CN113848605A - 基于介质超表面的窄带光偏振转换器 - Google Patents

基于介质超表面的窄带光偏振转换器 Download PDF

Info

Publication number
CN113848605A
CN113848605A CN202111355562.4A CN202111355562A CN113848605A CN 113848605 A CN113848605 A CN 113848605A CN 202111355562 A CN202111355562 A CN 202111355562A CN 113848605 A CN113848605 A CN 113848605A
Authority
CN
China
Prior art keywords
narrow
band light
polarization converter
light polarization
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111355562.4A
Other languages
English (en)
Inventor
刘志军
周相如
张保玉
李凤
韩利琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202111355562.4A priority Critical patent/CN113848605A/zh
Publication of CN113848605A publication Critical patent/CN113848605A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials

Abstract

本发明公开了一种基于介质超表面的窄带光偏振转换器,所述窄带光偏振转换器包括氟化钙衬底,所述氟化钙衬底上层设置周期性的长方体非晶硅,所述长方体非晶硅的长、宽、高分别为5‑7μm、2.5‑4.5μm和1.5‑2.5μm。本发明利用介质材料的低损耗特性和同一频率处的磁偶极子和电偶极子同时共振原理,实现窄带、高效率的偏振转换性能,具有窄带频率选择性、高反射效率和结构简单的性能优势。

Description

基于介质超表面的窄带光偏振转换器
技术领域
本发明涉及光电子器件领域,具体的说,涉及一种基于介质超表面的窄带光偏振转换器。
背景技术
偏振是光波众多属性中的一个基本参量,表征了电磁波的矢量振动方向。偏振的控制和调节在光谱技术、光学成像和无线通讯等领域具有重要应用价值。常规的光偏振器件采用各向异性的光学晶体,利用寻常光(“o”光)和非寻常光(“e”光)之间的相位差,实现光的偏振态从线偏振到圆偏振和椭圆偏振之间的转换和调控。由于光学晶体中寻常光(“o”光)和非寻常光(“e”光)之间折射率差很小,导致用于偏振控制的光学晶体厚度远大于波长,相应的偏振器件体积庞大,不适合小型化和集成化的光电器件应用需求。
基于亚波长微结构的超表面(Metasurface)为实现微型化和高性能偏振器件提供了一种新途径。超表面具有远小于波长的物理厚度,利用其表面的微结构单元各向异性的共振模式,可以获得0到2π之间的任意相位差,从而实现光偏振态的任意调节。Q.Levesque和Z.Zhang等人先后利用超表面实现了红外光的交叉偏振转换【见文献:Q.Lévesque,etal.,Applied Physics Letters 104,111105(2014)和文献:Z.Zhang,et al.,AppliedPhysics Letters 107,241904(2015)】,然而他们采用的工作原理是利用“L”形状和椭圆形状的金属棒中2个不同频率的共振模式,导致偏振转换分别出现在730nm-1870nm和3.25–4.25μm很宽的频率范围,不具备频率选择性,限制了这些器件在窄频带场合的应用。此外,由于金属固有的欧姆损耗,这些已报道的超表面偏振器具有一定光学损耗,其偏振转换效率有待进一步提高。
现有基于超表面的频率转换器件一般采用图形化的纳米金属,典型结构为“金属-介质-金属天线”三明治结构,如图1(a)和图1(c)所示,其中下层为高反射的金属薄膜,中间为透明的介质薄膜,上层为周期性“L”形状的金属条或者椭圆形的金属棒阵列。当入射线偏振光入射到结构表面时,在两个正交的方向分别激发两个频率不同的共振模式,导致两个正交的光场分量之间产生π相位,从而导致偏振方向发生90度的偏转。其中“L”形状的金属条结构在3.4μm和4.2μm波长处具有两个共振模式,交叉偏振转换发生在3.25–4.25μm宽带范围,如图1(b)所示;椭圆形金属棒结构在1070nm和1700nm波长处具有两个共振模式,交叉偏振转换发生在730nm-1870nm宽带范围,如图1(d)所示。
上述基于金属结构的超表面利用分别在两个正交的方向上的两个共振模式,实现了红外宽频带的偏振转换,其转换后的交叉反射率为~70%-90%,展现了超表面在偏振控制方面良好应用价值。
但是,现有基于金属结构的超表面利用两个正交的方向分别激发的两个频率不同的共振模式,导致偏振转换分别出现在红外波段很宽的频率范围,不具备频率选择性,限制了这些器件在窄频带场合的应用,此外,由于金属固有的欧姆损耗,这些偏振器件具有一定光学损耗,导致偏振转换效率受限。
发明内容
本发明提出了一种基于介质超表面的窄带光偏振转换器,该器件利用介质材料的低损耗特性和同一频率处的磁偶极子和电偶极子同时共振原理,实现窄带、高效率的偏振转换性能。
本发明的具体技术方案如下:
一种基于介质超表面的窄带光偏振转换器,所述窄带光偏振转换器包括氟化钙衬底,所述氟化钙衬底上层设置周期性的长方体非晶硅,所述长方体非晶硅的长、宽、高分别为5-7μm、2.5-4.5μm和1.5-2.5μm;
所述窄带光偏振转换器工作时,通过所述长方体非晶硅的尺寸参数设计,在同一频率处实现分别在两个垂直方向上的电偶极子和磁偶极子的同时共振,当电偶极子共振激发时,超表面表现出完美导电体的特征,反射光的电场分量获得一个π的相位突变,而磁场分量的方向保持不变;当磁偶极子共振激发时,反射光的磁场分量会获得一个π的相位突变,而电场分量保持不变,以此实现偏振转换的功能。
作为优选的技术方案,所述长方体非晶硅的长度为6.6μm,宽度为3.2μm,厚度为2.0μm。
作为优选的技术方案,所述氟化钙衬底在x方向的周期Px为7.6μm。
作为优选的技术方案,所述氟化钙衬底在y方向的周期Py为9.6μm。
作为优选的技术方案,所述窄带光偏振转换器工作时,当入射光的偏振方向与x轴成45°时,入射光在11μm处同时激发磁偶极子和电偶极子共振。
根据本发明实施例的一种基于介质超表面的窄带光偏振转换器,利用介质材料的低损耗特性和同一频率处的磁偶极子和电偶极子同时共振原理,实现窄带、高效率的偏振转换性能,具有窄带频率选择性、高反射效率和结构简单的性能优势。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍。在所有附图中,类似的元件或部分一般由类似的附图标记标识。附图中,各元件或部分并不一定按照实际的比例绘制。
图1(a)示出了现有技术中的基于“L”形金属条的偏振转换器件结构图;
图1(b)示出了现有技术中的基于“L”形金属条的偏振转换性能图;
图1(c)示出了现有技术中的基于椭圆形金属棒的偏振转换器件结构图;
图1(d)示出了现有技术中的基于椭圆形金属棒的偏振转换性能图;
图2示出了根据本发明实施例提供的基于介质超表面的窄带光偏振转换器的介质超表面的单元结构图;
图3(a)示出了偏振沿x方向偏振正入射时的反射光谱;
图3(b)示出了偏振沿y方向偏振正入射时的反射光谱;
图4(a)示出了x方向线偏振光正入射时的在波长11.47μm处的磁场分布图;
图4(b)示出了x方向线偏振光正入射时的在波长11.47μm处的电场分布图;
图5(a)示出了y方向线偏振光正入射时的在波长11.47μm处的磁场分布图;
图5(b)示出了y方向线偏振光正入射时的在波长11.47μm处的电场分布图;
图6示出了交叉偏振转换的示意图;
图7示出了介质超表面的交叉偏振分量反射率Rcross和平行分量反射率Rco
图8示出了介质超表面的交叉偏振分量反射率Rcross和相位差Δψ;
图9示出了介质超表面在不同尺寸参数下的交叉偏振分量反射率Rcross
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步的详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定发明。
现在结合说明书附图对本发明做进一步的说明。
图2示出了根据本发明实施例的一种基于介质超表面的窄带光偏振转换器的介质超表面的单元结构图。如图2所示,本发明实施例提供了一种基于介质超表面的窄带光偏振转换器。本发明实施例利用介质材料的低损耗特性和同一频率处的磁偶极子和电偶极子同时共振原理,实现窄带、高效率的偏振转换性能。
具体来说,由于介质材料不存在金属材料固有的欧姆损耗,本发明采用由氟化钙衬底上周期性排列的长方体非晶硅所构成的全介质超表面,其结构如图2所示,其中衬底为氟化钙,上层为周期性的长方体非晶硅,其长、宽、高分别为b=5-7μm、a=2.5-4.5μm和h=1.5-2.5μm。
本发明实施例基于同一频率处的磁偶极子和电偶极子同时共振原理。通过长方体非晶硅的尺寸参数设计和优化,在同一频率处实现分别在两个垂直方向上的电偶极子和磁偶极子的同时共振。对于电偶极子共振,超表面会表现完美导电体的特征,反射光的电场分量会获得一个π的相位突变,而磁场分量的方向保持不变;相应地,当磁偶极子共振激发时,反射光的磁场分量会获得一个π的相位突变,而电场分量保持不变。因此当入射光在两个正交的偏振方向分别激发了电偶极子共振和磁偶极子共振时,射光的电场分量在两个正交的方向上存在π的相位差,从而实现偏振转换的功能。
示例性的,针对中红外频段的偏振转换功能,下面将详细阐述本发明的一个典型的具体实施例。
氟化钙衬底上周期性地排列着长方体硅块。x方向的周期Px为7.6μm,y方向的周期Py为9.6μm。长方体硅块的长度b为6.6μm,宽度a为3.2μm,厚度h为2.0μm。
图3为偏振分别沿x方向和y方向偏振正入射时的反射光谱。如图3(a)所示,当入射光沿x方向偏振时,反射谱在11.47μm和13.29μm两个位置存在共振峰,同时当入射光沿y方向偏振时,在11μm波长附近的位置存在一个平坦的反射峰。其中x方向偏振时在11.47μm处的磁场和电场分布由图4(a)和4(b)给出,磁场矢量H竖直地穿过硅块,而电场矢量E则是围绕着H成涡旋状分布,说明该共振模式是典型的磁偶极子共振。此外,对于y方向偏振时在11μm波长附近的平坦反射峰,其电场和磁场分布由图5(a)和5(b)给出,电场矢量E竖直地穿过硅块并在硅块内部得到加强,而磁场矢量H围绕着E呈涡旋状分布,这是典型的电偶极子共振。
因此,当入射光的偏振方向与x轴成45°时,入射光在11μm附近同时激发上述的磁偶极子和电偶极子共振,从而使两个正交分量Ex和Ey产生π的相位差,进而实现偏振转换的功能,如图6所示。图7是实现的偏振转换性能的效果图,其中橙色的曲线为交叉偏振(即偏振发生转换后的分量)反射率Rcross,而蓝色的曲线为平行分量的反射率Rco(即偏振方向不变的分量),可以看出在11.5μm处,交叉偏振的反射率Rcross高达87.77%。参考图8中的Ex和Ey两个正交分量之间的相位差
Figure BDA0003357033520000061
可以看出在Rcross峰值11.5μm处的相位差为214.1°,接近180°,该相位差是导致偏振转换的物理原因。
在一些实施例中,本发明实施例还可以通过改变长方体非晶硅的尺寸参数,实现工作频率的调谐和偏振性能优化。作为进一步的应用案例,图9示出了介质超表面在不同尺寸参数下的交叉偏振分量反射率Rcross当长方体硅的宽度a从2.6μm增加到3.8μm时,偏振转换的波长逐步从11μm红移到12μm,其中最优交叉偏振反射率达到了96.6%,高于现有金属超表面技术方案中的70%-90%。
以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。

Claims (5)

1.一种基于介质超表面的窄带光偏振转换器,其特征在于,所述窄带光偏振转换器包括氟化钙衬底,所述氟化钙衬底上层设置周期性的长方体非晶硅,所述长方体非晶硅的长、宽、高分别为5-7μm、2.5-4.5μm和1.5-2.5μm;
所述窄带光偏振转换器工作时,通过所述长方体非晶硅的尺寸参数设计,在同一频率处实现分别在两个垂直方向上的电偶极子和磁偶极子的同时共振,当电偶极子共振激发时,超表面表现出完美导电体的特征,反射光的电场分量获得一个π的相位突变,而磁场分量的方向保持不变;当磁偶极子共振激发时,反射光的磁场分量会获得一个π的相位突变,而电场分量保持不变,以此实现偏振转换的功能。
2.根据权利要求1所述的窄带光偏振转换器,其特征在于,所述长方体非晶硅的长度为6.6μm,宽度为3.2μm,厚度为2.0μm。
3.根据权利要求1所述的窄带光偏振转换器,其特征在于,所述氟化钙衬底在x方向的周期Px为7.6μm。
4.根据权利要求1所述的窄带光偏振转换器,其特征在于,所述氟化钙衬底在y方向的周期Py为9.6μm。
5.根据权利要求1所述的窄带光偏振转换器,其特征在于,所述窄带光偏振转换器工作时,当入射光的偏振方向与x轴成45°时,入射光在11μm处同时激发磁偶极子和电偶极子共振。
CN202111355562.4A 2021-11-16 2021-11-16 基于介质超表面的窄带光偏振转换器 Pending CN113848605A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111355562.4A CN113848605A (zh) 2021-11-16 2021-11-16 基于介质超表面的窄带光偏振转换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111355562.4A CN113848605A (zh) 2021-11-16 2021-11-16 基于介质超表面的窄带光偏振转换器

Publications (1)

Publication Number Publication Date
CN113848605A true CN113848605A (zh) 2021-12-28

Family

ID=78984465

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111355562.4A Pending CN113848605A (zh) 2021-11-16 2021-11-16 基于介质超表面的窄带光偏振转换器

Country Status (1)

Country Link
CN (1) CN113848605A (zh)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233485A (ja) * 2003-01-29 2004-08-19 Photonic Lattice Inc 偏光成分間に遅延差を付与する装置および偏波モード分散補償器
US20040235205A1 (en) * 2000-09-20 2004-11-25 Kla-Tencor, Inc. Methods and systems for determining a critical dimension and overlay of a specimen
US20060227422A1 (en) * 2005-04-12 2006-10-12 Brian Monacelli Circular polarizer using frequency selective surfaces
WO2007108212A1 (ja) * 2006-03-17 2007-09-27 Japan Science And Technology Agency 周期構造体及び周期構造の作製方法並びに応用製品
US20140146390A1 (en) * 2011-06-01 2014-05-29 Université Jean-Monnet Planar polarization transformer
JP2015143707A (ja) * 2015-04-10 2015-08-06 コニカミノルタ株式会社 光センサー
US20190079321A1 (en) * 2017-09-08 2019-03-14 California Institute Of Technology Active metasurfaces for dynamic polarization conversion
CN109473785A (zh) * 2018-12-21 2019-03-15 桂林电子科技大学 一种偶极子共振超表面窄带极化转换器
CN109585982A (zh) * 2018-11-27 2019-04-05 西安电子科技大学 一种基于超表面的电控可调极化转换器
CN110794596A (zh) * 2019-06-18 2020-02-14 南开大学 一种基于石墨烯-介质复合超表面的反射式宽频带偏振控制器
CN111610649A (zh) * 2020-05-19 2020-09-01 东南大学 一种窄带超表面器件
CN112130245A (zh) * 2020-09-16 2020-12-25 武汉理工大学 宽带高透过非对称超材料偏振调控器及其制造方法
CN112162421A (zh) * 2019-10-14 2021-01-01 南开大学 一种基于多层石墨烯-介质复合超表面的反射式宽带可调偏振转换器
CN113378372A (zh) * 2021-06-04 2021-09-10 南京南辉智能光学感控研究院有限公司 一种太赫兹涡旋处理器的设计方法及其所得产品与应用
CN214336934U (zh) * 2021-02-02 2021-10-01 桂林电子科技大学 一种基于石墨烯复合超表面的太赫兹可调极化转换器
EP3968064A1 (fr) * 2020-09-10 2022-03-16 Commissariat à l'énergie atomique et aux énergies alternatives Dispositif de filtrage optique
CN114624209A (zh) * 2022-03-02 2022-06-14 哈尔滨工程大学 基于介质超表面偏振转换的折射率传感器
CN115421223A (zh) * 2022-07-06 2022-12-02 北京理工大学 一种基于抛物线相位超表面的频率色散器件
CN115685420A (zh) * 2022-09-08 2023-02-03 中国科学院长春光学精密机械与物理研究所 基于全介质超表面的窄带红外吸收体

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040235205A1 (en) * 2000-09-20 2004-11-25 Kla-Tencor, Inc. Methods and systems for determining a critical dimension and overlay of a specimen
JP2004233485A (ja) * 2003-01-29 2004-08-19 Photonic Lattice Inc 偏光成分間に遅延差を付与する装置および偏波モード分散補償器
US20060227422A1 (en) * 2005-04-12 2006-10-12 Brian Monacelli Circular polarizer using frequency selective surfaces
WO2007108212A1 (ja) * 2006-03-17 2007-09-27 Japan Science And Technology Agency 周期構造体及び周期構造の作製方法並びに応用製品
US20140146390A1 (en) * 2011-06-01 2014-05-29 Université Jean-Monnet Planar polarization transformer
JP2015143707A (ja) * 2015-04-10 2015-08-06 コニカミノルタ株式会社 光センサー
US20190079321A1 (en) * 2017-09-08 2019-03-14 California Institute Of Technology Active metasurfaces for dynamic polarization conversion
CN109585982A (zh) * 2018-11-27 2019-04-05 西安电子科技大学 一种基于超表面的电控可调极化转换器
CN109473785A (zh) * 2018-12-21 2019-03-15 桂林电子科技大学 一种偶极子共振超表面窄带极化转换器
CN110794596A (zh) * 2019-06-18 2020-02-14 南开大学 一种基于石墨烯-介质复合超表面的反射式宽频带偏振控制器
CN112162421A (zh) * 2019-10-14 2021-01-01 南开大学 一种基于多层石墨烯-介质复合超表面的反射式宽带可调偏振转换器
CN111610649A (zh) * 2020-05-19 2020-09-01 东南大学 一种窄带超表面器件
EP3968064A1 (fr) * 2020-09-10 2022-03-16 Commissariat à l'énergie atomique et aux énergies alternatives Dispositif de filtrage optique
CN112130245A (zh) * 2020-09-16 2020-12-25 武汉理工大学 宽带高透过非对称超材料偏振调控器及其制造方法
CN214336934U (zh) * 2021-02-02 2021-10-01 桂林电子科技大学 一种基于石墨烯复合超表面的太赫兹可调极化转换器
CN113378372A (zh) * 2021-06-04 2021-09-10 南京南辉智能光学感控研究院有限公司 一种太赫兹涡旋处理器的设计方法及其所得产品与应用
CN114624209A (zh) * 2022-03-02 2022-06-14 哈尔滨工程大学 基于介质超表面偏振转换的折射率传感器
CN115421223A (zh) * 2022-07-06 2022-12-02 北京理工大学 一种基于抛物线相位超表面的频率色散器件
CN115685420A (zh) * 2022-09-08 2023-02-03 中国科学院长春光学精密机械与物理研究所 基于全介质超表面的窄带红外吸收体

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
KUMARI,B 等: "Design of promising silicon slot waveguide-based ultra-short low loss efficient polarization ratator for the mid-IR", 《OPTIK》 *
LI Z 等: "Enhancement mechanisms of sub-bandgap broadband absorption in pyramid-structured silicon", 《JOURNAL OF APPLIED PHYSICS》 *
严巍;王纪永;曲俞睿;李强;仇?;: "基于相变材料超表面的光学调控", 物理学报 *
刘志军 等: "宽带可调谐的中红外偏振转换器", 《科技成果》 *
李喆: "微结构硅的红外光学特性和探测性能研究", 《中国博士学位论文全文数据库信息科技辑》 *
郭旭岳;李冰洁;樊鑫豪;钟进展;刘圣;魏冰妍;李鹏;赵建林;: "基于电介质超表面的光场复振幅调制及应用", 红外与激光工程 *

Similar Documents

Publication Publication Date Title
Huang et al. Ultrathin dual-band metasurface polarization converter
Fu et al. Dual-bandwidth linear polarization converter based on anisotropic metasurface
US20110261441A1 (en) Spectral Filter
Yahiaoui et al. Broadband polarization-independent wide-angle and reconfigurable phase transition hybrid metamaterial absorber
CN106450794A (zh) 手征超表面太赫兹反射式90度极化器
CN112130245B (zh) 宽带高透过非对称超材料偏振调控器及其制造方法
Li et al. Multifunctional and tunable metastructure based on VO 2 for polarization conversion and absorption
CN107765359B (zh) 基于谐振腔增强波导传输的高效波片
Li et al. Broadband and high-efficient reflective linear–circular polarization convertor based on three-dimensional all-metal anisotropic metamaterial at terahertz frequencies
Ma et al. Dual function tunable THz metamaterial device possessing broadband absorption and polarization conversion
Song et al. Terahertz absorber based on vanadium dioxide with high sensitivity and switching capability between ultra-wideband and ultra-narrowband
Ahmad et al. Wideband reflective half-and quarter-wave plate metasurface based on multi-plasmon resonances
Jia et al. Multi-functional dual-band polarization converter based on graphene and vanadium dioxide metasurfaces
Sarkar et al. Broadband terahertz polarization conversion using a planar toroidal metamaterial
CN113848605A (zh) 基于介质超表面的窄带光偏振转换器
Liu et al. Switchable asymmetric transmission with broadband polarization conversion in vanadium dioxide-assisted terahertz metamaterials
CN114740562B (zh) 一种能够实现双波段偏振转换的t型光学二极管
Zhang et al. Pantoscopic and temperature-controlled dual-band perfect absorber based on strontium titanate material
Zhu et al. Frequency coding all-dielectric metasurface for flexible control of electromagnetic radiation
Xiao et al. Ultra-broadband and High Efficiency Reflection Polarization Converter Metasurface
Chen et al. Fabrication and characterization of broadband terahertz wire-grid polarizer
CN114914708B (zh) 一种太赫兹的极化转换单元及极化转换器
Pati et al. 2D Double Semi Circular Goblet Shaped Angular Stable Dual Band Reflection Type Polarization Converter and Its Application in Radar Cross Section Reduction
Shukoor et al. Novel Wideband Perfect Reflector with Linear-Cross Polarization Conversion Ability for X/Ku/Ka-Band Applications Including Bandwidth Adjustment
Chen et al. Transmission-type coding metasurface with ultra-broadband polarization conversion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20240112

AD01 Patent right deemed abandoned