CN113848656A - Spectacle lens - Google Patents

Spectacle lens Download PDF

Info

Publication number
CN113848656A
CN113848656A CN202010596846.1A CN202010596846A CN113848656A CN 113848656 A CN113848656 A CN 113848656A CN 202010596846 A CN202010596846 A CN 202010596846A CN 113848656 A CN113848656 A CN 113848656A
Authority
CN
China
Prior art keywords
unit
cells
layer
cell
ophthalmic lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010596846.1A
Other languages
Chinese (zh)
Inventor
周民杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danyang Leideng Intelligent Technology Co ltd
Original Assignee
Danyang Leideng Intelligent Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danyang Leideng Intelligent Technology Co ltd filed Critical Danyang Leideng Intelligent Technology Co ltd
Priority to CN202010596846.1A priority Critical patent/CN113848656A/en
Publication of CN113848656A publication Critical patent/CN113848656A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/24Myopia progression prevention

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)

Abstract

The present invention discloses an eyeglass lens comprising a plurality of first units which focus images at positions other than the retina of an eye to suppress the development of ametropia of the eye, the first units having a first refractive power, further comprising: a second unit that deflects the light away from the linear propagation, the plurality of first units being connected by the second unit; a plurality of third cells for correcting myopia, the third cells being formed as regions other than the first and second cells; the second unit and the third unit have diopter different from the first diopter, and form phase difference after the light passing through the second unit and the third unit acts on the retina. The invention has the advantage of inhibiting the development of myopia.

Description

Spectacle lens
Technical Field
The present invention relates to an eyeglass lens.
Background
The frame glasses adopt a single-optical concave lens, a double-optical concave lens and a progressive multi-focus lens, and the peripheral out-of-focus frame glasses lens control the myopic deepening. CN208921990U discloses a lens and glasses capable of controlling the increase of myopia degree, wherein the lens includes an upper lens and a lower lens, the diopter of the lens is higher than the diopter of the lower lens, the upper lens and the lower lens are connected through their respective connecting surfaces, and the adjacent two side surfaces of the upper lens and the lower lens are respectively connected to form a smooth curved surface. The lens and spectacles can control the myopia degree to increase too fast.
CN202339453U discloses a pair of special glasses for controlling myopia and reducing degree, which comprises a frame and lenses, wherein the lenses are fixed on the frame, the lenses are designed according to the principle of multiple focal points, have compact structure and multiple functions, are mainly suitable for being worn by teenagers, can eliminate asthenopia, effectively control the development of true myopia, improve eyesight, recover early myopia, and treat moderate or low myopia; different optical focuses of the lens gradual-changing area can stimulate visual cells of human eyes, and the lens has a remarkable effect on amblyopia of children of low ages by exercising the visual function. Experiments have demonstrated that myopia control is very limited with single concave, bifocal and progressive addition lenses.
CN104678572A discloses an ophthalmic lens comprising a first refractive area having a first refractive power based on a prescription for correcting ametropia of an eye; and a second dioptric region having a refractive power different from the first refractive power and having a function of focusing an image on a position other than a retina of the eye to suppress development of ametropia of the eye, wherein the second dioptric region is formed as a plurality of island-shaped regions independent of each other in the vicinity of a central portion of the lens, and the first dioptric region is formed as a region other than a region formed as the second dioptric region.
The patient visually recognizes the image of the object formed by the first refractive power using the spectacle lens in CN104678572A described above, and suppresses the progression of myopia by the image obtained in front of the retina by the refractive power other than the first refractive power. However, in the above-mentioned spectacle lens, since the second dioptric region is formed as a plurality of island-shaped regions independent of each other, all the light rays passing through the first dioptric region act on the retina of the patient concentratedly at the same time, and therefore, although the development of myopia is theoretically inhibited by the second dioptric region, the eye fatigue (which is a main factor causing myopia) due to the irritation and glare of the light rays passing through the first dioptric region to the eye and thus the development of myopia cannot be effectively inhibited is actually reduced.
Disclosure of Invention
The present invention provides an eyeglass lens having an improved effect of inhibiting the development of myopia.
The technical scheme for solving the technical problems is as follows:
an ophthalmic lens comprising a plurality of first units for focusing an image at a location other than the retina of an eye to inhibit the development of ametropia of the eye, the first units having a first refractive power, further comprising:
a second unit that deflects the light away from the linear propagation, the plurality of first units being connected by the second unit;
a plurality of third cells for correcting myopia, the third cells being formed as regions other than the first and second cells;
the second unit and the third unit have diopter different from the first diopter, and form phase difference after the light passing through the second unit and the third unit acts on the retina.
The invention has the advantages that: in the invention, the second unit which is connected with the plurality of first units is utilized, so that when light rays emitted by the same light source respectively pass through the second unit and the third unit, the second unit has a larger blocking effect on the light rays compared with the third unit, and therefore, the light passing through the second unit and the light passing through the third unit generate a light path difference, and the time of reaching the retina is different, so that the phase difference is formed. Through the phase difference, the phenomenon that light rays act on the retina at the same time in a concentrated mode is avoided, stimulation to eyes can be relieved, eye fatigue is reduced, glare is reduced, in addition, due to the structure, all parts of an object are decomposed and imaged, and the imaging brightness, the imaging outline and the imaging definition can be improved.
According to the invention, the first units are connected through the second units, each first unit is an independent island-shaped area, the second units are similar to an island chain, after the adjacent first units are connected through the island chain, each first unit is respectively arranged on a plurality of rings at intervals to form a plurality of inhibition layers, the third unit in each ring is closed, and when light passes through the second units and the third units except the first units, the phase difference formed by the cooperation of the second units and the third units reduces glare and stimulation of the light to eyes, so that the fatigue of the eyes of a patient is reduced. Therefore, the second unit and the third unit are matched to correct myopia and simultaneously play a role in inhibiting the occurrence of myopia, namely the spectacle lens of the invention improves the effect of inhibiting the development of myopia.
Drawings
FIG. 1 is a top view of embodiment 1 of an ophthalmic lens of the present invention;
FIG. 2 is a perspective view of a first unit in the present invention;
FIG. 3 is a perspective view of a second unit in the present invention;
FIG. 4 is a top view of ophthalmic lens embodiment 2 of the present invention;
FIG. 5 is a schematic diagram of the loop of FIG. 4 with the addition of a center of a first cell in each suppression layer;
reference numbers in the drawings:
a is an outermost inhibiting layer;
b is an innermost inhibiting layer;
c is an intermediate inhibiting layer;
1 is a spectacle lens;
10 is a first unit;
20 is a second unit;
and 30 is a third unit.
Detailed Description
Example 1
As the spectacle lens 1 shown in fig. 1, the spectacle lens 1 is a concave lens having an object side surface formed into a convex curved surface toward the object side and an eye side surface formed into a concave surface having a curvature larger than that of the object side surface. The spectacle lens 1 has a first unit 10 for focusing an image in a position other than the retina of the eye in order to inhibit the progression of the refractive error of the eye, a second unit 20 for deviating light from a straight line, a plurality of third units 30 for correcting myopia, each of which and the relationship between them being explained in detail below:
as shown in fig. 1, the first unit 10 is made of a material having a point for focusing an image on the front of the retina of the eye, and the second unit 20 and the third unit 30 have a function for focusing an image on the retina of the eye. Therefore, when the patient views an object using the eyeglass lens 1 that suppresses the development of myopia, an image of the object is formed on the retina while imaging the anterior square of the retina. The spectacle lens 1 of the present invention has the following effects: the development of myopia is suppressed by an image obtained in front of the retina by the first unit 10 other than the third unit 30 while visually recognizing the image of the object formed by the second unit 20 and the third unit 30.
As shown in fig. 1, a plurality of first cells 10 are connected by second cells 20, and the third cells 30 are formed as regions other than the first cells 10 and the second cells 20; the second unit 20 and the third unit 30 have refractive power different from the first refractive power, and the light passing through the second unit 20 and the third unit 30 acts on the retina to form a phase difference. In the present invention, it is preferable that the first unit 10 and the second unit 20 are protruded from the third unit 30, and the diopters of the second unit 20 and the third unit 30 are different.
Since the light advances at a constant speed (within a certain range), it has a fixed phase when reaching any point, and the phase difference is the difference between the phases of different light waves at the meeting point. In the present invention, the second unit 20 connecting the plurality of first units 10 is used to make the light emitted from the same light source have a larger blocking effect on the light than the third unit 30 when the light passes through the second unit 20 and the third unit 30 respectively, so that the light passing through the second unit 20 and the light passing through the third unit 30 have a light path difference, and the time of reaching the retina is different, thereby forming the phase difference. Through the phase difference, the phenomenon that light rays act on the retina at the same time in a concentrated mode is avoided, stimulation to eyes can be relieved, eye fatigue is reduced, glare is reduced, in addition, due to the structure, all parts of an object are decomposed and imaged, and the imaging brightness, the imaging outline and the imaging definition can be improved. It can be seen that the cooperation of the second unit 20 and the third unit 30 can correct myopia and inhibit myopia. Thus, the present invention primarily inhibits the progression of myopia by the first unit 10, but also by the combined structure of the second unit 20 and the third unit 30.
As shown in fig. 1, the plurality of first cells 10 are respectively arranged on the plurality of rings at intervals to form a plurality of inhibiting layers. Any two adjacent first cells 10 on each inhibiting layer are connected by a second cell 20. The ring can be regular ring or irregular ring, the regular ring can be round, regular polygon and the like, and the irregular ring can be any irregular shape. In this embodiment, the rings for the first unit arrangement are preferably irregular rings, and the irregular rings are arranged from the inside to the outside or from the outside to the inside.
As shown in fig. 1 and 2, the projection formed by the surface of the first unit 10 along the longitudinal direction of the spectacle lens 1 is circular, preferably, the first unit 10 is hemispherical as a whole, and the surface area of each first unit 10 is 0.50mm2To 3.14mm2. The machine direction in the present invention is: along the direction of rectilinear extension of the object-side surface of the spectacle lens 1 towards the eye-side surface, or along the direction of rectilinear extension of the eye-side surface of the spectacle lens 1 towards the object-side surface.
As shown in fig. 1 and 3, the projection formed by the surface of the second unit 20 along the longitudinal direction of the spectacle lens 1 is rectangular. The cross section formed by the second unit 20 is rectangular or arcuate in the longitudinal direction of the spectacle lens 1, preferably the cross section formed by the second unit 20 is arcuate in the longitudinal direction of the spectacle lens 1. The area of each second cell 20 is 2-10% of the area of each first cell 10. The thickness of the second cell 20 is less than or equal to the thickness of the first cell 10.
As shown in fig. 1, the ratio of the total area of the third cells 30 to the total area of the first and second cells 10 and 20 and the third cell 20 is 40% to 50%. Therefore, it is possible to obtain a good wearing feeling while maintaining sufficient visibility while ensuring a function of suppressing the progression of myopia.
Example 2
As shown in fig. 4 and 5, the plurality of first cells 10 are respectively arranged at intervals on a plurality of rings having the same center to form an outermost constraining layer a, an innermost constraining layer B, and at least one intermediate constraining layer C between the outermost and innermost constraining layers a and B. The center of each first cell 10 in each inhibition layer is located on the same ring, i.e., the center of each first cell 10 in the outermost inhibition layer a is located on the outermost ring, the center of each first cell 10 in the innermost inhibition layer B is located on the innermost ring, and the center of each first cell 10 in the intermediate inhibition layer C is located on the intermediate ring. In the present invention, three intermediate suppression layers C are preferably used.
As shown in fig. 4 and 5, each of the hexagonal rings is a non-regular hexagonal ring, and the centers of the first cells 10 are placed on the polygonal rings, so as to facilitate the arrangement of more first cells 10 and the arrangement of more connecting lines, thereby fully exerting the function of the spectacle lens 1 for inhibiting myopia. At the same time, the arrangement of the first unit 10 is also made easier.
As shown in fig. 4 and 5, two adjacent first cells 10 of the outermost inhibition layer a and the innermost inhibition layer B are connected by the second cell 20, so that the outermost inhibition layer a and the innermost inhibition layer B surrounded by the first cell 10 and the second cell 20 are closed spaces. Thereby, the area of the third unit 30 surrounded by the innermost restraining layer B and the plurality of second units 20 of the first unit 10 connected with the innermost restraining layer B is 28-227mm2Here, the area is largest among all the third cells 30. The diameter of the tube is 28-227mm2Is located in the central zone of the ophthalmic lens 1.
Only a part of two adjacent first cells 10 in each intermediate suppression layer C are connected by the second cells 20, and any one first cell 10 in each intermediate suppression layer C is connected with the first cell 10 in the adjacent outermost suppression layer a and/or innermost suppression layer B and/or further intermediate suppression layer C by the second cell 20. Such a structure allows the third unit 30 to be formed in different shapes (as shown in fig. 1 and 2), which is beneficial to reducing the area occupied by the second unit 20 on the third unit 30 when the suppression effect generated by the second unit 20 and the third unit 30 is ensured, so that the correction of vision can be ensured.

Claims (10)

1. Ophthalmic lens comprising a plurality of first units (10) for focusing an image in a position other than the retina of the eye in order to inhibit the development of a refractive error of the eye, the first units (10) having a first refractive power, characterized in that it further comprises:
a second cell (20) for deflecting light from a straight line, the plurality of first cells (10) being connected by the second cell (20);
a plurality of third cells (30) for correcting myopia, the third cells (30) being formed as regions other than the first cells (10) and the second cells (20);
the second unit (20) and the third unit (30) have a refractive power different from the first refractive power, and a phase difference is formed after light passing through the second unit (20) and the third unit (30) acts on the retina.
2. Ophthalmic lens according to claim 1, characterized in that said first units (10) are respectively arranged at intervals on rings to form inhibition layers.
3. Ophthalmic lens according to claim 2, characterized in that any two adjacent first units (10) on each inhibition layer are connected by a second unit (20).
4. The ophthalmic lens according to claim 2, characterized in that said plurality of inhibiting layers comprises an outermost inhibiting layer (a), an innermost inhibiting layer (B) and at least one intermediate inhibiting layer (C) arranged on rings having the same center, these intermediate inhibiting layers (C) being located between the outermost inhibiting layer (a) and the innermost inhibiting layer (B).
5. Ophthalmic lens according to claim 4, characterized in that two adjacent first cells (10) of the outermost inhibition layer (A) and the innermost inhibition layer (B) are connected by a second cell (20);
only a part of two adjacent first cells (10) in each intermediate suppression layer (C) are connected by the second cells (20), and any one first cell (10) in each intermediate suppression layer (C) is connected with the first cell (10) in the adjacent outermost suppression layer (a) and/or innermost suppression layer (B) and/or further intermediate suppression layer (C) by the second cell (20).
6. Ophthalmic lens according to claim 4, characterized in that the area of the third cell (30) enclosed by the innermost inhibit layer (B) and the plurality of second cells (20) of the first cell (10) connecting the innermost inhibit layer (B) is 28-227mm2
7. Ophthalmic lens according to one of claims 1 to 6, characterized in that the projection formed by the surface of the second unit (20) is rectangular in the longitudinal direction of the ophthalmic lens (1).
8. The spectacle lens according to one of claims 1 to 6, characterized in that the second unit is formed with a rectangular or arcuate cross section in the longitudinal direction of the spectacle lens (1).
9. Ophthalmic lens according to one of claims 1 to 6, characterized in that the area of each second cell (20) is 2-10% of the area of each first cell (10).
10. Ophthalmic lens according to one of claims 1 to 4, characterized in that the thickness of the second unit (20) is less than or equal to the thickness of the first unit (10).
CN202010596846.1A 2020-06-28 2020-06-28 Spectacle lens Pending CN113848656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010596846.1A CN113848656A (en) 2020-06-28 2020-06-28 Spectacle lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010596846.1A CN113848656A (en) 2020-06-28 2020-06-28 Spectacle lens

Publications (1)

Publication Number Publication Date
CN113848656A true CN113848656A (en) 2021-12-28

Family

ID=78972445

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010596846.1A Pending CN113848656A (en) 2020-06-28 2020-06-28 Spectacle lens

Country Status (1)

Country Link
CN (1) CN113848656A (en)

Similar Documents

Publication Publication Date Title
CN212160264U (en) Spectacle lens
JP6953115B2 (en) Contact lenses with non-coaxial small lenses to prevent and / or slow the progression of myopia
AU2017202382B2 (en) Asymmetric lens design and method for preventing and/or slowing myopia progression
RU2628669C2 (en) Lens design with optical force profile of arbitrary shape and method of preventing and/or slowing progression of myopia
US9829722B2 (en) Method and system for retarding the progression of myopia
US9500881B2 (en) Contact lenses for myopic eyes and methods of treating myopia
EP2616876B1 (en) System for retarding progression of myopia
US5608471A (en) Soft, bifocal contact lens
TW201940135A (en) Ophthalmic lens with an optically non-coaxial zone for myopia control
KR101627476B1 (en) Ophthalmic lens element
RU2628059C2 (en) Construction of multifocal lens and method of prevention and/or decommission of progratization of myopia
CN114114711A (en) Spectacle lens for inhibiting myopia progression
CN218524972U (en) Ophthalmic lens and frame glasses with same
CN209707838U (en) A kind of optical treatment system for human eye
CN115903269A (en) Spectacle lens and frame spectacles
CN113848656A (en) Spectacle lens
WO2022112533A2 (en) Spectacle lens design, spectacle lens kit, data set, computer-implemented method of designing a spectacle lens and method of manufacturing a spectacle lens
CN114967180B (en) Optical lens for human eyes
CN220323654U (en) Myopia prevention and control glasses
CN215117039U (en) Stepless out-of-focus lens and frame glasses
CN217425855U (en) Spectacle lens for adjusting growth trend of eye axis of teenager
EP4336248A1 (en) Ophthalmic lens and frame glasses having same
CN115032813A (en) Contact lens
CN114911075A (en) Stepless out-of-focus lens and frame glasses

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination