的传输。
28.根据权利要求25所述的方法,其中指示发起所述切换标志的所述UE能够与所述源小区和所述目标小区同时通信的所述一个或多个字段包括:
表示布尔标志的字段,所述布尔标志具有:
第一值,所述第一值指示所述UE在所述切换期间既能够同时进行在所述源小区和所述目标小区中的接收,也能够同时进行在所述源小区和所述目标小区中的传输;或者
第二值,所述第二值用于指示所述UE既不能够同时进行在所述源小区和所述目标小区中的接收,也不能够同时进行在所述源小区和所述目标小区中的传输。
29.根据权利要求28所述的方法,
其中所述布尔标志的所述第一值还指示所述UE既能够同时进行在所述源小区中的传输和在所述目标小区中的接收,也能够同时进行在所述源小区中的接收和在所述目标小区中的传输,并且
其中所述布尔标志的所述第二值还指示所述UE既不能够同时进行在所述源小区中的传输和在所述目标小区中的接收,也不能够同时进行在所述源小区中的接收和在所述目标小区中的传输。
30.根据权利要求25所述的方法,其中所述切换标志对应于所述源小区和所述目标小区的频带组合。
31.根据权利要求25所述的方法,其中所述切换标志或所述频带适用于具有不同子载波间距的所述源小区和所述目标小区。
32.一种无线通信系统,包括:
一个或多个处理器和一个或多个存储设备,所述一个或多个存储设备存储可操作的指令,所述指令在由所述一个或多个处理器执行时,使得所述一个或多个处理器执行包括以下各项的操作:
由所述无线通信系统中的接入节点获取切换标志,所述切换标志具有指示发起所述切换标志的用户设备UE能够与源小区和目标小区同时通信的一个或多个字段;
由所述接入节点基于所获取的标志生成切换命令,所述切换命令包括:将数据结构化的一个或多个字段,所述数据在被所述UE处理时,使得所述UE执行切换至所述目标小区;
由所述接入节点对所述切换命令进行编码以传输到所述UE;以及
由所述接入节点使一个或多个天线向所述UE传输所述切换命令。
33.根据权利要求32所述的系统,其中指示发起所述切换标志的所述UE能够与所述源小区和所述目标小区同时通信的所述一个或多个字段包括:
第一字段,所述第一字段指示所述UE能够同时进行在所述源小区和所述目标小区中的接收;
第二字段,所述第二字段指示所述UE能够同时进行在所述源小区和所述目标小区中的传输;
第三字段,所述第三字段指示所述UE能够同时进行在所述源小区中的传输和在所述目标小区中的接收;或者
第四字段,所述第四字段指示所述UE在所述切换期间能够同时进行在所述源小区中的接收和在所述目标小区中的传输。
34.根据权利要求32所述的系统,其中指示发起所述切换标志的所述UE能够与所述源小区和所述目标小区同时通信的所述一个或多个字段包括:
第一字段,所述第一字段指示所述UE能够同时进行在所述源小区和所述目标小区中的接收;
第二字段,所述第二字段指示所述UE能够同时进行在所述源小区和所述目标小区中的传输;
第三字段,所述第三字段指示所述UE能够同时进行在所述源小区中的传输和在所述目标小区中的接收;和
第四字段,所述第四字段指示所述UE在所述切换期间能够同时进行在所述源小区中的接收和在所述目标小区中的传输。
35.根据权利要求32所述的系统,其中指示发起所述切换标志的所述UE能够与所述源小区和所述目标小区同时通信的所述一个或多个字段包括:
表示布尔标志的字段,所述布尔标志具有:
第一值,所述第一值指示所述UE在所述切换期间既能够同时进行在所述源小区和所述目标小区中的接收,也能够同时进行在所述源小区和所述目标小区中的传输;或者
第二值,所述第二值用于指示所述UE既不能够同时进行在所述源小区和所述目标小区中的接收,也不能够同时进行在所述源小区和所述目标小区中的传输。
36.根据权利要求35所述的系统,
其中所述布尔标志的所述第一值还指示所述UE既能够同时进行在所述源小区中的传输和在所述目标小区中的接收,也能够同时进行在所述源小区中的接收和在所述目标小区中的传输,并且
其中所述布尔标志的所述第二值还指示所述UE既不能够同时进行在所述源小区中的传输和在所述目标小区中的接收,也不能够同时进行在所述源小区中的接收和在所述目标小区中的传输。
37.根据权利要求32所述的系统,其中所述切换标志对应于所述源小区和所述目标小区的频带组合。
38.根据权利要求32所述的系统,其中所述切换标志或所述频带适用于具有不同子载波间距的所述源小区和所述目标小区。
39.一种非暂态计算机可读介质,所述非暂态计算机可读介质存储包括指令的软件,所述指令能够由一个或多个处理器执行,在此类执行时使得所述一个或多个处理器执行包括以下各项的操作:
由接入节点获取切换标志,所述切换标志具有指示发起所述切换标志的用户设备UE能够与源小区和目标小区同时通信的一个或多个字段;
由所述接入节点基于所获取的标志生成切换命令,所述切换命令包括:将数据结构化的一个或多个字段,所述数据在被所述UE处理时,使得所述UE执行切换至所述目标小区;
由所述接入节点对所述切换命令进行编码以传输到所述UE;以及
由所述接入节点使一个或多个天线向所述UE传输所述切换命令。
40.根据权利要求39所述的计算机可读介质,其中指示发起所述切换标志的所述UE能够与所述源小区和所述目标小区同时通信的所述一个或多个字段包括:
第一字段,所述第一字段指示所述UE能够同时进行在所述源小区和所述目标小区中的接收;
第二字段,所述第二字段指示所述UE能够同时进行在所述源小区和所述目标小区中的传输;
第三字段,所述第三字段指示所述UE能够同时进行在所述源小区中的传输和在所述目标小区中的接收;或者
第四字段,所述第四字段指示所述UE在所述切换期间能够同时进行在所述源小区中的接收和在所述目标小区中的传输。
41.根据权利要求39所述的计算机可读介质,其中指示发起所述切换标志的所述UE能够与所述源小区和所述目标小区同时通信的所述一个或多个字段包括:
第一字段,所述第一字段指示所述UE能够同时进行在所述源小区和所述目标小区中的接收;
第二字段,所述第二字段指示所述UE能够同时进行在所述源小区和所述目标小区中的传输;
第三字段,所述第三字段指示所述UE能够同时进行在所述源小区中的传输和在所述目标小区中的接收;和
第四字段,所述第四字段指示所述UE在所述切换期间能够同时进行在所述源小区中的接收和在所述目标小区中的传输。
42.根据权利要求39所述的计算机可读介质,其中指示发起所述切换标志的所述UE能够与所述源小区和所述目标小区同时通信的所述一个或多个字段包括:
表示布尔标志的字段,所述布尔标志具有:
第一值,所述第一值指示所述UE在所述切换期间既能够同时进行在所述源小区和所述目标小区中的接收,也能够同时进行在所述源小区和所述目标小区中的传输;或者
第二值,所述第二值用于指示所述UE既不能够同时进行在所述源小区和所述目标小区中的接收,也不能够同时进行在所述源小区和所述目标小区中的传输。
43.根据权利要求42所述的计算机可读介质,
其中所述布尔标志的所述第一值还指示所述UE既能够同时进行在所述源小区中的传输和在所述目标小区中的接收,也能够同时进行在所述源小区中的接收和在所述目标小区中的传输,并且
其中所述布尔标志的所述第二值还指示所述UE既不能够同时进行在所述源小区中的传输和在所述目标小区中的接收,也不能够同时进行在所述源小区中的接收和在所述目标小区中的传输。
44.根据权利要求39所述的计算机可读介质,其中所述切换标志对应于所述源小区和所述目标小区的频带组合。
45.根据权利要求39所述的计算机可读介质,其中所述切换标志或所述频带适用于具有不同子载波间距的所述源小区和所述目标小区。
CN202080040194.1A 2019-04-04 2020-04-03 用于基于双连接的切换的用户设备能力 Pending CN113875286A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962829453P 2019-04-04 2019-04-04
US62/829,453 2019-04-04
PCT/US2020/026690 WO2020206334A1 (en) 2019-04-04 2020-04-03 User equipment capability for dual connectivity based handover

Publications (1)

Publication Number Publication Date
CN113875286A true CN113875286A (zh) 2021-12-31

Family

ID=70465490

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080040194.1A Pending CN113875286A (zh) 2019-04-04 2020-04-03 用于基于双连接的切换的用户设备能力

Country Status (3)

Country Link
US (1) US12089096B2 (zh)
CN (1) CN113875286A (zh)
WO (1) WO2020206334A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11653279B2 (en) * 2019-07-24 2023-05-16 Qualcomm Incorporated UE capability exchange for handover

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140241317A1 (en) * 2013-02-22 2014-08-28 Samsung Electronics Co., Ltd. Method and system for providing simultaneous connectivity between multiple e-nodebs and user equipment
CN104838693A (zh) * 2012-10-10 2015-08-12 美国博通公司 用于管理切换的方法和设备
CN105210416A (zh) * 2013-03-22 2015-12-30 Lg电子株式会社 在支持双连接模式的无线接入系统中执行切换的方法和支持该方法的设备
US20160029376A1 (en) * 2013-04-05 2016-01-28 Kyocera Corporation Mobile communication system and user terminal
CN108886457A (zh) * 2016-04-01 2018-11-23 华为技术有限公司 用于srs切换、发送和增强的系统与方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2744273T3 (en) * 2012-12-12 2018-08-06 Telia Co Ab APPARATUS AND PROCEDURE FOR SELECTING A FREQUENCY TAPE IN A MOBILE COMMUNICATION SYSTEM
KR102198573B1 (ko) * 2013-04-11 2021-01-06 삼성전자주식회사 무선 통신 시스템에서 핸드오버를 수행하는 방법 및 장치
WO2016095078A1 (en) * 2014-12-15 2016-06-23 Qualcomm Incorporated Dual active connections over single radio user equipment
EP3416436B1 (en) * 2017-06-15 2021-02-17 BlackBerry Limited Configuring sidelink communications
US20190104500A1 (en) * 2017-10-02 2019-04-04 Telefonaktiebolaget Lm Ericsson (Publ) Efficient Paging Configuration
TWI798900B (zh) * 2018-09-14 2023-04-11 美商谷歌有限責任公司 傳輸使用者設備性能
CN111757402B (zh) * 2019-03-29 2022-02-25 华为技术有限公司 一种通信方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104838693A (zh) * 2012-10-10 2015-08-12 美国博通公司 用于管理切换的方法和设备
US20140241317A1 (en) * 2013-02-22 2014-08-28 Samsung Electronics Co., Ltd. Method and system for providing simultaneous connectivity between multiple e-nodebs and user equipment
CN105210416A (zh) * 2013-03-22 2015-12-30 Lg电子株式会社 在支持双连接模式的无线接入系统中执行切换的方法和支持该方法的设备
US20160029376A1 (en) * 2013-04-05 2016-01-28 Kyocera Corporation Mobile communication system and user terminal
CN108886457A (zh) * 2016-04-01 2018-11-23 华为技术有限公司 用于srs切换、发送和增强的系统与方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3RD GENERATION PARTNERSHIP PROJECT: "Technical Specification Group Radio Access Network; NR; User Equipment (UE) radio access capabilities (Release 15)", 3GPP TS 38.306 V15.2.0, 20 June 2018 (2018-06-20), pages 4 *

Also Published As

Publication number Publication date
WO2020206334A1 (en) 2020-10-08
US20220201563A1 (en) 2022-06-23
US12089096B2 (en) 2024-09-10

Similar Documents

Publication Publication Date Title
CN113261327A (zh) 5g网络的随机接入信道(rach)优化和自动邻区关系创建
CN113892296A (zh) 用于重复上行链路传输的资源分配
CN113785506A (zh) 基于用于多trp urllc的dci指示的波束切换
CN113875184A (zh) 用于软资源可用性的动态指示的配置
CN113826339A (zh) 在未许可频谱上操作的新无线电(nr)系统中复用配置授权(cg)传输
CN113906709A (zh) 用于增强pdcch监测的方法
CN114080854A (zh) 在未许可频谱上操作的nr系统的fbe框架
US12089180B2 (en) Avoiding paging collisions in a device with multiple subscriptions
CN113940115A (zh) 用于带宽部分切换的延迟和中断配置
CN114051756A (zh) 用于在边缘计算环境中实现服务连续性的方法和装置
CN113906784A (zh) 高速场景中的用户设备(ue)测量能力
CN113767587A (zh) 多trp操作中的物理资源块捆绑
CN113892281B (zh) 在处于ce的ue的连接模式下的etws/cmas的通知和获取
CN113826435A (zh) 两步随机接入信道过程中物理上行链路共享信道传输的冲突处理
CN113906693B (zh) 同步信号块(ssb)测量准确度测试
CN114080763A (zh) 用于单播侧链路(sl)通信的无线电链路监测(rlm)
CN113994648A (zh) 蜂窝网络中信息中心网络服务的轻质支持
CN114026796A (zh) 用于第五代新空口(5g nr)中的波束切换的自适应上行链路(ul)定时调节
CN113796041A (zh) 用于载波聚合或双连接的调度限制
CN113557772A (zh) 中继间节点发现和测量
CN114128241A (zh) 以太网标头压缩
CN114631351A (zh) 集成NR和Wi-Fi接入的汇聚RAN中的相互锚定和流量分布
CN113940133A (zh) 处理内部用户设备上行链路重叠授权
US20220173864A1 (en) Synchronization signal block (ssb) based beam measurement and reporting in 5g nr
CN113994758A (zh) 用于支持多个配置授权的增强信令

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination