CN113860270B - Cubic phase Cu 3 NbSe 4 Nano material and preparation method and application thereof - Google Patents
Cubic phase Cu 3 NbSe 4 Nano material and preparation method and application thereof Download PDFInfo
- Publication number
- CN113860270B CN113860270B CN202111136519.9A CN202111136519A CN113860270B CN 113860270 B CN113860270 B CN 113860270B CN 202111136519 A CN202111136519 A CN 202111136519A CN 113860270 B CN113860270 B CN 113860270B
- Authority
- CN
- China
- Prior art keywords
- nbse
- nano material
- preparation
- cubic phase
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 41
- 238000002360 preparation method Methods 0.000 title claims abstract description 28
- 239000010949 copper Substances 0.000 claims abstract description 59
- 238000006243 chemical reaction Methods 0.000 claims abstract description 32
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000012265 solid product Substances 0.000 claims abstract description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000011669 selenium Substances 0.000 claims abstract description 10
- 229910052802 copper Inorganic materials 0.000 claims abstract description 9
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 8
- 239000010955 niobium Substances 0.000 claims abstract description 8
- 239000003960 organic solvent Substances 0.000 claims abstract description 8
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 8
- 239000013078 crystal Substances 0.000 claims abstract description 7
- 238000004729 solvothermal method Methods 0.000 claims abstract description 7
- 239000003054 catalyst Substances 0.000 claims abstract description 3
- 239000000047 product Substances 0.000 claims description 22
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 17
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 9
- YHBDIEWMOMLKOO-UHFFFAOYSA-I pentachloroniobium Chemical compound Cl[Nb](Cl)(Cl)(Cl)Cl YHBDIEWMOMLKOO-UHFFFAOYSA-I 0.000 claims description 8
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 claims description 6
- YWWZCHLUQSHMCL-UHFFFAOYSA-N diphenyl diselenide Chemical compound C=1C=CC=CC=1[Se][Se]C1=CC=CC=C1 YWWZCHLUQSHMCL-UHFFFAOYSA-N 0.000 claims description 6
- JPJALAQPGMAKDF-UHFFFAOYSA-N selenium dioxide Chemical compound O=[Se]=O JPJALAQPGMAKDF-UHFFFAOYSA-N 0.000 claims description 6
- 229910021591 Copper(I) chloride Inorganic materials 0.000 claims description 5
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 claims description 5
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 5
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 claims description 5
- 229940045803 cuprous chloride Drugs 0.000 claims description 5
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 claims description 4
- HYAVEDMFTNAZQE-UHFFFAOYSA-N (benzyldiselanyl)methylbenzene Chemical compound C=1C=CC=CC=1C[Se][Se]CC1=CC=CC=C1 HYAVEDMFTNAZQE-UHFFFAOYSA-N 0.000 claims description 3
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 claims description 3
- 229910021589 Copper(I) bromide Inorganic materials 0.000 claims description 3
- NKNDPYCGAZPOFS-UHFFFAOYSA-M copper(i) bromide Chemical compound Br[Cu] NKNDPYCGAZPOFS-UHFFFAOYSA-M 0.000 claims description 3
- XNHGKSMNCCTMFO-UHFFFAOYSA-D niobium(5+);oxalate Chemical compound [Nb+5].[Nb+5].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O XNHGKSMNCCTMFO-UHFFFAOYSA-D 0.000 claims description 3
- 239000012429 reaction media Substances 0.000 claims description 3
- 230000035484 reaction time Effects 0.000 claims description 3
- 239000012295 chemical reaction liquid Substances 0.000 claims description 2
- 229940076286 cupric acetate Drugs 0.000 claims description 2
- 229960003280 cupric chloride Drugs 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- ZKXWKVVCCTZOLD-UHFFFAOYSA-N copper;4-hydroxypent-3-en-2-one Chemical compound [Cu].CC(O)=CC(C)=O.CC(O)=CC(C)=O ZKXWKVVCCTZOLD-UHFFFAOYSA-N 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 18
- 238000005265 energy consumption Methods 0.000 abstract description 4
- 238000012545 processing Methods 0.000 abstract description 4
- 208000005156 Dehydration Diseases 0.000 abstract description 2
- 230000018044 dehydration Effects 0.000 abstract description 2
- 238000006297 dehydration reaction Methods 0.000 abstract description 2
- 239000011259 mixed solution Substances 0.000 description 28
- 239000012071 phase Substances 0.000 description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 238000002441 X-ray diffraction Methods 0.000 description 9
- 239000012535 impurity Substances 0.000 description 9
- 238000001816 cooling Methods 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000003760 magnetic stirring Methods 0.000 description 7
- 238000004321 preservation Methods 0.000 description 7
- 238000003746 solid phase reaction Methods 0.000 description 7
- 238000005406 washing Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- QYJPSWYYEKYVEJ-FDGPNNRMSA-L copper;(z)-4-oxopent-2-en-2-olate Chemical compound [Cu+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O QYJPSWYYEKYVEJ-FDGPNNRMSA-L 0.000 description 1
- QNZRVYCYEMYQMD-UHFFFAOYSA-N copper;pentane-2,4-dione Chemical compound [Cu].CC(=O)CC(C)=O QNZRVYCYEMYQMD-UHFFFAOYSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001548 drop coating Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000005622 photoelectricity Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000005619 thermoelectricity Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B19/00—Selenium; Tellurium; Compounds thereof
- C01B19/002—Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/33—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/102—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
- H01L31/109—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/84—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/38—Particle morphology extending in three dimensions cube-like
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Nanotechnology (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electromagnetism (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
The invention belongs to Cu 3 NbSe 4 The technical field of preparation, in particular to cubic phase Cu 3 NbSe 4 A nano material and a preparation method and application thereof. The molecular formula of the nano material is Cu 3 NbSe 4 The crystal form is cubic phase, and the micro appearance of the nano material is a nano cubic structure. The method comprises the following steps: (1) Carrying out deoxidization and dehydration treatment on an organic solvent containing a soluble copper source, a niobium source and a selenium source, and then carrying out solvothermal reaction; (2) And separating out a solid product obtained by the solvothermal reaction to obtain the catalyst. The preparation process is simpler, the reaction condition is very mild, the energy consumption is obviously reduced, and the cost is low; more importantly, the cubic phase Cu with uniform appearance, controllable size, high crystallinity and good monodispersity is realized 3 NbSe 4 Preparation of nanomaterials, thus, cu prepared by the invention 3 NbSe 4 The micro-nano and integrated processing is easier to carry out in the application aspect.
Description
Technical Field
The invention belongs to Cu 3 NbSe 4 The technical field of preparation, in particular to cubic phase Cu 3 NbSe 4 A nano material and a preparation method and application thereof.
Background
The information in this background section is disclosed to enhance understanding of the general background of the invention and is not necessarily to be construed as an admission or any form of suggestion that this information forms part of the prior art already known to a person of ordinary skill in the art.
Solar energy has long been considered by researchers as the first choice alternative to fossil energy as a clean and sustainable energy source. The functional nano material with photoelectric characteristics can convert optical signals into electric signals, and has wide application prospects in the fields of solar cells, photodetectors, biosensors, field effect transistors and the like.
The development of novel efficient nano photoelectric conversion materials becomes a hotspot of current research. Cu (copper) 3 NbSe 4 The nano material has a proper optical band gap and good charge transmission characteristics, has strong absorption in a visible light range, and has potential application prospects in the field of photoelectric conversion. At present, research reports that Cu can be prepared by heating copper powder, niobium powder and selenium powder to 573K for 24 hours by using a solid-phase reaction method, then increasing the furnace temperature to 823K within 4 hours, keeping the temperature for 120 hours, and finally cooling to room temperature within 24 hours 3 NbSe 4 . However, the preparation method not only has long reaction time and high energy consumption, but also is the product Cu 3 NbSe 4 The shape of the copper alloy is not uniform, the size is not controllable, and the copper alloy is not beneficial to Cu 3 NbSe 4 Large-scale production and micro-nano application.
Disclosure of Invention
In order to solve the above problems, the present invention provides a cubic phase Cu 3 NbSe 4 A nano material and a preparation method and application thereof. Compared with the solid phase reaction method, the preparation process is simpler, the reaction condition is very mild, the energy consumption is obviously reduced, the cost is low, the method is environment-friendly, and more importantly, the cubic phase Cu with uniform appearance, controllable size and high crystallinity is realized 3 NbSe 4 And (4) preparing the nano material. In order to achieve the purpose, the invention discloses the following technical scheme:
in a first aspect of the present invention, there is provided Cu 3 NbSe 4 Nanomaterial of formula Cu 3 NbSe 4 The crystal form is cubic phase, and the microscopic appearance of the nano material is a nano-scale cubic structure. Relative to Cu prepared by solid-phase reaction method 3 NbSe 4 Material, cubic phase Cu of the invention 3 NbSe 4 The nano material not only has uniform appearance and controllable size, but also has good monodispersity and high crystallinity, so that the nano material is easier to carry out micro-nano and integrated processing in practical application.
Further, the Cu 3 NbSe 4 The nano material can show good dispersibility in a solvent, is in a monodisperse state and has good stability. Preparation of Cu by high temperature solid phase reaction 3 NbSe 4 The process of (2) is easy to generate sintering phenomenon, namely products are agglomerated together, and the dispersibility is poor.
Further, the Cu 3 NbSe 4 The size of the nano material is about 15 to 25 nm.
To this end, in a second aspect of the invention, a cubic phase Cu is provided 3 NbSe 4 The preparation method of the nano material comprises the following steps:
(1) Carrying out deoxidization and dehydration treatment on an organic solvent containing a soluble copper source, a niobium source and a selenium source, and then carrying out solvothermal reaction;
(2) And separating out a solid product obtained by the solvothermal reaction to obtain the catalyst.
Further, in the step (1), the ratio of Cu: nb: the molar ratio of Se is 3.
Further, in the step (1), the copper source is selected from one or more of cuprous chloride, cuprous bromide, cupric acetylacetonate, cupric chloride or cupric acetate.
Further, in the step (1), the niobium source is selected from one or two of niobium pentachloride and niobium oxalate.
Further, in the step (1), the selenium source is selected from one or more of diphenyl diselenide, selenium powder, dibenzyl diselenide or selenium dioxide.
Further, in the step (1), the organic solvent is selected from organic amines. Optionally, the organic amine is selected from one or more of oleylamine, hexadecylamine or octadecylamine. When the organic solvents are used as reaction media, the temperature required by the reaction can be met, and the organic solvents have the function of a surfactant, so that the morphology and the size of a product can be conveniently regulated and controlled.
Further, in the step (1), under an oxygen isolation condition (such as in a nitrogen or inert gas atmosphere), adding the copper source, the niobium source and the selenium source into a reaction medium, uniformly mixing, heating to 100 to 150 ℃, and reacting for 30 to 60min to dissolve the copper source, the niobium source and the selenium source and remove water, oxygen and low-boiling-point impurities in a reaction system.
Further, in the step (1), the temperature of the solvent is kept between 270 ℃ and 310 ℃, and the reaction time is controlled between 5 and 120min. The target product is difficult to obtain when the reaction temperature is too low, and the function of the surfactant is easily inactivated and volatilized when the temperature is too high.
Further, in the step (2), solid matters in the reaction liquid are separated in a centrifugal or filtering mode, and the centrifugal solid products are washed by a mixed liquid of absolute ethyl alcohol and chloroform to obtain the target products.
In a third aspect of the present invention, there is provided the cubic phase Cu 3 NbSe 4 The application of the nano material in the fields of photoelectricity, thermoelectricity and the like.
Compared with the prior art, the technical scheme of the invention has the following beneficial effects:
(1) Compared with the solid phase reaction method, the preparation process is simpler, the reaction condition is very mild, the energy consumption is obviously reduced, the cost is low, the method is environment-friendly, and more importantly, the cubic phase Cu with uniform appearance, controllable size, high crystallinity and good monodispersity is realized 3 NbSe 4 Preparation of nanomaterials, thus, cu prepared by the invention 3 NbSe 4 The micro-nano and integrated processing is easier to carry out in the application aspect. Because sintering phenomenon is easy to occur in the high-temperature solid-phase reaction process, namely products are agglomerated together, and the dispersibility is poor. The method is liquid phase preparation, reactants are dissolved in a solvent and then react in an ion or molecular form, and the reactants have the functions of a surfactant (such as crystal face selective adsorption and limitation of further growth of crystals) in the crystal nucleation and growth processes, so that the liquid phase reaction is obviously superior to the high-temperature solid phase reaction in the aspect of controlling the appearance and the size of a product.
(2) The research shows that the Cu prepared by the embodiment of the invention 3 NbSe 4 Has strong absorption capacity in the visible light range and uses Cu 3 NbSe 4 The photoelectric detector constructed by nano materials has response speedThe advantages of high speed and stability are due to the following reasons: cu with high monodispersity and uniform appearance and size 3 NbSe 4 The nano material can not only carry out micro-nano processing film formation on a device substrate (taking a monocrystalline silicon substrate as an example) in a spin coating or drop coating mode, but also can be in close contact with the substrate to form good Cu 3 NbSe 4 a/Si heterojunction. Furthermore, since Cu 3 NbSe 4 The nano material has the advantages of high crystallinity and strong light absorption, so the nano material is prepared in Cu 3 NbSe 4 Under the action of a built-in electric field formed by the/Si heterojunction, the effective separation of photogenerated electrons and holes can be promoted, and the performance of the photoelectric detector is improved.
Drawings
The accompanying drawings, which are incorporated in and constitute a part of this specification, are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification, illustrate exemplary embodiments of the invention and together with the description serve to explain the invention and not to limit the invention. Embodiments of the invention are described in detail below with reference to the attached drawing figures, wherein:
FIG. 1 shows an X-ray diffraction pattern (XRD) of a target product obtained in accordance with a first embodiment of the present invention.
FIG. 2 is a Transmission Electron Microscope (TEM) photograph of a target product obtained in the first example of the present invention.
FIG. 3 is a diagram showing the ultraviolet-visible (UV-vis) absorption spectrum of the objective product obtained in the first example of the present invention.
FIG. 4 is an I-t curve of a photodetector constructed by the target product obtained in the first embodiment of the present invention. .
FIG. 5 shows the X-ray diffraction pattern (XRD) of the object obtained by the second example of the present invention.
FIG. 6 is a Transmission Electron Microscope (TEM) photograph of a target product obtained by the third example of the present invention.
FIG. 7 is an X-ray diffraction pattern (XRD) of the object obtained in the fourth example of the present invention.
FIG. 8 is a Transmission Electron Microscope (TEM) photograph of a target product obtained in the fifth example of the present invention.
FIG. 9 shows the X-ray diffraction pattern (XRD) of the object obtained in the sixth example of the present invention.
DETAILED DESCRIPTION OF EMBODIMENT (S) OF INVENTION
The invention will be further illustrated with reference to the following specific examples. It should be understood that these examples are for illustrative purposes only and are not intended to limit the scope of the present invention. Experimental procedures without specific conditions noted in the following examples, generally according to conventional conditions or according to conditions recommended by the manufacturers.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. The reagents or starting materials used in the present invention can be purchased from conventional sources, and unless otherwise specified, the reagents or starting materials used in the present invention can be used in a conventional manner in the art or in accordance with the product specification.
In addition, any methods and materials similar or equivalent to those described herein can be used in the methods of the present invention. The preferred methods and materials described herein are exemplary only. The invention will now be further described with reference to the drawings and specific examples.
First embodiment
Cubic phase Cu 3 NbSe 4 The preparation of the nano material comprises the following steps:
(1) In a 100ml three-necked flask, 0.3mmol cuprous chloride, 0.1mmol niobium pentachloride, 0.4mmol diphenyl diselenide and 6.0ml oleylamine were added, respectively, to obtain a mixed solution.
(2) And (2) introducing nitrogen into the three-mouth bottle in the step (1), heating the mixed solution to 130 ℃ under the condition of magnetic stirring, and carrying out heat preservation reaction for 30min to remove water and low-boiling-point impurities in the reaction system.
(3) And continuously heating the mixed solution to 280 ℃, preserving the temperature, reacting for 30min, cooling to room temperature after the reaction is finished, and then washing and centrifuging the solid product for 3 times by using a mixed solution of absolute ethyl alcohol and chloroform with the volume ratio of 3.
Second embodiment
Cubic phase Cu 3 NbSe 4 Of nanometric materialsThe preparation method comprises the following steps:
(1) In a 100ml three-necked flask, 0.3mmol of cuprous bromide, 0.1mmol of niobium oxalate, 0.4mmol of diphenyldiselenide and 5.0g of octadecylamine were added, respectively, to obtain a mixed solution.
(2) And (2) introducing nitrogen into the three-mouth bottle in the step (1), heating the mixed solution to 130 ℃ under the condition of magnetic stirring, and carrying out heat preservation reaction for 60min to remove water and low-boiling-point impurities in the reaction system.
(3) And continuously heating the mixed solution to 280 ℃, preserving the temperature, reacting for 30min, cooling to room temperature after the reaction is finished, and then washing and centrifuging the solid product for 3 times by using a mixed solution of absolute ethyl alcohol and chloroform with the volume ratio of 3.
Third embodiment
Cubic phase Cu 3 NbSe 4 The preparation of the nano material comprises the following steps:
(1) In a 100ml three-necked flask, 0.3mmol of cuprous chloride, 0.1mmol of niobium pentachloride, 0.4mmol of diphenyl diselenide and 4.5g of hexadecylamine were added, respectively, to obtain a mixed solution.
(2) And (2) introducing nitrogen into the three-mouth bottle in the step (1), heating the mixed solution to 100 ℃ under the condition of magnetic stirring, and carrying out heat preservation reaction for 60min to remove water and low-boiling-point impurities in the reaction system.
(3) And continuously heating the mixed solution to 270 ℃, preserving the temperature, reacting for 120min, cooling to room temperature after the reaction is finished, and then washing and centrifuging the solid product for 3 times by using a mixed solution of absolute ethyl alcohol and chloroform with the volume ratio of 3.
Fourth embodiment
Cubic phase Cu 3 NbSe 4 The preparation of the nano material comprises the following steps:
(1) In a 100ml three-necked flask, 0.3mmol of acetylacetone copper, 0.1mmol of niobium pentachloride, 0.4mmol of dibenzyl diselenide and 6.0ml of oleylamine were added, respectively, to obtain a mixed solution.
(2) And (2) introducing nitrogen into the three-mouth bottle in the step (1), heating the mixed solution to 120 ℃ under the condition of magnetic stirring, and carrying out heat preservation reaction for 45min to remove water and low-boiling-point impurities in the reaction system.
(3) And continuously heating the mixed solution to 310 ℃, preserving the temperature, reacting for 5min, cooling to room temperature after the reaction is finished, and then washing and centrifuging the solid product for 3 times by using a mixed solution of absolute ethyl alcohol and chloroform with the volume ratio of 3.
Fifth embodiment
Cubic phase Cu 3 NbSe 4 The preparation of the nano material comprises the following steps:
(1) In a 100ml three-necked flask, 0.3mmol of cuprous chloride, 0.1mmol of niobium pentachloride, 0.4mmol of diphenyl diselenide and 5.0g of octadecylamine were added, respectively, to obtain a mixed solution.
(2) And (2) introducing nitrogen into the three-mouth bottle in the step (1), heating the mixed solution to 150 ℃ under the condition of magnetic stirring, and carrying out heat preservation reaction for 20min to remove water and low-boiling-point impurities in the reaction system.
(3) And continuously heating the mixed solution to 280 ℃, preserving the temperature, reacting for 30min, cooling to room temperature after the reaction is finished, and then washing and centrifuging the solid product for 3 times by using a mixed solution of absolute ethyl alcohol and chloroform with the volume ratio of 3.
Sixth embodiment
Cubic phase Cu 3 NbSe 4 The preparation of the nano material comprises the following steps:
(1) In a 100ml three-necked flask, 0.3mmol of copper chloride, 0.1mmol of niobium pentachloride, 0.4mmol of selenium powder and 6.0ml of oleylamine are respectively added to obtain a mixed solution.
(2) And (2) introducing nitrogen into the three-mouth bottle in the step (1), heating the mixed solution to 100 ℃ under the condition of magnetic stirring, and carrying out heat preservation reaction for 60min to remove water and low-boiling-point impurities in the reaction system.
(3) And continuously heating the mixed solution to 300 ℃, preserving the temperature, reacting for 30min, cooling to room temperature after the reaction is finished, and then washing and centrifuging the solid product for 3 times by using a mixed solution of absolute ethyl alcohol and chloroform with the volume ratio of 3.
Seventh embodiment
Cubic phase Cu 3 NbSe 4 The preparation of the nano material comprises the following steps:
(1) In a 100ml three-necked flask, 0.3mmol of copper acetate, 0.1mmol of niobium pentachloride, 0.4mmol of selenium dioxide and 6.0ml of oleylamine were added, respectively, to obtain a mixed solution.
(2) And (2) introducing nitrogen into the three-mouth bottle in the step (1), heating the mixed solution to 140 ℃ under the condition of magnetic stirring, and carrying out heat preservation reaction for 30min to remove water and low-boiling-point impurities in the reaction system.
(3) And continuously heating the mixed solution to 290 ℃, preserving the temperature, reacting for 60min, cooling to room temperature after the reaction is finished, and then washing and centrifuging the solid product for 3 times by using a mixed solution of absolute ethyl alcohol and chloroform with the volume ratio of 3.
Composition, structural characterization and performance testing
FIG. 1 shows the X-ray diffraction pattern of the object obtained in the first example. As can be seen from the figure: all diffraction peaks are good indexes of Cu 3 NbSe 4 (JCPDS Card No. 81-2492) and no impurity peak, indicating that the target product prepared by the method of the embodiment is cubic phase Cu 3 NbSe 4 And (4) crystals. Likewise, the results of fig. 5, 7 and 9 also show that the target products prepared by the second, fourth and sixth examples have similar results to fig. 1.
FIG. 2 is a Transmission Electron Microscope (TEM) photograph of the objective product obtained in the first example, showing that Cu was prepared by the method 3 NbSe 4 The shape is uniform, the size is controllable, and the shape is concretely a nano cube with the size of 15-25 nm. Similarly, the results of fig. 6 and 8 also show that the target products prepared by the third and fifth examples have similar results to those of fig. 2.
FIG. 3 is an ultraviolet-visible (UV-vis) absorption spectrum of the product obtained in the first example, demonstrating cubic phase Cu 3 NbSe 4 The nano material has stronger absorption in the visible light range, which shows that the Cu prepared by the method 3 NbSe 4 The nano material can be used as a photoelectric conversion material to be applied to the research field of photoelectric equipment.
FIG. 4 is an I-t curve of a photodetector constructed by the product obtained in the first embodiment. In this experiment, the target product obtained in the first example and the graphene electrode were formed on a single crystal silicon wafer by a spin coating process to form Cu 3 NbSe 4 A photodetector of the/Si heterostructure type. As shown in fig. 4: the light intensity is 60mW/cm at the wavelength of 520nm 2 And the condition of applying 0.5V bias voltage shows that the photoelectric detector has good responsiveness and stability.
Although the present invention has been described in detail with reference to the foregoing embodiments, it will be apparent to those skilled in the art that changes may be made in the embodiments and/or equivalents thereof without departing from the spirit and scope of the invention. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the protection scope of the present invention.
Claims (5)
1. Cubic phase Cu 3 NbSe 4 The preparation method of the nano material is characterized in that the molecular formula of the nano material is Cu 3 NbSe 4 The crystal form is cubic phase; the micro appearance of the nano material is a nano-scale cube; the preparation method comprises the following steps:
(1) Deoxidizing and dehydrating an organic solvent containing a soluble copper source, a niobium source and a selenium source, mixing a reaction medium containing the copper source, the niobium source and the selenium source uniformly under an oxygen-isolated condition, and then heating to 100 to 150 ℃ for reaction for 30 to 60min; then carrying out solvothermal reaction;
the organic solvent is selected from one or more of oleylamine, hexadecylamine or octadecylamine;
cu in the organic solvent: nb: the molar ratio of Se is 3;
the temperature of the solvothermal reaction is kept between 270 and 310 ℃, and the reaction time is controlled between 5 and 120min;
wherein: the copper source is selected from one or more of cuprous chloride, cuprous bromide, copper acetylacetonate, cupric chloride or cupric acetate; the niobium source is selected from one or two of niobium pentachloride and niobium oxalate; in the step (1), the selenium source is selected from one or more of diphenyl diselenide, selenium powder, dibenzyl diselenide or selenium dioxide;
(2) And separating out a solid product obtained by the solvothermal reaction to obtain the catalyst.
2. Cubic phase Cu as claimed in claim 1 3 NbSe 4 The preparation method of the nano material is characterized in that the Cu 3 NbSe 4 The nano material is in a monodisperse state.
3. Cubic phase Cu as claimed in claim 1 3 NbSe 4 The preparation method of the nano material is characterized in that the Cu 3 NbSe 4 The size of the nano material is 15 to 25 nm.
4. Cubic phase Cu as claimed in claim 1 3 NbSe 4 The preparation method of the nano material is characterized in that in the step (2), solid matters in the reaction liquid are separated in a centrifugal or filtering mode, and the centrifugal solid products are washed by mixed liquid of absolute ethyl alcohol and chloroform to obtain target products.
5. Cubic phase Cu produced by the production method according to any one of claims 1 to 4 3 NbSe 4 The application of the nano material in the photovoltaic, thermoelectric or photoelectric field.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111136519.9A CN113860270B (en) | 2021-09-27 | 2021-09-27 | Cubic phase Cu 3 NbSe 4 Nano material and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111136519.9A CN113860270B (en) | 2021-09-27 | 2021-09-27 | Cubic phase Cu 3 NbSe 4 Nano material and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113860270A CN113860270A (en) | 2021-12-31 |
CN113860270B true CN113860270B (en) | 2022-10-14 |
Family
ID=78991302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111136519.9A Active CN113860270B (en) | 2021-09-27 | 2021-09-27 | Cubic phase Cu 3 NbSe 4 Nano material and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113860270B (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6933331B2 (en) * | 1998-05-22 | 2005-08-23 | Nanoproducts Corporation | Nanotechnology for drug delivery, contrast agents and biomedical implants |
DE102017000861A1 (en) * | 2017-01-31 | 2018-08-02 | Clariant Produkte (Deutschland) Gmbh | Synthesis of a MoVTeNb catalyst from inexpensive metal oxides |
CN110116992A (en) * | 2019-05-08 | 2019-08-13 | 上海电力学院 | A kind of preparation method and application of two selenizing niobium of sodium ion battery electrode material |
-
2021
- 2021-09-27 CN CN202111136519.9A patent/CN113860270B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113860270A (en) | 2021-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100494068C (en) | Method for preparing monodisperse ternary sulfide CuInS2 | |
CN104003448B (en) | A kind of alpha-phase ferricoxide porous core-shell particles and controlledly synthesis preparation method thereof | |
CN110586931B (en) | Ultra-long silver nanowire and preparation method thereof | |
CN109293962B (en) | Preparation method of silver selenide/nylon flexible composite film with high thermoelectric performance | |
US9196767B2 (en) | Preparation of copper selenide nanoparticles | |
CN110828651A (en) | Preparation method for optimizing thermoelectric performance of silver selenide/nylon flexible composite film | |
CN113697777B (en) | Rhombohedral phase CuCrSe 2 Nano material and preparation method and application thereof | |
CN109888031A (en) | A kind of preparation method and photodetector of bismuth oxygen sulphur two-dimensional material | |
CN113860270B (en) | Cubic phase Cu 3 NbSe 4 Nano material and preparation method and application thereof | |
CN103833080A (en) | Preparation method for cadmium molybdate porous spheres | |
CN101774633B (en) | Method for preparing CdS:Mn nano-particles in aqueous solution | |
CN107892282A (en) | Lead telluride nanometer rods, the preparation method and applications of a kind of size uniformity | |
CN101109102B (en) | Method of synthesizing organic-inorganic compound germanium oxide monocrystal nano thread | |
CN102797031B (en) | Preparation method of pyrite-type ferrous disulfide nanoscale single-crystal semiconductor material | |
CN115285945A (en) | Antimony-silver ditelluride nanocrystal and phosphine-free liquid phase synthesis method and application thereof | |
CN113620342B (en) | Shuttle-shaped silver bismuth disulfide nano material and preparation method thereof | |
CN113683060B (en) | Two-dimensional non-layered CuGaSe 2 Porous nano material and preparation method and application thereof | |
CN113912025A (en) | Preparation method, product and application of Te nano material with controllable morphology | |
CN115197695A (en) | CuInS 2 Preparation method of quantum dot superlattice structure | |
CN107792839B (en) | Lead selenide nanorod, preparation method and application in field effect transistor | |
CN106340545A (en) | Manufacturing of CIS and CIGS thin-film solar cell light absorption layer and application of new solvent during manufacturing | |
CN105502520A (en) | Method for growing cobaltosic oxide nanosheet on aluminum oxide ceramic pipe | |
CN113684026B (en) | Method for synthesizing full-spectrum perovskite quantum dots based on anion exchange | |
CN108128795A (en) | A kind of method nanocrystalline room temperature synthesis CuO | |
CN113648967B (en) | Co 3 O 4-x Te x Composite material of @ C @ SnTe and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |